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Hadron Physics. General Motivation.

_ The QCD Holy Grail: the understanding of
High  hadrons in terms of its elementary excitations;
namely, quarks and gluons!
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Emergent phenomena playing a dominant role in the real world
3q-coreMB-cloud ) inated by the IR dynamics of QCD.



Antecedents:

GPD definition:
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with t = A? and £ = —AT/(2P1).

Muller et al., Fortchr. Phys. 42, 101 (1994)
Radyushkin, Phys. Lett. B380, 417 (1996)
Ji, Phys. Rev. Lett. 78, 610 (1997)

m From isospin symmetry, all the information about pion
GPD is encoded in HY, and HiJr.
m Further constraint from charge conjugation:

HY, (x, &, ) = —H, (—x, &, t).



Antecedents:

GPDs in the Schwinger-Dyson and
Bethe-Salpeter approach
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Antecedents:

GPDs in the Schwinger-Dyson and
Bethe-Salpeter approach
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m Compute Mellin moments
of the pion GPD H.

m [riangle diagram approx.




Antecedents:

GPDs in the Schwinger-Dyson and
Bethe-Salpeter approach
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m Compute Mellin moments
of the pion GPD H.

m Iriangle diagram approx.
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Antecedents:

GPDs in the Schwinger-Dyson and
Bethe-Salpeter approach
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Antecedents:

GPD asymptotic algebraic model:

m Expressions for vertices and propagators:

S(p) = [—iv p+MAuKP
1
Aulsl = o wp
M .. o cen
Celk,p) = :‘ﬁ.*,gEMZ”/l dzp,(z) [.-’_\M(kizﬂ
f)u(z) = R!/(l_zz)v

with R, a normalization factor and ki, = k— p(1 — 2)/2.
Chang et al., Phys. Rev. Lett. 110 137001 /nn==?
m Only two parameters:

m Dimensionf’
m Dimens

Antecedents:

GPD asymptotlc algebraic model (completion):
The full model: '
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C. Mezrag et al., PLB741(2015)190; ArXiv:1406.7425[hep-ph]

Antecedents:

GPD asymptotic algebraic model:
m Analytic expression in the DGLAP region.

= See Cedric’s talk! ..
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GPD asymptotic algebraic model (completion):

q(x) = H9(x,0,0)

PDF forward limit




Antecedents:

GPD asymptotic algebraic mod~"

Antecedents:

“*~tic algebraic model:
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GPD overlap approach:

The overlap quark GPD for a meson in the DGLAP kinematic region reads
H .60 = 3 V1= Ve > b [ 1zl [@%K1) 82 - 20

x Uy 5 (ml,kLl,...,i;,lﬁilu,.. ) Uy s (:LL K,y . )

[dx]w _]_[m, ( 1,)
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GPD overlap approach:

The overlap quark GPD for a meson in the DGLAP kinematic region reads

Hq 1 f: Z\.ﬂ'l_ v1+£2 _Mzﬁu.u/[df]_w [dZEJ—]NE{I_:EﬂJ
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in terms of the meson LFWF

i=l1

H; P A) = Z‘/-[diﬂ]m[dzkﬂm Uy g (21, ki, zn, Kon)||N, Biknsy ... k)
N

which are the components in an expansion of the meson on a Fock basis, after
light-front quantization.



GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

HY (2, €,t) = /rl kll[;*_(‘r gukl +1 .r,ﬁ_)lpuf(.r—l—f K, 1 .r_\+)

16w “F\1—¢ =E73 14+E7 14E 2




GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

d?k | r—& 1—xA r-+& 1-zA,
H (z,6,t) = - — ). -
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GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

d?k | r—& 1—xA r+§ 1-zA,
HY(x,&t) = " — ; - —
(2:€,1) [ Lﬁwﬁlpﬂf(1—f*kL+ 1—-¢ 2 )lp”f(1+£‘k'l' 1+¢§ 2 )

1 2 ”
. p(w, )M ~
Leg P)f= iNys | do f &z T T
0 = (q—%P)2+M3+w 2P (kT kL) = - Tr [y Tyl (k. P)]
xlq, Pl|= S(q)l=(g. P)S(q — P)

Bethe-Salpeter amplitudes and quark
propagators can be obtained from applying
continuum functional methods (DSE,BSE)



GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

d?k | r.—{;' 1—xA r+& 1—?*_\
q v — * — =

R 2 2
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- 'ZP) M2+ w
xlg, P)|= smh(q..mktq 7

Asymptotic case:@ = (w)(1 — 2%)

Bethe-Salpeter amplitudes and quark
propagators can be obtained from applying
continuum functional methods (DSE,BSE)
or can be modeled as previously indicated.




GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads
it

V2 2 2 ‘ o arctanh , /

HY (z,6,t) - gol =0 —¢) 1 3 11-2 |
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AM= 1-¢ Encoding the correlation of kinematical variables
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- "ZP) M2+ w

xlg, P)|= smh(q..mktq 7

Asymptotic case:@ = (w)(1 — 2%)

Bethe-Salpeter amplitudes and quark
propagators can be obtained from applying
continuum functional methods (DSE,BSE)
or can be modeled as previously indicated.

N. Chouika et al., PLB780(2018)287



GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads
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N. Chouika et al., PLB780(2018)287



GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads
it
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1% symmetry under: © <+ 1 — x is akey featurel!
Asymptotic case: Cp(w, z) = §(w)(1 — 22)

Bethe-Salpeter amplitudes and quark
propagators can be obtained from applying
continuum functional methods (DSE,BSE)
or can be modeled as previously indicated.

Results from the overlap and diagrammatic [
approaches compare very well (tested at the level 05-
of the PDF). [

N. Chouika et al., PLB780(2018)287



Integral representation of LFWFs:
See tomorrow Khépani’'s talk!

» The pseudoscalar LFWF can be written:

ffi“;f (, kg_) = tlep / dn-k—xn-Pglysy - nl}i {(kk P .

= The moments of the distribution are given by:
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Integral representation of LFWFs: pion case

Nakanishi weight parametrization: 75

1 z— 2 z+ zg :

= — h_2 -+ h2 [ \ 20}

PE) = g, lsec ( 2by ) wee ( 2bq )] ;
Phenomelogical model: bj=0.1,25=0.73; — ; e
Asymptotic case: p(z) = (1 — z?)

S-S Xu et al.,, PRD97(2018)094014



Integral representation of LFWFs:

Nakanishi weight parametrization: v Iy

{
!

) 1 2 (7= a2 (? + 2 \ / \ f
Z = — | s =seC N \ 20p
g 2bq 200 200 |

Phenomelogical model: b*=0.1,z7=0.73; —— ~/ |\
icti R A T__ . P S
Realistic case: b;=0.275, z;=1.23;

Asymptotic case: p(z) = (1 — z?)

S-S Xu et al.,, PRD97(2018)094014




GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

d?k,|. . [z—¢& 1—xA, r+& 1—-zA,
B 0= [ ae (Togk + Yo (e - 156 %)

1=Eg" ' 1=¢ 2

Phenomenological model




GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads
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GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

a2k
HY (2 ;;‘ﬁ /m;a (z.k) U7 (2,k)) = ¢"(x;Cn)

Focus on the forward limit: the PDF that, in the overlap representation at low Fock space,
can be expressed in terms of 2-body LFWFs at a given hadronic scale

4 —t[GeV]

Phenomenological model

Realistic case
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GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

d?k
o o, 48 = [ oo k) ¥z (k) = ¢ (@i Cu)
Focus on the forward limit: the PDF that, in the overlap representation at low Fock space,
can be expressed in terms of 2-body LFWFs at a given hadronic scale
¢ (x: Cy) = 302%(1 — x)?
LFWEF leading to asymptotic PDA

— q(x,44) DB 7 AN
| = g(x,{y) GPD @ b
1.5} == g(x,n) Asy !;' \




GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

H (2 fﬁ /T;l:a k )V 7(z.k) = ¢"(z;Cn)

Focus on the forward limit: the PDF that, in the overlap representation at low Fock space,
can be expressed in terms of 2-body LFWFs at a given hadronic scale
¢ (x: Cy) = 302%(1 — x)?
LFWEF leading to asymptotic PDA

s
P v
= q(x, {) DB 7 N A
| == g(x,{w) GPD @ b
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Direct computation of
Mellin momentS'
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ne B Jaln P\ Ding et al., PRD01(2020)054014 [ %) w1 - =)
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GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

d?k
HY (2 gﬁ /16;3 (. k) ¥V 7 (2. k1) = ¢"(z;Cn)

Focus on the forward limit: the PDF that, in the overlap representation at low Fock space,
can be expressed in terms of 2-body LFWFs at a given hadronic scale
¢ (x: Cy) = 302%(1 — x)?
LFWEF leading to asymptotic PDA

s
S R
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i DCSB induced hardenlng \
- ‘ >

Direct computation of
Mellin moments:
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M. Ding et al., PRD01(2020)054014
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GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

0
d?k
H* {I,gﬁ= /16;3'-1‘:? (z.k1) ¥, 7(z. k) = ¢"(z;Cu)

Focus on the forward limit: the PDF that, in the overlap representation at low Fock space,
can be expressed in terms of 2-body LFWFs at a given hadronic scale

q" (z: Cr) = 302%(1 — x)?
LFWEF leading to asymptotic PDA
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Direct computation of

Mellin moments: 0.0l 4 _ _ _ _ 4
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M. Ding et al., PRD01(2020)054014
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Comparison with experiment: DGLAP evolution

1
t):f dx x"q(x,t)
A master equation for the (1-loop) moments' evolution: 0

iQ(x”: = Oﬁ)i dyyq(y,t)P(%)a..

