

CMS GAS SYSTEM R&D

R. Guida, B. Mandelli, A. D'Auria, M. Corbetta

OUTLOOK

Gas Recuperation Plant

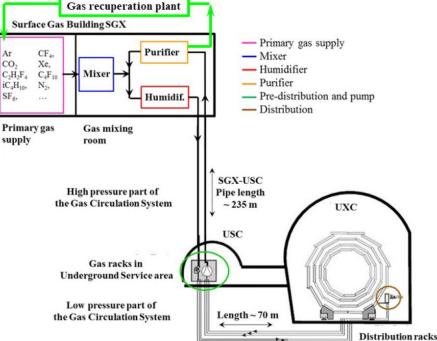
- □ CF4 Recuperation CSC
- R134a Recuperation RPC
- **RPC Distribution Regulation Valves**
- **RPC Dummy Chambers**
- **RPC Ecogas**

GAS RECUPERATION

Several LHC gas system are already using recuperation plants

Ar

CO₂

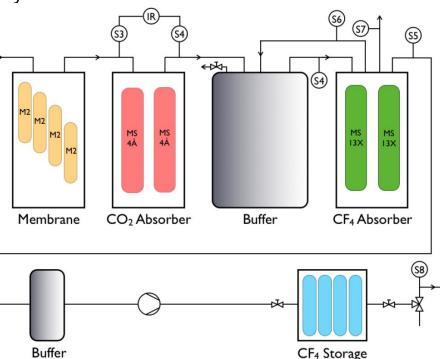

SF6,

PROS \rightarrow

- Further reduction in gas consumption
- Level of N2 impurities under control
- Operation at lower detector pressure

CONS

- Additional complexity of the gas system
- Dedicated R&D
- Gas mixture monitoring necessary


CF4 RECUPERATION - CSC

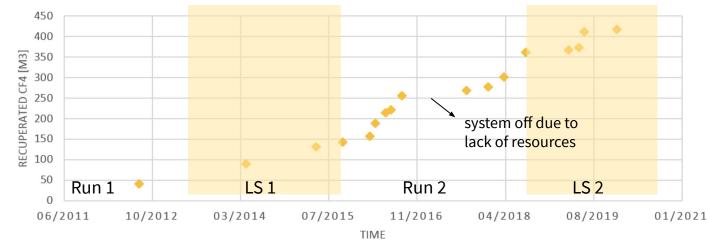
• The technical challenge:

- It is the first plant built for CF4 warm adsorption
- It is a completely non-standard gas system

• The modules:

- Input to plant
- Membrane separation module
- CO2 adsorption module
- CF4 adsorption module
- CF4 compression module
- Recuperated CF4 injection m
- Infrared analysis module
- SWC monitoring module

EP-DT Detector Technologies



CF4 RECUPERATION - CSC

- **STATUS:** in operation since 2012, a lot of tuning/upgrades done
- **420** m³ of recuperated CF4 (eq. to 1 year of operation at 10%)

50k Chf at today price, 200 kChf at 2010 price ...

- Recuperation efficiency improved : today 60%
- CF4 consumption reduced by 40% starting from 2018

RECUPERATED CF4 VOLUME

CF4 RECUPERATION - CSC

→ INPUT TO PLAN:

- Ok for operation
- Plant input flow affects recuperation efficiency:

compromise between CSC Gas System operation and Exhaust flow stability

→ MEMBRANE FOR SEPARATION MODULE:

- Working with good efficiency (~70%)
- Installation of new flowmeters
- Test new High Sensitivity membrane

→ CO2 ADSORPTION MODULE:

Ok for operation

→ CF4 ADSORPTION MODULE:

- Leak in column B, maintenance necessary > 1 week stop might be needed
- New pump test and installation
- Valves timing test to optimize recuperation cycles

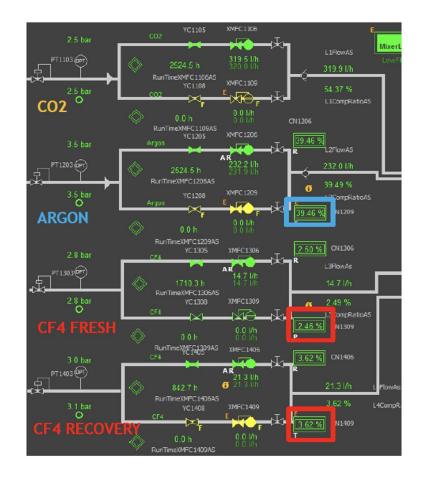
CF4 RECUPERATION - CSC

→ CF4 COMPRESSION MODULE:

