
The ATLAS Insertable B-Layer 

Detector (IBL)

F. Hügging on behalf of the ATLAS IBL collaboration

Pixel 2010

5th International Workshop on Semiconductor Pixel 
Detectors for Particles and Imaging, Sept. 6 – 10, 2010 

Grindelwald, Switzerland 

Fabian Hügging, University of BonnPixel 2010 1



The ATLAS Pixel Detector

–3 Barrel + 6 

Forward/Backward 

disks

–112 staves and 48 

sectors

–1744 modules

–80 million channels
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The ATLAS Pixel module
– 16-frontend chips (FE-I3) modules 

with a module controller chip (MCC)

– 47232 pixels (46080 R/O channels), 
50 x 400 µm2 (50 x 600 µm2 for edge 
pixel columns between neighbour FE-
I3 chips) 

– Planar n-on-n DOFZ silicon sensors, 
250 µm thick

– Designed for 1 x 1015 1MeV neq
fluence and 500kGy (50 MRad)

– Opto link R/O: 40÷80 Mb/link
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Phase 1 Upgrade: IBL

• Insertable B-layer in 2016:
– Fourth pixel layer at r = 3.2 cm in addition to existing detector.

– Insertion together will a new beam-pipe.

– Peak luminosity 2-3x1034 cm-2 s-1, 75 pile-up events and 3x1015neq /cm2

• this constraints the design of the IBL:
– Mechanical layout is challenging, service routing is complex.

– Electronics/readout has to fit to current pixel detector (ROD, BOC etc.)  
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The 4th Pixel layer: Insertable B‐Layer

• Add a 4th low-mass pixel layer inside the present B-Layer: The 
Insertable B-Layer:

– Improve performance of existing system.

– Maintain performance when present B-Layer degrades.

– Existing Pixel Detector stays installed and a 4th is inserted inside the existing 
pixel system together with new beam pipe  requires new, smaller radius 
beam pipe to make space.

– It needs to be inserted in a long shutdown (at least 9 months required). Build 
detector ready for installation in 2016.

• It serves also as technology step from now to sLHC:
– IBL project will be first to use of new technologies currently under 

development for sLHC.

– Radiation hardness 5x1015 neq/cm2 or 250 MRad (2.5 MGy).

– Front-end (FE-I4): go to IBM 130nm process and improve readout 
architecture.

– Sensors: investigate new planar Si sensors, 3D-Si sensors and CVD 
diamond sensors.

– Readout system & optolink: 160MB/s for data transmission.

– CO2 cooling system & mechanics: develop light-weight support.
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IBL Layout (1)

• The envelopes of the existing Pixel Detector and 
of the beam pipe leave today a radial free space 
of 8.5mm.

• The reduction of 4mm in the beam pipe radius 
brings it to 12.5mm.

• Entire IBL has to fit in this space!
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IBL Layout (2)
• Baseline geometry defined:

• 14 staves
– Rin = 31mm

– Rout = 34mm

– <Rsens> = 33mm

– Z = 664mm

• 32 FE-I4„s per stave with 
sensors facing the IP.

• Stave tilt angle in Φ = 14

• No module overlap in z-
direction.

• Total sensor surface only 
~0.2m2.
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IBL Performance (1)
• Main target is to keep 

performance of the pixel 
system:

– for more pile up events at 
higher luminosities.

– for failures of modules esp. 
in the „old‟ b-layer.

– b-tagging efficiency without 
„old‟ b-layer.   

• Older studies 
(ATLSIM/GEANT3) suggest 
improved performance with 
the addition of IBL.

• IBL physics and performance 
taskforce installed to 
investigate the physics 
performance of IBL further:
 see results on light jet 

rejection at 60% b jet 
efficiency on the right for two 
simulated failure scenarios.
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IBL Performance (2)
• Physics performance studies 

are ongoing for the IBL TDR 
using ATHENA/GEANT4.

• Performance improvement 
due to low mass and smaller 
radius of IBL:

Pixel 2010 Fabian Hügging, University of Bonn 9

Component % X0 

beam-pipe 0.6

New BL @ R=3.2 cm 1.5

Old BL @ R=5 cm 2.7

L1 @  R=8 cm 2.7

L2 + Serv. @ R=12 

cm 
3.5

Total 11.0



IBL Module Design
• Module design decoupled from sensor technology  only a few technology dependencies.

• Each FE chip has 336x80 pixel of 50x250µm2.

• Decision on sensors after prototyping with FE-I4.
– Need module prototypes with FE-I4 (2010/2011)

• Common sensor baseline for engineering and system purposes.
– 3D sensors  single chip modules 

– Planar and Diamond sensors  2 chip modules

• Sensor/module prototypes for ~10% of the detector in 2010/2011
– Stave prototype tested with modules and cooling
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Single chip module:

Edge < 325 µm

Double chip module:

Edge < 450 µm



Bump Bonding
• Requirements for bump bonding of 

IBL modules are:
– a fine bump pitch of 50µm

– a high bump density of 80 bumps per 
mm2 (26,880 bumps per IC)

– high yield with defect rate < 10-4.