I\/Ioments'+ evolution (1-loop):
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Comparison with experiment: DGLAP evolution

Which value of Lambda?

a(t) = oL LA, £\ SN
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Comparison with experiment: DGLAP evolution

Which value of Lambda? It depends on the scheme... Indeed, at the one-loop level, its
value defines by itself the scheme!!!

TR Ty
Boln (=) oc(t>=ﬁ<t)(1+<?ﬁ<t>+ |
111(/\—2)—4‘7c [ = 5
A2 Bolalt) alt) Py
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Comparison with experiment: DGLAP evolution

Which value of Lambda? It depends on the scheme... Indeed, at the one-loop level, its
value defines by itself the scheme!!!

Ot(t) B 8 (t—t ) - CZ +
A
’ ﬁ&n(;) alt)=a(t)1+c a(t)+...)
A’ 4| 1 1 4tc
In(2-) = _ _
H<K2) Bo Oc(t) G(t) Bo
d oc(t) The evolution will thus depend on
— n th h a th turbati
Ml = =7 e M (0 R e e perbalve
d a’(t)
dta(t)_ 47 ot
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Comparison with experiment: DGLAP evolution

O(.(t): B (jﬂjt )+, = 4JEC2 + .
: § ﬁoln(P)
A’ dn| 1 1 471C
In(£-) = _
H<K2) Bo la(t) alt) Bo
LY (t) = ——a(t)y”M (t)+
dt n 41t 0 n
d_,._alt)
dt(x‘(t)_ 4TE ﬁ0+°
- AY) = (2104 14) MeV,
PDG2018: |
[PRD98(2018)030001] A = (292 £ 16) MoV,
AD. = (3324 17) MeV,

MS

The evolution will thus depend on
the scheme via the perturbative
truncation and the usual prejudice is
that truncation errors are optimally
small in MS scheme.

(9.24b)
(9.24¢)
(9.24d)
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Comparison with experiment: DGLAP evolution

Which value of Lambda? It depends on the scheme... Indeed, at the one-loop level, its
value defines by itself the scheme!!!

Ot(t) B 8 (t—t ) - CZ +
A
’ ﬁ&n(;) alt)=a(t)1+c a(t)+...)
A’ 4| 1 1 4tc
In(£2-) = _ _
H<K2) Bo Oc(t) G(t) Bo
d a(t) The evolution_will thus depen_d on
EMn(t) — _Hngn(t)_l_ :Puenigt]i(e)rr?e via the perturbative
d a’(t)
dta(t)_ 47 ot

The use of A=0.234 GeV can be thus interpreted as the choice of a particular
scheme, differing from MS.
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Comparison with experiment: DGLAP evolution

Which value of Lambda? It depends on the scheme... Indeed, at the one-loop level, its
value defines by itself the scheme!!!

Ot(t) B 8 (t—t ) - CZ +
A
’ ﬁoln(;) alt)=a(t)1+c a(t)+...)
A’ 4| 1 1 4mc

In(£2-) = . _
H<K2) Bo Oc(t) G(t) Bo

d o (t) The evolution_will thus depen_d on

EMn(t) — _Hngnu) :Puenigt]i(e)rr?e via the perturbative

The use of A=0.234 GeV can be thus interpreted as the choice of a particular
scheme, differing from MS. Beyond this, the scheme can be defined in such a way
that one-loop DGLAP is exact at all orders (Grunberg's effective charge).
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Comparison with experiment: DGLAP evolution

Which value of Lambda? It depends on the scheme... Indeed, at the one-loop level, its
value defines by itself the scheme!!!

