

Y. Unno

For

Y. Unnoa*, Y. Ikegamia, S. Teradaa, S. Mitsuia, O. Jinnouchif, S. Kamadab,

K. Yamamura^b, A. Ishida^b, M. Ishihara^b, T. Inuzuka^b, K. Hanagaki^e, K. Hara^g, T. Kondo^a, N. Kimura^h, I. Nakano^d, K. Nagai^g, R. Takashima^c, J. Tojo^a, K. Yorita^h

^aHigh Energy Accelerator Research Organization (KEK)/The Graduate University for Advanced Studies (SOKENDAI)

bHamamatsu Photonics K.K.

^cDepartment of Education, Kyoto University of Education

dDepartment of Physics, Okayama Univeristy

^eDepartment of Physics, Osaka University

Department of Physics, Tokyo Institute of Technology

gInstitute of Pure and Applied Sciences, Univeristy of Tsukuba

hResearch Institute for Science and Engineering, Waseda University

R&D of P-type Silicon Sensors

- 6-inch (150 mm dia.) P-type FZ wafer, 320 µm thickness
- 1 cm x 1 cm (miniature), 9.75 cm x 9.75 cm (main)
- fabricated by Hamamatsu Photonics K.K. (HPK)
- Reported in the 7th International "Hiroshima" Symposium..., Hiroshima, 28 Aug. - 1 Sep. 2009. Achievements, e.g.
 - N-side isolation
 - No breakdown (onset of microdischarge) up to 1 kV
 - Radiation damage tested by protons and neutrons up to ~ 10^15 1-MeV-neutron equivalent(neg)/cm²
 - Single- and Double-sided strip prototype modules
- A goal of the R&D of Pixel sensor is
 - To work ≥10^16 neq/cm^2
 - Operable up to 1000 V
 - To collect more charges than 500 V
 - "Charge multiplication(?)" towards 1000 V

R&D of Pixel Sensors Wafer #1

Single-FE-I3 pixels

Slim-edge study

Diodes: 1-20

Guard-ring study

Diodes: 21-32

6in P-sub ($^{\sim}4$ kΩcm) and N-sub ($^{\sim}4$ kΩcm) wafers

Nominal 320 µm and thinned 200 µm

HPK 6 in. (150 mm) wafers, p-type and n-type

R&D of Pixel Sensors Wafer #2

- Mainly FE-I4 pixel sensors
 - 2x1 FE-I4 sensor
 - ATLAS IBL design, 18.8 mm x
 41.3 mm, with the edge
 space of 0.450 mm
- N-side isolation x bias method
 - p-stop (common, individual),p-spray)
 - 1 type of bias (PT)
- Thickness
 - 320 um and Thinned 150 um
- Others
 - single-chip FE-I4,
 - single-chip FE-I3 (3 types of isolation x 2 types of bias (PT, PolySi)),
 - 2x2 FE-I3 sensors (3 types of isolation x PT), etc.

- Out of fabrication expected
 - Normal thickness (320 μm): End Aug. 2010
 - Thinned (150 μm): End Sep. 2010

New Punch-Thru (PT) Bias layouts

- FE-I4 pixel: 50 μm x 250 μm pitch
- A bias dot for 4 pixels
 - To minimize insensitive area
 - We might loose a bit more charge at the 4-corner
 - An usual option is to bias the dot towards the backplane bias to enhance the field
- The gap between the pixel implants
 - 20 μm in common p-stop, same as in the p-spray design
 - 30 μm in individual p-stop

Slim-Edge Study

A goal

- ATLAS Insertable B-Layer (IBL) 2x1 Planar Pixel Sensor Envelope
- Distance from active pixel edge to dicing edge: 0.45 μm

В

Only in one side, the distance-to-edge is varied

Slim-Edge - Measurements

- P-sub wafer
 - Thickness: 320 μm
 - 150 μm to come
 - Distance-to-edge: 280-1011 μm
 - Leakage current ~7 nA/cm^2

Slim-Edge – Distance vs Onset voltage

- Wafer thickness: 320 μm
 - Both N- and P-sub wafers
- Linear dependence of square root(V_bias) on the distance to edge
 - Reflecting the depletion along the surface
- Distance-to-edge
 - ~450 μ m is expected to hold 1000 V