– IC thickness below 200µm to save 
material.

• Large volume bump bonding  
experience from ATLAS Pixel 
Detector.

• Program to qualify for FE-I4 and 
different sensor technologies.

– Goal is go below 200µm chip 
thickness: target is 90µm.

– Crucial point is the behavior of the 
thinned IC during the high 
temperature reflow process.

– See L. Gonella„s and T. Fritzsch talks
on Thursday for more details. 
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“dummy – sensor”

(monitor wafer)

Prototype test of advanced AgSn bumping 

with 90µm FE-I4 size dummies. 

JINST 3 P0707 (2008)



Module design: Electrical interface 
• Basic idea: flex cable glued to stave 

backside carries all signal and voltage 
traces for a half stave, i.e. 8 2-chip 
modules.

• Connection to module via a wing which is 
bent to stave front side for each module.

• Wire bond connects to module onto a 
small module flex.

• At the end of stave all signals and 
voltages connects to type1 cables via low 
mass connectors

• 2 prototypes are under development for 
the stave cables:

– Multilayer flex solution

– thin single sided Al-flexes
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Low  voltages

CMD+CLK

Data Out

HV
HV Ret

NTC

End of stave: electrical interface to type1

Sensor backside

Small module flex

Stave flex

Stave flex wing

Stave flex prototype: thin Al flex



Sensors for IBL (1)
• Requirements for IBL sensors:

– Integrated luminosity seen by IBL is 550fb-1
 survive until sLHC phase 2

– NIEL dose: 3.3x1015 + „safety factor“ = 5x1015 neq/cm2.

– Ionizing dose = 2.5MGy (250MRad)

– Low dead area in Z: slim or active edge

– Max. Sensor power density < 200mW/cm2 normalized to -15°C sensor temperature

– Max. Bias voltage (system issue) = 1000V 
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1 MeV neq silicon damage fluence

normalized to L=550fb-1

• Fit made for 2 < r < 20cm for L = 550fb-1.

• For IBL @ 3.2cm: Φ = 3.3x1015neq/cm2 (1.6MGy)



Sensors for IBL (2)
• 3 sensor concepts are beeing 

considered for IBL:
– Planar n-in-n silicon sensors:

• Similiar design as for ATLAS 
Pixel.

• Radiation tolerance proven to 
several 1015neq/cm2.

• Main focus in development of 
slim edges. 

– Planar n-in-p silicon sensors, 
thinned to 150µm:

• Utilize the advantages of thinned 
sensors at a given maximum 
bias voltage

• Standard 450µm wide inactive 
edge

• Special passivation layer (BCB) 
needed for HV operation

 More details given on 
Wednesday morning by D. 
Münstermann, A. Macchiolo  
and Y. Unno. 
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n-in-n design, 450µm edge

n-in-n design, 100µm edge

n-in-p design, 100µm edge



– 3D silicon n-in-p sensors:
• Radiation tolerance is achieved by 

short charge collection distances 
decoupled from sensor thickness 
(230µm).

• 2 design option with different edge 
sizes:

– Full 3D active edge design 
50µm edge.

– Double column design  200µm 
slim edge

• More details given on Wednesday 
by A. Micelli.

– Diamond pixel sensors:
• Sufficient radiation tolerant for IBL 

fluences and very low leakage 
current (less cooling).

• Slim edges possible.

• 2 manufacturer (DDL, II-VI) with 
acceptable performance (CCD > 
230µm) under investigation.

• Full processing (pixel metallization 
and UBM) are industrialized at IZM, 
Berlin.
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Sensors for IBL (3)

DDL diamond detectors

II-VI diamond detectors



IBL FE-electronics
• Reason for new FE chip:

– Increased radiation tolerance 
required: 2.5MGy
 Go to smaller feature size 

technology 130nm and utilize 
its improved radiation 
hardness. 

– New architecture to reduce 
inefficiences at higher 
luminosities.
 Local storage of hit in pixel 

matrix until trigger arrives.

Higher output bandwidth.

– Improve cost effectiveness:
 Larger chip improves the ratio 

between active area and 
periphery and is 
advantageous for bump 
bonding while the yield can 
still be high.  
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FE-I3 inefficiency @ r = 5cm



FE-I3  FE-I4
• The first version of full FE-I4 chip has 

been submitted in July 2010 and is 
expected back on 14th of Sept.

– Biggest chip in HEP to date (70 millions 
transistors, 6 Cu and 2 Al routing layers)

– Lower power: don„t move hits around 
unless triggered

– No need for extra module control chip: 
significant digital logic block on array 
periphery.