O(.(t) — 47 — 47 +
BO(t_tA) ] C_Z _ _
Bo H(AZ) oc(t)zoc(t)(1+ c alt)+.. )
A’ 4| 1 1 4mc
In(2-) = . _
H<K2) Bo Oc(t) G(t) Bo
d o (t) The evolution_will thus depen_d on
E Mn(t) — _H ngn<t) :Puenigt]i(e)rr?e via the perturbative
d alt) ¢ dy X
- — P -
a(x.0)=—— f . q(y,t) (y)

The use of A=0.234 GeV can be thus interpreted as the choice of a particular
scheme, differing from MS. Beyond this, the scheme can be defined in such a way
that one-loop DGLAP is exact at all orders (Grunberg's effective charge).
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Comparison with experiment: Pl effective charge

D.B et al., PRD96(2017)054026

J.R-Q et al.,, FBS59(2018)121 T ' T '

Z-F Cui et al., arXiv:1912.08232 : 1t Exp. 0.
. . el

T

i - — This work i
Process-independent charge, F " R.Qetal (2018)] .

defined as an analogue of the [ il B
QED Gell-Man-low, on the i 1 N
basis of the PT-BFM truncation ~ _ 1 )

of DSEs in the gluon sector % - T |

<

0.5 —r ol | 1 -
Gauge-independent, no I 1L 5..,\1!:
Landau pole, fully determined /A |Il':'n -
by the gluon sector, known to I:llllq Tl I
unify a wide range of [ 1 T
observables, it compares very i 1 i
well with the Bjorken sum rule e &= T = Rl

charge... k [GeV]
It emerges as a strong candidate to represent the interaction strength of QCD at any scale

Assumption: PI effective charge corresponds with the effective charge for the PDF evolution

mgy = 0.43(1) GeV emerges as natural nonperturbative scale marking the boundary between
soft and hard physics, thus ensuring that parton modes are screened from interaction

CH:?’?’ID




Comparison with experiment:

Then, one can evolve the pion PDF, by using one-loop DGLAP evolution and the effective
charge, from the hadronic scale up to the relevant one for the E615 experiment:

0o [Aicher et al., PRL105(2010)252003]
M, ()= M, t,)exp| -2 [ dza(z)
tO
CHEmO_)C2:5.2 GeV

1of T T T T T T e T T T

== q(x,{y) DB / \\

== q(x,¢{n) GPD /

mm q(x, {y) Asy 7
0.8/ « E615 Drell-Yan zN :"’

q(x,82) GPD

X q(x)

-
-
1’-l'

0.4 0.6 0.8
After identifying m,=C,,, all the scales (and the evolution between them)
appear thus fixed. And the agreement with E615 data is perfect!!!
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Comparison with experiment:

Then, one can evolve the pion PDF, by using one-loop DGLAP evolution and the effective
charge, from the hadronic scale up to the relevant one for the E615 experiment:

[Aicher et al., PRL105(2010)252003]

CHEmo_)t_Q:S-Z GeV

= 7y =0.43(3) GeV

0.4} e ,..}.. } ae i =0.43(1) GaV
AT,

< P & f\‘:-;' ‘
5 0.2} j i&
H N ¥
I
0.1} '.'
i my=0.43(1) GeV
0.0kt : . : . - 4
0.0 0.2 0.4 0.6 0.8 1.0

After identifying m,=C,,, all the scales (and the evolution between them)
appear thus fixed. And the agreement with E615 data is perfect!!!
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GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads
2k, . [x—¢ 1—-zA, T+ 1=m;
9 {4 — ¢ - —— o

C,=Cy=0.43 GeV~>,=1.0GeV

—t[GeV]

1o 05
— e _u




Singlet components evolution

. : 1
Let us also consider the singlet components: Sim)} _ dz ™ P53, (2 )
(an almost textbook exercise) 10,48 1o b.an(a
y [7re) -2 [ 72
fr— p1 M, () _ a7 pim) p-1l[ Mg (Car)
i _.ur_ETT’”(; dx D 0
p-1pSm p _ ,lr;'[”} () Initial conditions at the hadronic scale, where only
- 0 A.;mj valence-quarks are assumed to be the correct
- degrees-of-freedom, can be evolved and shown to
. produce non-zero gluon and sea-quark components.
P
04t { 1§
G |@n (@ (@ _ :
Ref. [31][0.17(1) 0.060(9) 0.028(7) NA
Herem 0.21(2) 0.076(9) 0.036(5) E’-{ 0.2}
s, -
X
(z)g = 045(1), (Z)gea = 0.14(2). s i
ooff = Tree—e—m

00 02 04 06 08 1.0
M. Ding et al., ArXiv:1905.05208 [nucl-th] X




Pion realistic picture: Electromagnetic Form Factor

Ful&?) = e, Fi8%) + e, Fy(0%)  Fiy(~t = 2% = |
'\ _

Electric charges

Blue: Computed from GPD
Green: Computed from HS formula
Red: ‘Evolved form factor

1
de Hy,(z,£,t)

1

1.0
__08}\~
‘o 0.6}
& 0.4

0.2}

™ 0.68 fm
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Kaon preliminary results:

ldentifying first the LFWF (see Khépani's talk)

