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Hadron Physics. General Motivation.

Q2

High

Low

The QCD Holy Grail: the understanding of 
hadrons in terms of its elementary excitations; 
namely, quarks and gluons! 

What happens 
down here?  

ConfinementConfinement

DCSBDCSB

Colored bound states 
have never been seen 

to exist as particles 
in nature 

Chiral symmetry
appears dynamically 

violated in the 
Hadron spectrum

Emergent phenomena playing a dominant role in the real world 
dominated by the IR dynamics of QCD.
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Antecedents:

GPD definition:
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Muller et al., Fortchr. Phys. 42, 101 (1994)
Radyushkin, Phys. Lett. B380, 417 (1996) 

Ji, Phys. Rev. Lett. 78, 610 (1997)
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See Cedric’s talk!



  

See Cédric’s talk!



  

GPD overlap approach:

The overlap quark GPD for a meson in the DGLAP kinematic region reads  
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GPD overlap approach:

in terms of the meson LFWF  
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which are the components in an expansion of the meson on a Fock basis, after 
light-front quantization. 

The overlap quark GPD for a meson in the DGLAP kinematic region reads  
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Bethe-Salpeter amplitudes and quark 
propagators can be obtained from applying 
continuum functional methods (DSE,BSE) 
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GPD overlap approach:
6

Bethe-Salpeter amplitudes and quark 
propagators can be obtained from applying 
continuum functional methods (DSE,BSE) 
or can be modeled as previously indicated.

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads  

Encoding the correlation of kinematical variables

Forward limit:

N. Chouika et al., PLB780(2018)287

Results from the overlap and diagrammatic 
approaches compare very well (tested at the level 
of the PDF).   

symmetry under:                          is a key feature!

Nakanishi weight

Asymptotic case:



  

Integral representation of LFWFs:

The Nakanishi weight           can be 
modeled... 
...Or taken with BSE solutions as 
an input!  

ρK (z)
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See tomorrow Khépani’s talk! 



  

Phenomelogical model: b0
π
=0.1 , z0

π
=0.73 ;

Integral representation of LFWFs: pion case
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Asymptotic case:

Nakanishi weight parametrization: 

S-S Xu et al., PRD97(2018)094014



  

b0
π
=0.275 , z0

π
=1.23 ;
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Integral representation of LFWFs:
Nakanishi weight parametrization: 

Phenomelogical model:
Realistic case:

b0
π
=0.1 , z0

π
=0.73 ;

Asymptotic case:

See Khépani’s talk: PDF as a benchmark!

S-S Xu et al., PRD97(2018)094014



  

GPD overlap approach: pion case  

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads  
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Phenomenological model
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Phenomenological model

Realistic case

GPD overlap approach: pion case  
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Phenomenological model

Realistic case

Focus on the forward limit: the PDF that, in the overlap representation at low Fock space, 
can be expressed in terms of 2-body LFWFs at a given hadronic scale   

0

GPD overlap approach: pion case  
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Focus on the forward limit: the PDF that, in the overlap representation at low Fock space, 
can be expressed in terms of 2-body LFWFs at a given hadronic scale   

0

GPD overlap approach: pion case  

LFWF leading to asymptotic PDA
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Mellin moments: 

DCSB-induced hardening

M. Ding et al., PRD01(2020)054014
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Comparison with experiment: DGLAP evolution
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Which value of Lambda? 
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The evolution will thus depend on 
the scheme via the perturbative 
truncation and the usual prejudice is 
that truncation errors are optimally 
small in MS scheme.

PDG2018:
[PRD98(2018)030001]
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Comparison with experiment: PI effective charge

D.B et al., PRD96(2017)054026
J.R-Q et al., FBS59(2018)121
Z-F Cui et al., arXiv:1912.08232

Process-independent charge, 
defined as an analogue of the 
QED Gell-Man-low, on the 
basis of the PT-BFM truncation 
of DSEs in the gluon sector

Gauge-independent, no 
Landau pole, fully determined 
by the gluon sector, known to 
unify a wide range of 
observables, it compares very 
well with the Bjorken sum rule 
charge… 

It emerges as a strong candidate to represent the interaction strength of QCD at any scale

Assumption: PI effective charge corresponds with the effective charge for the PDF evolution    

                              emerges as natural nonperturbative scale marking the boundary between 
soft and hard physics, thus ensuring that parton modes are screened from interaction            
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Then, one can evolve the pion PDF, by using one-loop DGLAP evolution and the effective 
charge, from the hadronic scale up to the relevant one for the E615 experiment: 

