3－DIMENSIONAL IMAGING OF PION AND KAON ONTHE LIGHT FRONT

－from realistic BS wave function

Chao Shi
Nanjing University of Aeronautics and Astronautics（NUAA）

3-D imaging: GPDs \& TMDs

Wigner Distributions

GPDs

©1-D correlation function

$$
\phi_{i j}(x)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\langle P| \bar{\psi}_{j}(0) \psi_{i}(z)|P\rangle\right|_{z^{+}=z_{\perp}=0} \longrightarrow\left[\phi_{i j} \gamma^{+}\right]=f(x)
$$

© GPD correlation function (introducing a momentum transfer)

$$
\begin{aligned}
& \phi_{i j}\left(x, \xi, \Delta^{2}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle P-\frac{\Delta}{2}\right| \bar{\psi}_{i}(0) \psi_{j}(z)\left|P+\frac{\Delta}{2}\right\rangle\right|_{z^{+}=z_{\perp}=0} \\
& {\left[\phi_{i j} \gamma^{+}\right]=\frac{1}{2 P^{+}}\left[H^{q}(x, \xi, t) \bar{u}\left(P+\frac{\Delta}{2}\right) \gamma^{+} u\left(P-\frac{\Delta}{2}\right)+\ldots\right]}
\end{aligned}
$$

© GPDs

Factorization GPDS
OAM(Ji 1997)

Deeply virtual Compton scattering
IPD GPD (Burkardt 2000)

TMD PDFs

OThe TMD correlation function

$$
\Phi_{i j}\left(x, \boldsymbol{k}_{\perp}, S\right)=\left.\int \frac{\mathrm{d} z^{-} \mathrm{d}^{2} \boldsymbol{z}_{\perp}}{(2 \pi)^{3}} e^{i\left(k^{+} z_{-}-\boldsymbol{k}_{\perp} \cdot \boldsymbol{z}_{\perp}\right)}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(z)|P, S\rangle\right|_{z^{+}=0}
$$

© The TMD PDFs (leading twist)

$$
\begin{aligned}
\Phi\left(x, \boldsymbol{k}_{\perp}, S\right)= & \frac{1}{2}\left\{f_{1} \not h_{+}-f_{1 T}^{\perp} \frac{\epsilon_{T}^{i j} \boldsymbol{k}_{\perp}^{i} S_{\perp}^{j}}{M} \not h_{+}+\Lambda g_{1 L} \gamma_{5} \not h_{+}+\frac{\left(\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp}\right)}{M} g_{1 T} \gamma_{5} \not h_{+}+h_{1 T} \frac{\left[\boldsymbol{S}_{\perp}, \not h_{+}\right]}{2} \gamma_{5}\right. \\
& \left.+\Lambda h_{1 L}^{\perp} \frac{\left[k_{\perp}, \not h_{+}\right]}{2 M} \gamma_{5}+\frac{\left(\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp}\right)}{M} h_{1 T}^{\perp} \frac{\left[k_{\perp}, h_{+}\right]}{2 M} \gamma_{5}+i h_{1}^{\perp} \frac{\left[k_{\perp}, \not h_{+}\right]}{2 M}\right\}
\end{aligned}
$$

To obtain GPDs/TMDs: Fit

$\mathrm{d} \sigma / \mathrm{dQdqT}\left[\mathrm{nb} / \mathrm{GeV}^{2}\right]$

DATA:

parameterizing \& fitting

(Alexey_JHEP2019)

Tomography:

To obtain GPDs/TMDs: Calculation

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QCD}} & =\bar{q}_{i} \gamma^{\mu}\left(i \partial_{\mu}-g_{s} t^{a} A_{\mu}^{a}-m_{i}\right) q_{i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu} \\
F_{\mu \nu}^{a} & =\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}-g_{s} f^{a b c} A_{\mu}^{b} A_{\nu}^{c} \quad \alpha_{s}=\frac{g_{s}^{2}}{4 \pi}
\end{aligned}
$$

Nonperturbative QCD methods

Calculation

1. ADS/QCD

2. Dyson-Schwinger equations.
3. Effective theories and models, e.g., NJL model...
4. Light front QCD.
5. Lattice QCD. etc...

Transverse momentum dependent distributions (TMD) 3-D tomography in the momentum space.

Generalized parton distributions (GPD)
3-D picture of hadrons in the mixed spatial-momentum space.
A key step to understanding the QCD's non-perturbative properties!