/~’~'
- 1
LEAN N - I
- !
1
1

one obtains the DGLAP GPD:

_— GPD
— DSE

/nd the electromagnetic form factor.
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A word about gravitational form factors:

First, polynomiality:

1
m I _ +(m) k  (Time reversal symmetry
/_1 dea™ Hz,§,1) Z G0 & implies k even)

If one defines a function D such that:

1
/ dr " D(x,t) = C)" i (t)
J-1
where D(z,t) =0 V€ [—o0,—1)U(1, 0]

1 m
/ dr z™(| H(x, &, t) — sign(§)D (; E (“Em](t
J-1

/ dBda hpw (5, a;t)0(x — 5 —af) = R |hpw]
Ja

1 ; | o ] | .
—D (E,t) — / dBda 8(8)D(a,t)5(x — B — af) = R[6D)] PW D-term
€\ ¢ Ja (Pure ERBL contribution)

Specializing for the case m=1

1 . 1
/ de v H(x, & t) = cél’](t) + £ / zZz
<=1 J—1



A word about gravitational form factors:

1 . 1
/ de v H(x, & t) = cél’](t) + £ z z D(z,1)

|sospin-symmetric limit

1
1 592(5)
Ba(t) = / dr x (H,?Jr (z,0,1) + H:Jr (—x, 0, f])
J-1
1.0 . . . .
— B (i} (0) - Laltice 0.5¢ = Ba(F &) - Lattice
— 61 {y)- GPD -  &(:)-GPD
08 | 04
0.6} 0al
041 0.2}
0.2} _
m, ~ .45 GeV 0
005 1 2 3 4 5 005 1 2 3 4 5
-U[GeV] -[GeV]
Lattice: (2007) Brémmel's dissertation. 0:(0)/2 =< = >= 0.261(5)
GPD + Ding et al. B:(0)/2 =< x >= 0.242(20)

Latt.ice data: D. Brommel, Ph.D. thesis, U. Regensburg, Germany (2007), DESY-THESIS-2007-023



A word about gravitational form factors:

1 . 1
/ de v H(x, & t) = cél’](t) + £ z z D(z,1)

|sospin-symmetric limit

| éﬁz(f)
Oy(t) = / dz x (HY (x,0,t) + Hl (—2,0,t))
05 — = e Qglaes || 05 | —  8(:4)- Latice
) - ag[r::gﬂ}iu:gﬁn |, = 8(:0)-GPD
0.3}
0.2}
0.1
@%8 : 5 - 5 0.075 " 2 3 4 5
-_l{[[%%\{,lj -[GeV]
Lattice: (2007) Brommel's dissertation. 0,(0)/2 =< x >= 0.261(5)
GPD + Ding et al. 0:(0)/2 =< & >= 0.242(20)

Latt.ice data: D. Brommel, Ph.D. thesis, U. Regensburg, Germany (2007), DESY-THESIS-2007-023
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A word about gravitational form factors:

1 . 1
/ de v H(x, & t) = cél’](t) + £ / z z D(z,1)

1 1

3/2- Gegenbauer expansion
1 D(~ AN d (f (w, (3/ '.2]
Hg(t) — / dr x (H}:+ {;E, U, f) + H:Jr (—;E, U, f)) k ;dd '
J -1
\J
4 (t) ~ Only the first coefficient
501 is needed!

LFWF + overlap approach cannot give access to the second gravitational moment. The
Radon transform inversion of the DGLAP GPD cannot either (as it is nothing but a D-

term contribution).

A possible way-out is considering unsubtracted t-channel dispersion relations to provide

with a representation of the D-term form factor
[See Pasquini et al., PLB739(2014)133, precisely determining d;(t)for a nucleon case]



Conclusions

Owing to a sensible parametrisation of the BSA grounded
on the so-called Nakanishi representation, one is left with
a flexible algebraic model for the LFWF in terms of a
spectral density.
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Conclusions

spectral density.

A direct calculation of the PDF from realistic quark gap and
Bethe-Salpeter equations' solutions (in the forward
kinematical limit) delivers a benchmark result to identify the
spectral density which corresponds to the realistic LFWF.
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Conclusions

Owing to a sensible parametrisation of the BSA grounded
on the so-called Nakanishi representation, one is left with

a flexible algebraic model for the LFWF in terms of a
spectral density.

q(x)

A direct calculation of the PDF from realistic quark gap and
Bethe-Salpeter equations' solutions (in the forward
kinematical limit) delivers a benchmark result to identify the
spectral density which corresponds to the realistic LFWF.

