

Progress of SOI Pixel Detectors

Sep. 9, 2010 @PIXEL2010
Yasuo Arai, KEK
yasuo.arai@kek.jp
http://rd.kek.jp/project/soi/

OUTLINE

- 1. Overview of SOIPIX activities
- On-Going R&Ds
 Buried P-Well
 Wafer Thinning
 FZ-SOI Wafer
 Nested BNW/BPW Structure
 Double SOI Wafer
- 3. Summary

Other SOI related talks

- •XFEL MVIA → T. Hatusi
- •ILC Pair Monitor → Y. Sato
- •LBNL/Padva → P. Giubilato
- Vertical Integration → M. Motoyoshi
 R. Yarema

SOI Pixel Detector

Monolithic detector using Bonded wafer (SOI: Silicon-on-Insulator) of Hi-R and Low-R Si layers.

- No mechanical bump bondings
 - -> High Density, Low material budget
 - -> Low parasitic Capacitance, High Sensitivity
- Standard CMOS circuits can be built
- Thin active Si layer (~40 nm)
 - -> No Latch Up, Small SEE Cross section.
- Based on Industrial standard technology
- Seamless connection to Vertical Integration

OKI 0.2 µm FD-SOI Pixel Process

Process	0.2μm Low-Leakage Fully-Depleted SOI CMOS (OKI) 1 Poly, 4 (5) Metal layers, MIM Capacitor, DMOS option Core (I/O) Voltage = 1.8 (3.3) V
SOI wafer	Diameter: 200 mm ϕ , Top Si : Cz, ~18 Ω -cm, p-type, ~40 nm thick Buried Oxide: 200 nm thick Handle wafer: Cz, ~700 Ω -cm (<i>n-type</i>), 650 μ m thick
Backside	Thinned to 260 µm and sputtered with AI (200 nm).

SOI MPW run Users

KEK, Tsukuba Univ., Tohoku Univ., Kyoto Univ., Kyoto U. of Education, Osaka Univ., JAXA/ISAS, RIKEN, AIST

LBNL, FNAL, Univ. of Hawaii

INP Krakow, INFN Padova, Louvain-la-Neuve Univ., Universität Heidelberg

IHEP China
Budker Institute of Nucl. Phys.

Supporting Companies

OKI Semiconductor Co. Ltd., OKI Semiconductor Miyagi Co. Ltd., T-Micro Co. Ltd., Rigaku Co. Ltd.

Other SOI Pixels

Recent Process Improvements

- Increase No. of Metal Layer: 4 -> 5 layers
 - --> Better Power Grid and Higher Integration

- Shrink MIM capacitor size : 1 -> 1.5 fF/um²
 - --> Smaller Pixel size become possible

Recent Process Improvements

- Relax drawing rule : 30°, 45° -> Circle
 - --> Smooth field and Higher Break Down Voltage

- Introduction of source-inserted body contacts
 - --> Better body contacts (Less kink and history effects, Lower noise).

On-Going R&Ds

- a. Back Gate Effect : Sensor voltage affect Transistor characteristics
 - → Buried P-Well (BPW) layer
- b. Wafer Thinning: Thin Sensor
 - → TAICO process
- c. Wafer Resistivity: Lower depletion voltage
 - → FZ SOI wafer
- d. Cross Talk: Reduce coupling between Sensor and Circuit
 - → Nested BNW/BPW Structure
- e. Radiation Hardness: Compensate traped charge
 - → Double SOI Wafer

a. Back Gate Effect

Front Gate and Back Gate are coupled. (Back Gate Effect)

Buried p-Well (BPW)

Substrate Implantation Buried Oxide (BOX) P+

- Cut Top Si and BOX
- High Dose

- Keep Top Si not affected
- Low Dose
- Suppress the back gate effect.
- Shrink pixel size without loosing sensitive area.
- Increase break down voltage with low dose region.
- Less electric field in the BOX which may improve radiation hardness.

$\underline{I_d}$ - V_g and BPW

Back gate effect is suppressed by the BPW.

b. Wafer Thinning: TAIKO process

Thinned to 110 um and diced

I-V Characteristic Before & After Thinning

INTPIX2 IV_Comparing(Adjusted)

No difference seen after thinning

Infrared Laser (1064 nm) Response of Thinned Chip

Full Depleted around 100V

c. Wafer Resistivity: FZ SOI Wafer

During the conventional SOI process, many slips were generated in the 8" FZ-SOI wafer.

We optimized the process parameters, and succeeded to perform the process without creating many slips.

FZ-SOI Wafer Depletion

Full Depleted @22V

d. Nested BNW/BPW Structure

- Signal is collected with the deep Buried P-well.
- Back gate and Cross Talk are shielded with the Buried N-well.
- Test chip is under process.

Structure developed in cooperation between G. Deptuch (Fermilab) and I. Kurachi (OKI Semi)

e. Double SOI Layer wafer

Increase radiation hardness by compensating Oxide/Interface Trap charge with middle layer bias.

Total Ionization Dose effect can be compensated by back bias

Leak Current and V_{Th} resumes to nearly original value by biasing back side even after 100Mrad.

Summary

- Our SOI MPW run is operated regularly twice per year.
- In addition to many chip designs, a lot of activities are going.
- a. Buried P-Well technology is very successful to suppress the Back Gate problem.
- b. Thinning to 110um by TAICO process works very well.
- c. Wafer resistivity is greatly increased by using FZ-SOI wafer.
- d. Nested BNW/BPW structure may resolve cross talk problem and opened possibility of new sensor structure.
- e. Manufacturing of Double SOI wafer is being discussed with supply and processing companies.
- Vertical integration → Motoyoshi san's Talk

Supplement

KEK-OKI semi SOI Brief History

- '05. 7: Start Collaboration with OKI Semiconductor.
- '05.10: First Submission in VDEC 0.15 um MPW.
- '06.12: 1st (and last) 0.15 um KEK MPW run.
- '07.3: 0.15 um lab. process line was closed.
 - --> move to 0.2 um mass production line.
- '08.1: 1st KEK SOI-MPW run.
- '09.2: 2nd KEK SOI-MPW run.
- '09.8: 3rd KEK SOI-MPW run.
- '10.1: 4th KEK SOI-MPW run.
- '10.8: 5th KEK SOI-MPW run.

SOI Pixel Process Flow

Integration Type Pixel (INTPIX)

Size : 14 μm x 14 μm with CDS circuit

Integration Type Pixel (INTPIX4)

Largest Chip so far.

17x17 μm, 512x832 (~430k) pixels、13 Analog Out、CDS circuit in each pixel.