Guard Ring Study

- Investigation whether the number of guard rings will help to reduce the distance to edge
 - Variation up to 3 guard rings

- Systematics for the width of guard rings
 - Edge-to-Edge of guard rings are
 - 1GR-L = 2GR-N
 - 1GR-M = 2GR-O = 3GR-P

Guard Ring Study

- N-sub/N+ edge holds 1 kV
- N-sub/P+ edge for investigation
 - Breakdown when depletion reaches P+ edge

Systematic onset as a function of gap

- Axes:
 - Horizontal: total width of fields without implantation
 - Vertical: square root of bias voltage
- Linear increase == depletion along surface

Number of guard rings

- irrelevant to reduce the distance to edge
- May help to reduce some electric field at the edge of the bias ring

2x1 FE-I4 Pixel Sensor

Irradiation

- CYRIC cyclotron in Japan
 - 70 MeV protons, a few-800 nA
- Latest irradiation
 - 21-22 July 2010
 - $-5x10^{12}$, 10^{13} , 10^{14} , 10^{15} , and 10^{16}
- Samples
 - From RD Wafer#1 (and a diamond)
 - Results to be presented in a next conference

Typical packaging

Irradiation box

PbSn Solder Bump-bonding at HPK

- With Al-pattern dummy chips
- PbSn solder bumps
 - Pb-solder bump by IZM (as FE-I3)
- Bump side: Height 28.8 μm
- UBM side: Height 6.3 μm
- Parameter optimization for
 - Small bump deformation
 - Most of the peel from substrate
 - Fractures in the solder
 - Good melt of solder and UBM
 - Without open or short

"half moon" residues are peels from substrate

2x2 Multi-chip Stack

- Samples 2 stacks each
 - Two 2x2FE-I3
 - Two 2x2FE-I4
- Daisy chain resistance
 - Very little open
 - Some shorts

Thermal Cycling

Two FE-I4 dummies were tested

No bump failure was observed

Pb-free (SnAg) Bump-bonding

- Results
 - Strong peel-strength
 - · Chip cracks when peeled off
 - Peel from substrate/Solder fracture 50/50
 - No open/sort
- Need further optimization
 - Large contact resistance (~1kΩ/bump)

Bumpless Bonding at HPK

- We are looking forward to the "bumpless" bonding at HPK for future.
- Bumpless bonding contributes to low-cost and small volume of metal because of thin metal electrodes
- Chip-to-Wafer bonding is more relevant than wafer-to-wafer because of the difference of the chip/wafer size and yield of the IC and the sensor.

Method	Thermal Compressio n	Plasma Activation (PAB)	Surface Activation (SAB)
Activation	Ar plasma	Sequential	Ion beam
Bonding	Thermal compression	ON radical	Bond arm+Metal
Bond medium	Au-Au	Si/SiO2- Si/SiO2	Si/SiO2- Si/SiO2 Au-Au
Temperat ure	100-200°C	<100°C <200°C	Room T.
Electrode	Au, Cu	Au, Cu	Au, Cu, Al
Availabilit y	Planned	Planned	Soon

HPK n-in-p Pixel Sensor/FE-I3 Module

- PbSn solder bump bonding by HPK
 - With IZM PbSn solders on FE-I3
 - With HPK non-electroplating UBM on pixel sensors
 - Bump yield ~98%
 - Non-electroplating an issue
- 1st pixel sensor and bump-bonded module made by HPK for us (for HEP community)
 - Although not a perfect and ~10 yrs(?)
 behind you

Summary

- We have fabricated
 - N-in-P Pixel sensors in two R&D wafers, #1 with FE-I3 and #2 with FE-I4 designs
 - The study on the distance-to-edge has shown
 - ~450 μm distance is expected to hold 1000 V bias voltage, both in the N-sub and P-sub wafers
 - The study on the number of guard ring has shown
 - Irrelevant to reduce the distance to edge
 - Thinned sensors, 200 μm thick, hold 1,000 V
- Bump-bonding development is on-going
 - PbSn solder bumping has been successful
 - SnAg (Pb-free) solder bumping has been started
 - 1st Real (pixel sensor+Pixel ASIC (FE-I3)) has been made for us (HEP community) by HPK
- Looking forward to the performance after irradiation

Thank you for excellent organization