The overlap representation provides with a simple way to
calculate beyond the forward kinematic limit, and thus
obtain the GPD, although only in the DGLAP region.
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q(x)

A direct calculation of the PDF from realistic quark gap and
Bethe-Salpeter equations' solutions (in the forward
kinematical limit) delivers a benchmark result to identify the
spectral density which corresponds to the realistic LFWF.

The overlap representation provides with a simple way to
calculate beyond the forward kinematic limit, and thus
obtain the GPD, although only in the DGLAP region.

A recently proposed PI effective charge can be used to make the B e
DGLAP GPD evolve from the hadronic scale (where quasi-particle 2| | )

DSE's solutions are the correct degrees-of-freedom) up to any other . TR
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1 MR l
K(GeV] |
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Conclusions

Owing to a sensible parametrisation of the BSA grounded
on the so-called Nakanishi representation, one is left with
a flexible algebraic model for the LFWF in terms of a
spectral density.

Bethe-Salpeter
kinematical limit

The overlap representation provides with a simple way to
calculate beyond the forward kinematic limit, and thus
obtain the GPD, although only in the DGLAP region.

« Exp. agl

A recently proposed PI effective charge can be used to make the [
DGLAP GPD evolve from the hadronic scale (where quasi-particle z| |
DSE's solutions are the correct degrees-of-freedom) up to any other
relevant scale.

— This work 7
.— R-Qetal (2018)| |

K[Gev] |
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Pl-effective charge from lattice data with Nf=3 flavors at the physical point

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

S e P ) ) .. The IR running of the P! effective
api(q°) = de) C’:T(q ) myAr(0,¢°)  charge with momenta only depends
D(g?) 211 — T.(s2 (2 2 2 (%) on:
( ¢ [~ 1, I, ) ( e The ghost dressing function
Pl * S
—_— (‘ET(CQJ (j C ) -&F(U, CE)TH-S

[1— Liig®, (#) Fle? (7)) 2

3.5 T T T | —

« Latt (B=2.13,2.25,237)
— DSE

F(q)




Pl-effective charge from lattice data with Nf=3 flavors at the physical point

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

""""""""""""""" aq , ) ,.  The IR running of the PI effective
Grn(q?) = dlq”) ffT(q‘) mgAr(0,¢%)  charge with momenta only depends
2 - ; 2 2 ~2 .
D) ¢*[1 = L(¢% ) (g%, )] Arlg,¢%) o e The ghost dressing function
Fl(q°, oy  The PT-BFM function L
_ UL’T(CQ) (1 ..C ) &F(U:CE)'rn'é

F(q") .

0.14}

0.12}

0.10}
T 0.08|
0.06}
0.04}
0.02}

0.00!

q [GeV]




PI effective charge from lattice data with Nf=3 flavors at the physical point

miAFp(0,¢?)

Ap(q?

, (%)

F(q") .

The IR running of the PI effective
charge with momenta only depends

on:
e The ghost dressing function

e The PT-BFM function L

Its strength depends also on the
saturation point at zero-momentum of
the gluon propagator

< 0.08

0.02]




Pl-effective charge from lattice data with Nf=3 flavors at the physical point

The IR running of the PI effective
charge with momenta only depends

on:
e The ghost dressing function

e The PT-BFM function L

Its strength depends also on the
saturation point at zero-momentum of
the gluon propagator and on the

Taylor coupling.

F(q") .

® (=225 mP5=138.2
® /=213, mP5=139.4
® =225, mP5=303.2

0.14
0.12
0.10
< 0.08
0.06
0.04
0.02
0.00

EN o

AF(@Q,p)
w

(=) = N,

0.2}

0.0t

0.5 1.0 15 2.0 25 3.0 3.5
k [GeV]




Pl-effective charge from lattice data with Nf=3 flavors at the physical point

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

r———— L ——— , .. The IR running of the PI effective
Gri(q?) = d(q”) "J’T(q ) maﬂ\F(U ¢*)  charge with momenta only depends
D(q?) 21 — T2 (2 2 ~2Y]2 2. (2) on:
( ¢*[1 - L(¢*, ) F (g%, ¢7)] Arla e The ghost dressing function
- F(q?, ¢?) « The PT-BFM function L
={ar(C7) Ap(0,¢%)mg

Its strength depends also on the
saturation point at zero-momentum of
the gluon propagator and on the

Taylor coupling.

F(q") .