DSE \& symmetry preserving

© The Pion\&Kaon wave function can be solved by aligning the quark DSE and hadron BSE.

©To solve these equations, truncation is needed for the vertex and scattering kernel. A physically reasonable truncation scheme should respect QCD's (nearly) chiral symmetry, namely, the Axial-Vector Ward-Takahashi Identity

©The simplest manifestation is the Rainbow-Ladder truncation

Beyond Rainbow-Ladder

© la nhomogeneous BSE

$$
\begin{aligned}
& \Gamma_{5 \mu}(k ; P)=Z_{2} \gamma_{5} \gamma_{\mu} \\
& \quad-Z_{2} \int_{d q} \mathcal{G}(k-q) D_{\rho \sigma}^{\text {free }}(k-q) \frac{\lambda^{a}}{2} \gamma_{\alpha} S\left(q_{+}\right) \times \Gamma_{5 \mu}(q ; P) S\left(q_{-}\right) \frac{\lambda^{a}}{2} \tilde{r}_{\beta}\left(q_{-}, k_{-}\right) \\
& \quad+Z_{1} \int_{d q} g^{2} D_{\alpha \beta}(k-q) \frac{\lambda^{a}}{2} \gamma_{\alpha} S_{f}\left(q_{+}\right) \times \frac{\lambda^{a}}{2} \Lambda_{5 \mu \beta}(k, q ; P)
\end{aligned}
$$

When $P^{2} \rightarrow-m_{\pi}^{2}, \Gamma_{5 \mu}^{j}(k ; P) \sim \frac{r_{A} P_{\mu}}{P^{2}+m^{2}} \Gamma_{\pi}^{j}(k ; P) \quad$ (Lei Chang et al, PRL2009)
©Beyond-RL kernel

$$
\begin{aligned}
& \Gamma_{\mu}\left(p_{1}, p_{2}\right)=\Gamma_{\mu}^{\mathrm{BC}}\left(p_{1}, p_{2}\right)+\Gamma_{\mu}^{\mathrm{acm}}\left(p_{1}, p_{2}\right) \\
& 2 \wedge_{5 \beta(\mu)}=\left[\tilde{\Gamma}_{\beta}\left(q_{+}, k_{+}\right)+\gamma_{5} \tilde{\Gamma}_{\beta}\left(q_{-}, k_{-}\right) \gamma_{5}\right] \times \frac{1}{S^{-1}\left(k_{+}\right)+S^{-1}\left(-k_{-}\right)} \Gamma_{5(\mu)}(k ; P) \\
& \quad+\Gamma_{5(\mu)}\left(q^{\prime} P\right) \frac{1}{S^{-1}\left(-q_{+}\right)+S^{-1}\left(q_{-}\right)} \times\left[\gamma_{5} \tilde{\Gamma}_{\beta}\left(q_{+}, k_{+}\right) \gamma_{5}+\tilde{\Gamma}_{\beta}\left(q_{-}, k_{-}\right)\right]
\end{aligned}
$$

Pion \& Kaon : motivation

© Pion (and kaon) has the dual roles of being both a QCD bound state and also the Goldstone boson. In the presence of DCSB, one can't fully appreciate the massness of proton without understanding the masslessness of pion.
(Craig Roberts, FBSY 2017)
©Pion (and kaon) can be directly measured through Drell-Yan process.
©Pion (and kaon) plays an important role in baryon in terms of meson cloud. Consequently, it's also measurable through the Sullivan process.

Sullivan process
©Theoretically, the study of pion and kaon is well established in DSEs. The TMDs and GPDs pose a new challenge.

TMDs \& GPDs: Light-front approach

DSEs:

Light front wave functions + overlap representation (Light front QCD)

TMD \& GPD

Light-front QCD

© QCD quantized in light front coordinate. A natural formalism in describing hard hadron scattering. The PDF, GPDs and TMDs are all defined on the light front null plane. $\quad \xi^{+}=0$
©ln the light-front formalism, the hadronic state takes a Fock-state expansion, characterized by light front wave functions.

© The light front wave functions (LFWFs) encode all the non-perturbative dynamical information of the hadron's internal structure.
©To calculate the LFWFs, the standard way is to diagonalize the light-cone Hamiltonian. However, this is very challenging in QCD. In practice, light-cone Hamiltonian models are employed (light-front potential, holographic QCD, NJL model....)