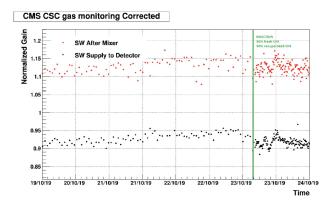
- Test and installation of new compressor
- New storage tank to be installed
- → CF4 INJECTION:
 - Ok for operation, working at design condition (see next slides)

→ GC ANALYSIS:

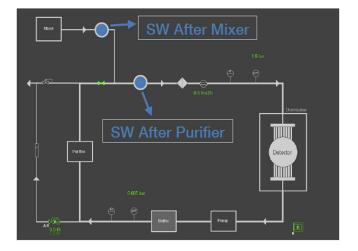
- Ok for operation
- → CF4-CO2-Ar IR ANALYZER:
 - Calibration necessary


→ CF4 SWPC MONITORING

Stable operation since 2015 (see next slides)


CF4 RECUPERATION - CSC

- By design, the reinjection is half of the total CF4 of the mixture
- MFCs have to be properly set to take into account CF4 pollution
- The tuning of MFCs is done thanks to GC analysis, comparing the mixture to standard mixer injection
- Mixer operation with recuperated CF4 for around 20% of Gas System operation time

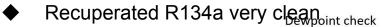


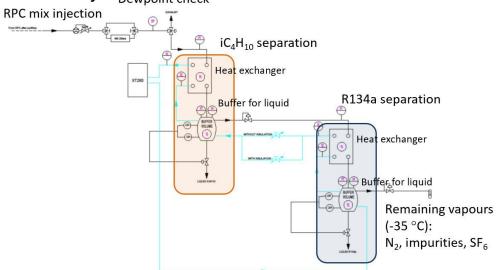
CF4 RECUPERATION - CSC

- Single Wire Chambers are installed After Mixer and After Purifier
- Irradiated with 55Fe gamma source
 - Amplification gain monitored > peak position
 - Rate around 400 Hz
- SWPC are used to monitor ordinary operation but also to *check Mixer tuning during Recuperated CF4 Injection*

available to CSC people on DIP and on webpage https://cms-csc-gas-monitoring.web.cern.ch/cms-csc-gas-monitoring/

EP-DT Detector Technologies


R134a RECUPERATION - RPC


Prototype 0:

built for ATLAS-RPC in December 2018 (low flow, 100 l/h)

→ Promising results

- High efficiency (close to 100%)
- N2 removed to same level as in new R134a

R134a RECUPERATION - RPC

Prototype 1:

connected to CMS-RPC in December 2019,

test started around mid-January 2020

→ Goals:

- Run with higher flows (500-1000 l/h)
- Test compressor and R134a storage
- Reuse recuperated R134a for RPC operation
 - PC operation

 Recuperation

 prototype

 Compressor
 Recuperated
 R134a storage

CMS-SGX5

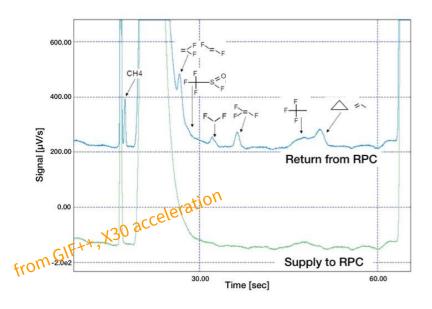
R134a RECUPERATION - RPC

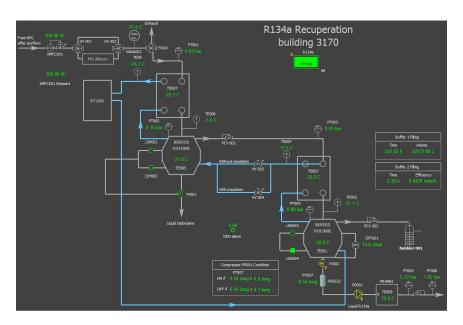
Prototype 1:

full system (cold separator, compressor, storage) started at 300 l/h

- → BUT:
 - Presence of iC4H1 and SF6 when system operated with compressor
 - Problems due to higher flow (300l/h vs 100l/h)
 - Adjust settings to integrate new components

now running at same conditions as on ATLAS (100I/h, no storage)


- good quality of recuperated R134a
- study impact of flow and new components
- → Next:
 - Operation with higher flow > additional heat-exchanger ordered > 1 week test
 - Compressor + Storage > 2 weeks test after addition of a new component
 - Mixer Re-Injection > 2 weeks test