1.0}

4]

for the experimental

AF(@Q,p)

;

All put together: 0.8} |
on Less uncertainties | :
oo (that of the gluon 3 0.6 I
massisonly left F | I
T & | here) andstila <® 0.4f :
= better agreement [ |

: with the world data g o} !

f d_etermination of the 0.0l k[Gev].
0 | Bjorken sum-rule 1 0.05 |
effective charge. -1.0 -0.5

Log[qg/GeV]



Pion realistic picture: DGLAP evolution

: : 1
Let us also consider the singlet components: L m) dr r™ [
(an almost textbook exercise) i 0
(m), . 2 LE(m) g 5.(m) 2 o1}
{;?r_f ( *'”-a' ['faﬁ-' ) i _”":{:- ) ( -’U.r.r:.rﬁJ ""}“"r 'IEJ--:,';}' ) ( *U‘: J{'-;
- (m]} .. e _ _S{m A a lTm2)
ds Mg (<) da \ To.Gq hee /. Me; (¢

P! P = A0
oA

-

e
Jm)
1 n
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Pion realistic picture: DGLAP evolution

. . 1
Let us also consider the singlet components: _S(m) _ 1z ¢ P

- A = — r Ly
(an almost textbook exercise) - 0

el pr [ MO =rt[f;'5’}};._1 M;™ ()
dg? ﬂfé?”{é] A EI[””{g]

& {':l
(7t}
p-1 11..‘:{-im? P = “}‘4' .U
0 0 A

g

) AG

()

19
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Pion realistic picture: DGLAP evolution

. i 1
Let us also consider the singlet components: _S(m) _ 1z ™ PS5 A
: 0,48 — dr =7 Fy yplx]
(an almost textbook exercise) 0
[7re) ., )
{32;_; Jr_'.r—l ﬂLI'.r 'L':-.:l =”["r:'- I:I l1l':ri;i:ll _:U_I ﬂ.fﬁ[,”h[{”rf::l
d¢? M () dm 0
B ¥ Al [ Initial conditions at the hadronic scale, where only
= 1 11..‘:'.[i-1t_ P — +
(0 - 0 A.:mj valence-quarks are assumed to be the correct
- degrees-of-freedom
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Pion realistic picture: DGLAP evolution

. . 1
Let us also consider the singlet components: S (m) 1r 7 PS )

' ToAaB = — dr r" Iy ag(x
(an almost textbook exercise) 0

e ) -2 -
J;Ei j_‘.l' Il:. li"r: =r_'|._-[,|f__" }::I 1153”:' F_l ﬂfﬂli 'I|:{3_Ir_|r::|
d¢? ﬂfﬁ”ﬁg dm 0

Al () ) Initial conditions at the hadronic scale, where only

—1 5, (m) i E
LR Po= ( 0 ]\ m) valence-quarks are assumed to be the correct
- degrees-of-freedom, can be evolved and shown to

produce non-zero gluon and sea-quark components.

y

() In¢? . (1)
A T S| 7T pes _ |
P fl[uw((h} = exp —1'31 :I/ dln 22 o(z7) p1 Mg (Ch)
MM (C) e, i 0




Pion realistic picture: DGLAP evolution

i . 1
Let us also consider the singlet components: SiAm) _ dr ™ P35 ()
(an almost textbook exercise) 10,48 0 0,48\
() -3 _ )
4;2 LE j'-" I {I; =f.'|'.'[lf3 ::I l'lE;'i:' P—l 11.!{5”[" |:{3_”'::|
U1 w2 fi'::,? Il:””l:"r: 4ﬂ- | [}
gy Uao
,:, (m) ,151”} () Initial conditions at the hadronic scale, where only
£ l L= 0 A.;mj valence-quarks are assumed to be the correct
- degrees-of-freedom, can be evolved and shown to
: produce non-zero gluon and sea-quark components.
M™(¢) = M™((y)
. (m)  lne? . (m)  .lnc?
1 1 Waa Al W2 109 AL
X —exp | — dt aft) | — —exp| — / dt cft
Det (P) ( Aw Jmez { ) Det ( F) ( i In¢2, (t)
M _ Aglm)p,y W22t
¢ (&) (Ca) Det (P)

..3'-.{?”:' ln ¢ A{JH] In 2
X exp | —— / dt a(t)| — exp| ——— dt o(t)
A Inc3, dm In 2,
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Pion realistic picture: DGLAP evolution

i . 1
Let us also consider the singlet components: Sim)} _ dz ™ P53, (2 )
(an almost textbook exercise) 10,48 1o b.an(a
d Ir”(”f:'{gj ”[{;'E*:I ()
4;2_ Jr_'.r—'l =Vl — : I‘E;”:' _F_l *'”r-r,l “:-H::I
1 3/4 d(2 M) An 0
=1 1
1m0 B 56/9 0 Initial conditions at the hadronic scale, where only
Sl | = 0 valence-quarks are assumed to be the correct
_ U degrees-of-freedom, can be evolved and shown to
Case m=1 . produce non-zero gluon and sea-quark components.
i |de, @ <
MUV = MP(CH) |2 + sexp|—oe dt a(t)
! i 7 367 ez