ζH≡m0→ζ2=5.2 GeV

After identifying               , all the scales (and the evolution between them) 
appear thus fixed. And the agreement with E615 data is perfect!!! 

m0≡ζH

14

M n(t )= Mn(t0)exp(−
γ0
n

4 π
∫
t 0

t

dzα(z))
[Aicher et al., PRL105(2010)252003]

Comparison with experiment: 
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[Aicher et al., PRL105(2010)252003]

Comparison with experiment: 
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Then, one can evolve the pion PDF, by using one-loop DGLAP evolution and the effective 
charge, from the hadronic scale up to the relevant one for the E615 experiment: 
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GPD overlap approach: pion case  

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads  

15

ζ0=ζH=0.43 →ζ2=1.0GeV GeV



Singlet components evolution
16

Let us also consider the singlet components:

Initial conditions at the hadronic scale, where only 
valence-quarks are assumed to be the correct 
degrees-of-freedom, can be evolved and shown to 
produce non-zero gluon and sea-quark components.

M. Ding et al., ArXiv:1905.05208 [nucl-th]

(an almost textbook exercise)



Pion realistic picture: Electromagnetic Form Factor 
17



Kaon preliminary results:  

Identifying first the LFWF (see Khépani’s talk)

one obtains the DGLAP GPD:

and the electromagnetic form factor. 
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A word about gravitational form factors:

First, polynomiality:
(Time reversal symmetry  
implies k even)

If one defines a function D such that:

Specializing for the case m=1

PW D-term 
(Pure ERBL contribution)

19



A word about gravitational form factors:

Isospin-symmetric limit

Latt.ice data: D. Brommel, Ph.D. thesis, U. Regensburg, Germany (2007), DESY-THESIS-2007-023
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A word about gravitational form factors:

3/2-Gegenbauer expansion

Only the first coefficient 
is needed! 

LFWF + overlap approach cannot give access to the second gravitational moment. The 
Radon transform inversion of the DGLAP GPD cannot either (as it is nothing but a D-
term contribution).

A possible way-out is considering unsubtracted t-channel dispersion relations to provide 
with a representation of the D-term form factor 
[See Pasquini et al., PLB739(2014)133, precisely determining         for a nucleon case]    
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Conclusions

Owing to a sensible parametrisation of the BSA grounded 
on the so-called Nakanishi representation, one is left with 
a flexible algebraic model for the LFWF in terms of a 
spectral density. 
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Owing to a sensible parametrisation of the BSA grounded 
on the so-called Nakanishi representation, one is left with 
a flexible algebraic model for the LFWF in terms of a 
spectral density. 

A direct calculation of the PDF from realistic quark gap and 
Bethe-Salpeter equations' solutions (in the forward 
kinematical limit) delivers a benchmark result to identify the 
spectral density which corresponds to the realistic LFWF.   

The overlap representation provides with a simple way to 
calculate beyond the forward kinematic limit, and thus 
obtain the GPD, although only in the DGLAP region. 

A recently proposed PI effective charge can be used to make the 
DGLAP GPD evolve from the hadronic scale (where quasi-particle 
DSE's solutions are the correct degrees-of-freedom) up to any other 
relevant scale.  

Thank you!!
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● The ghost dressing function
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PI-effective charge from lattice data with Nf=3 flavors at the physical point

● The ghost dressing function
● The PT-BFM function L

All put together:

Less uncertainties 
(that of the gluon 
mass is only left 
here)  and still a 
better agreement 
with the world data 
for the experimental 
determination of the 
Bjorken sum-rule 
effective charge. 

9

≃

The IR running of the PI effective 
charge with momenta only depends 
on: 
 

Its strength depends also on the 
saturation point at zero-momentum of 
the gluon propagator and on the 
Taylor coupling.

Preliminary results:
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Let us also consider the singlet components:

Initial conditions at the hadronic scale, where only 
valence-quarks are assumed to be the correct 
degrees-of-freedom, can be evolved and shown to 
produce non-zero gluon and sea-quark components.

1

Case m=1

(an almost textbook exercise)



Standard PDA evolution:

PDA and LFWF evolution

23



LFWF evolution:

PDA and LFWF evolution
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LFWF evolution:

PDA and LFWF evolution
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Testing the factorization ansatz:

PDA and LFWF evolution
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Testing the factorization ansatz:

PDA and LFWF evolution
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How ERBL and DGLAP evolutions make contact:

PDA and LFWF evolution
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How ERBL and DGLAP evolutions make contact:

Sea-quark and gluon content incorporated to 
the parton distribution by DGLAP are obviously 
not present in the valence-quark PDF from 
LFWFs!!!  

PDA and LFWF evolution

29
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