R134a RECUPERATION - RPC

→ Next Steps:

- Optimize new configuration settings
- Studies on HFCs impurities separation, to be evaluated before Run3
- Possible SF6 recuperation

Molecule	Boiling point (°C)	Molecule	Boiling point (°C)
C2H2F4	-26	C2H2F2(e)	-42
iC4H10	-12	CH2F2	-51
SF6	-64	CHF3	-84
		C2HF3	-51
CH4	-161	C2H3F3	-47
C2H4F2	-117	C3H6 (propene)	-33
CF4SO	110	C3H6 (cyclopropane)	-47
C2H2F2(z)	-20		

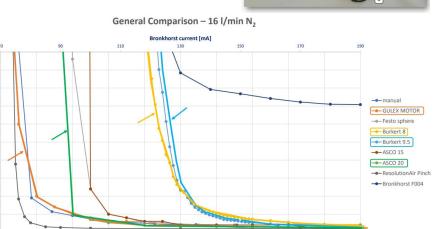
CMS GAS SYSTEM R&D, M. Corbetta

DISTRIBUTION OPTIMIZATION - RPC

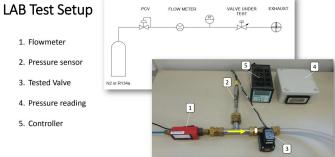
Replacement of manual valves with automatic regulation

→ Manual valves present to equalize pressure between different detector zones

30 25 25


About 16 different models tested

Challenging requirements:


- Low cost (28 will be installed)
- Small dimension,

limited space available in distribution racks

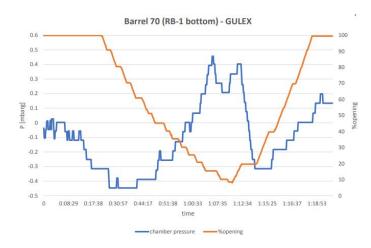
• Designed for **low pressure** (~100 mbar)

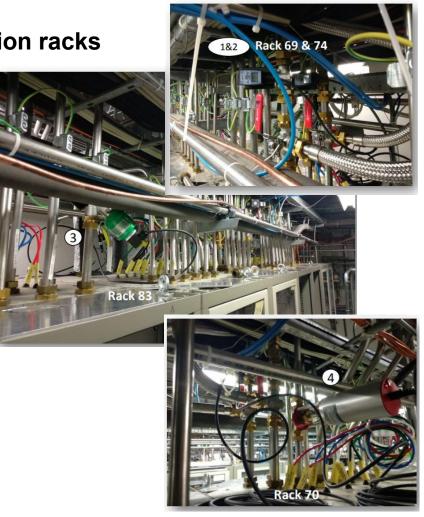
opening [%]

FP-DT

Detector Technologies

CERN

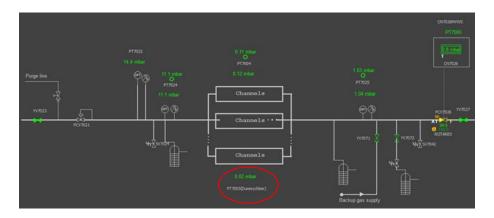



DISTRIBUTION OPTIMIZATION - RPC

4 valves installed on CMS-RPC distribution racks

for testing on real system

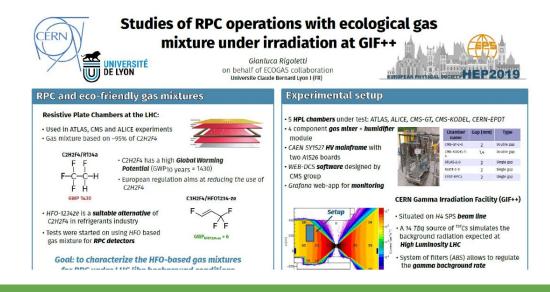
- → Detector pressure regulation is done by sensors at rack level
- → Particularly critical during filling and emptying phases



DUMMY CHAMBERS - RPC

Automatic regulation of distribution rack will be done by Dummy Chambers

- → pressure sensors already present at detector level cannot be used due to risk of leak development
- → "dummy chambers" are volumes that simulates real chambers
- → 28 chambers to be installed (one per distribution rack)
- → 4 dummy chambers already installed, under test



ECOGAS COLLABORATION - RPC

Common working group for the RPC community

- → ATLAS, ALICE, CMS and Gas Group participating
- → Common setup at GIF++
- → Results presented at EPS2019 conference

https://indico.cern.ch/event/577856/contributions/3420164/

CMS GAS SYSTEM R&D, M. Corbetta