—

g

_ = ln &=
i 1 _ 56
MY(¢) = TM* Wew) |1 — E:{I}(—Hﬁﬁf] ot mm)

=




PDA and LFWEF evolution k S k
Standard PDA evolution: ﬁ(ﬁ

= We project PDA onto a 3/2-Gegenbauer polynomial basis. Such
that it evolves, from an initial scale ¢, to a final scale ¢,
according to the corresponding ERBL equations:

d(x:¢) = 6x(1 — x) [1 + Z an(O)CY (22 — 1)] .

n=1

- (S 2 RS
an(6) = an(Go) L(qg)] 0T g [“ n+)(n+2) ) E} |

k=1

= Thus, any PDA at hadronic scale evolves logarithmically towards
its conformal distribution, ¢(x)=6x(1-x).

» Quark mass and flavor become irrelevarjt. Broad PDA becomes
narrower, skewed PDA becomes symmetric.

23



PDA and LFWEF evolution k j& k
L FWF evolution: | 1 - ﬁi&

@) = joms | PRk

= We look for a way to evolve the LFWF.

= First, let's assume that the LFWF admits a similar Gegenbauer
expansion. That is:

W, k() = 6z(l — z) [Z b (K2 ¢) O3 (2 — 1}] .

a, () = = d?k | b, (k2;¢) (for n > 1) | 16 A’k by(k*;¢) =1.
= 1-loop ERBL evolution of a,, (&) implies:
27. d 2,
N £ NG
O an) = |

[ 2% b, (k2 0)
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PDA and LFWEF evolution k j& l\/
L FWF evolution: 1 ﬁi&

olx) =

/ A2k W™z, k)

1673

= Now, if we take a factorization assumtion, we arrive at:

b (k2 0) _ Bu(Q) _ F(c?}
b (k25C0)  B,(G) a((f)

".r'[i':t;.ﬁ[: . .
] Cn (k150 = 0a(Oxn (k) -

= Suplemented by the condition X.(k1) = x(k?), one gets b,(¢) = a,(C) .

= Such that, the followiong factorised form is obtained:

U(z, k() = d(x:C) x(k?) LFWF Evolves like PDA

= Which is far from being a general result, but an useful
approximation instead.
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PDA and LFWF evolution
Testing the factorization ansatz: ﬁ X& k

U(a, kT;¢) = ola; Q) x(k7)

= Afirst validation of the factorized ansatz is addressed in Phys.Rev.
D97 (2018) no.9, 094014:

k%*=0, k2=0.2 GeV, k%2=0.8 GeV, k%=3.2 GeV

1.16

14F ¥ i

1.12

:ii i
< | dr vz, k) =1 :
% 1.05-1! / { ;
/
E:?

Vi (X)

fiwed

\

)
- “Fw _‘F-'l-

Wk (xk

o

e P — TP

= |f the factorized ansatz is a good approximation, then the plotted
ratio must be 1. For the pion, it slightly deviates from 1; for the
kaon, the deviation is much larger.
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PDA and LFWF evolution

Testing the factorization ansatz:

0.00

1) Compute LFWF and ERBL running of PDA
o 2) ERBL running of LFWF and compute PDA

Notably, 1) and 2) are equivalent.
Factorization assumption and evolution
seem reasonable.

27



PDA and LFWF evolution k j&
How ERBL and DGLAP evolutions make contact: ﬁi& k

-t FUiYy

0.4] ~="7,=0.51 GeV
0.3

0.2

0.1}

~o5 " fo 15 20 25 30 '(CeV
qix)

2.0t

£=1 GeV (DGLAF)

(=051 GeV 1) Obtained from ERBL evolution of LFWF
N\ Eriees] 2) Obtained from DGLAP evolution of GPD

1.5

1.0¢

Clearly, 1) and 2) are not equivalent.

0.5

q,(x)=Hg(x,0,0)
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PDA and LFWF evolution
How ERBL and DGLAP evolutions make contact: ﬁi&
-t F“it)

i =1 GeV
0.4-

0.3}

0.2

0.1+

Q%)
2.0t

£=1 GeV (DGLAF)

(=051 GeV 1) Obtained from ERBL evolution of LFWF
2) Obtained from DGLAP evolution of GPD

1.5

1.0¢

Clearly, 1) and 2) are not equivalent.

Sea-quark and gluon content incorporated to
the parton distribution by DGLAP are obviously
00 ez o4 08 08 100 potpresent in the valence-quark PDF from
LFWFs!!! 29

05
q,(x)=Hg(x,0,0)
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