• FE-I4 collaboration:
– Bonn: D. Arutinov, M. Barbero, T. 

Hemperek, A. Kruth, M. Karagounis.

– CPPM: D. Fougeron, M. Menouni. 

– Genova: R. Beccherle, G. Darbo.

– LBNL: S. Dube, D. Elledge, M. Garcia-
Sciveres, D. Gnani, A. Mekkaoui.

– Nikhef: V. Gromov, R. Kluit, J.D. 
Schipper.

• More details on FE-I4 on Tuesday by M. 
Barbero„s talk „FE-I4 Chip Development for 
Upgraded ATLAS Pixel Detector at LHC”.
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FE-I3 FE-I4

Pixel size [µm2] 50x400 50x250

Pixel array 18x160 80x336

Chip size [mm2] 7.6x10.8 20.2x19.0

Active fraction 74% 89%

Analog current [µA/pix] 26 10

Digital current [µA/pix] 17 10

Analog Voltage [V] 1.6 1.4

Digital Voltage [V] 2.0 1.2

Pseudo-LVDS out [Mb/s] 40 160



IBL cooling
Thermal runaway happens in sensors if not 
adequately cooled:

 Leakage current shows exponential 
behavior.

Stave thermal figure of merit (Γ = [ΔT•cm2/W]) 
main parameter for thermal performance.

Power design requirements for IBL:

– Sensor Power: 200 mW/cm2 @ -15 C

– FE power: 400 mW/cm2

Stave prototype qualification program:

– Titanium / carbon fiber pipes (D = 2÷3 
mm)

– Cooling CO2 and C3F8

– Carbon foam density: 0.25÷0.5 g/cm3

Radiation length: 0.36÷0.66 %X/X0

– Pipe + stave structure + coolant
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IBL stave structure
Stave structure made of 
carbon foam + cooling pipe:

– The stiffness is provided by a 
carbon fiber laminate:

– Carbon foam diffuses the 
heat from the module to the 
cooling pipe
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Module (sensor + bumps + FE-I4)

Carbon foam
Omega CF 

laminate Ti or CF pipe

STAVE                             

TYPE

Omega  

Thicknes

s             

[µm]

Foam           

Density             

[g/cm3]

Pipe                 

Materia

l

Pipe 

Diameters 

[mm]

Radiation Length

X/X0 [%]

Thermal Figure 

of Merit                    

[°C.cm2/W]

Thermal                  

Def.

[ m]Bare 

Stave

Full 

Stave 

Assembl

y

Ti 

pipe 

Stave

300 0.25
Ti 

grade II

ID=2 

OD=2.2
0.57 1.166 11 41

CF 

Pipe 

Stave

150 0.25 CF
ID=2.4  

OD=3
0.36 0.956 25 50

Additional technical
requirements:

• Max pressure of cooling pipe: 
100 bar.

• Develop pipe joints and 
fittings.

• Gravitational / thermal 
deformation < 150 µm.

• Isolation of the carbon foam 
from sensor high voltage.

• Mock-up for thermal 
measurements.



Conclusions

• IBL is the upgrade for the ATLAS Pixel Detector in 
LHC phase 1 upgrade:
– A 4th layer will be inserted into the Pixel system.

– IBL will improve physics performance of ATLAS and it is a 
“safety insurance” for present B-Layer.

– TDR and MoU in progress – project cost evaluated.

• IBL is a challenging project:
– Tight envelopes, material budget reduction, radiation dose 

and R/O bandwidth requirements.

– New technologies are in advanced prototype phase:
• Sensors, FE-I4, light supports, cooling, etc.

– Can be beneficial for sLHC tracker upgrades.
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Backup
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• The support carbon tube is fixed in 2 point of PP0 and on PP1 walls on side C and A.

• The structural pipe with a support system is moved out from the support carbon tube.

. The new beam pipe (in any configuration with OD up to 82,5 mm) is inserted from A-side. It 
has 2 supports at PP0 area and 2 floating wall at PP1 on side A and C.

• Two global support / installation scenarios: IBL support tube (1) / no tube (2):
• An IBL support tube would have advantage on stiffness and simplicity/safety for IBL installation, but 

drawback are envelope needs (~1÷1.5 mm) and increase of radiation length  

• Procedure studied on mock-up at bld.180 - procedure (1) animation:
• The beam pipe flange on A-side is to close to the B-layer envelope - Need to be cut on the aluminum 

section

• A structural pipe is inserted inside the Beam Pipe and supported at both sides. 

• The support collar at PP0 A-side is disassembled and extracted with wires at PP1.

• Beam pipe is extracted from the C-side and it pulls the wire at PP1

• New cable supports are inserted inside PST at PP0.

• A support carbon tube is pushed inside the PST along the structural pipe.

Started to setup a 1:1 mock-up of Pixel/beampipe/PP1 in Bat 180

Installation scenario
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A-side C-side