BSE approach

(1) An alternative way to calculate the LFWFs.
"...he ('t Hooft) did not use the light-cone formalism and which nowadays might be called standard. Instead, he started from covariant equations... The light-cone Schrodinger equation was then obtained by projecting the Bethe-Salpeter equation onto hyper-surfaces of equal light-cone time. In this way, one avoids to explicitly derive the light-cone Hamiltonian, which, as explained above, can be a tedious enterprise in view of complicated constraints one has to solve..." (Thomas Heinzl)
© BS WFs \& LFWFs

$$
\begin{aligned}
\langle 0| \bar{d}_{+}(0) \gamma^{+} \gamma_{5} u_{+}\left(\xi^{-}, \xi_{\perp}\right)\left|\pi^{+}(P)\right\rangle & =i \sqrt{6} P^{+} \psi_{0}\left(\xi^{-}, \xi_{\perp}\right), \\
\langle 0| \bar{d}_{+}(0) \sigma^{+i} \gamma_{5} u_{+}\left(\xi^{-}, \xi_{\perp}\right)\left|\pi^{+}(P)\right\rangle & =-i \sqrt{6} P^{+} \partial^{i} \psi_{1}\left(\xi^{-}, \xi_{\perp}\right)
\end{aligned}
$$

What we do: solve the BS equation first and then project the BS wave functions onto the light front!
© A synergy between Lagrangian formalism and Hamiltonian formalism.
Advantage: In the DSEs, one can selectively sum infinite many diagrams (which potentially incorporates higher Fock states) and conveniently preserves the symmetries of the Lagrangian.

LFWFs \& Bethe-Salpeter wave function

©Fock state \& LFWFs

LFWFs

$$
\begin{aligned}
\left|\pi^{+}(P)\right\rangle & =\left|\pi^{+}(P)\right\rangle_{l_{z}=0}+\left|\pi^{+}(P)\right\rangle_{\left|l_{z}\right|=1} \\
\left|\pi^{+}(P)\right\rangle_{l_{z}=0} & =i \int \frac{d^{2} k_{\perp}}{2(2 \pi)^{3}} \frac{d x}{\sqrt{x \bar{x}}} \psi_{0}\left(x, k_{\perp}^{2}\right) \frac{\delta_{j j}}{\sqrt{3}} \frac{1}{\sqrt{2}}\left[b_{u \uparrow i}^{\dagger}\left(x, k_{\perp}\right) d_{d \downarrow j}^{\dagger}\left(\bar{x}, \bar{k}_{\perp}\right)-b_{u \downarrow i}^{\dagger}\left(x, k_{\perp}\right) d_{d \uparrow j}^{\dagger}\left(\bar{x}, \bar{k}_{\perp}\right)\right]|0\rangle, \\
\left|\pi^{+}(P)\right\rangle_{\left|l_{z}\right|=1} & \left.=i \int \frac{d^{2} k_{\perp}}{2(2 \pi)^{3}} \frac{d x}{\sqrt{x \bar{x}}} \psi_{1}\left(x, k_{\perp}^{2}\right) \frac{\delta_{j j}}{\sqrt{3}} \frac{1}{\sqrt{2}}\left[k_{\perp}^{-}\right\rangle_{u \uparrow i}^{\dagger}\left(x, k_{\perp}\right) d_{d \uparrow j}^{\dagger}\left(\bar{x}, \bar{k}_{\perp}\right)+k_{\perp}^{+} b_{u \downarrow i}^{\dagger}\left(x, k_{\perp}\right) d_{d \downarrow j}^{\dagger}\left(\bar{x}, \overline{k_{\perp}}\right)\right]|0\rangle,
\end{aligned}
$$

© LFWFs \& BS wave function: Realistic BS wave function

Project on to the light front (light front time $\xi^{+}=0$)

$$
\begin{aligned}
& \times \operatorname{Tr}_{D}\left[\gamma^{+} \gamma_{5} \chi(k, p)\right] \\
& \hline \psi_{1}\left(x, \boldsymbol{k}_{T}^{2}\right)=-\sqrt{ } 3 i \int \frac{\left.d \mathbf{k}^{+} d k^{-}\right) 1}{2 \pi}{\left.\boldsymbol{k}^{+}-k^{+}\right)}^{\times} \\
& \times \operatorname{Tr}_{D}\left[i \sigma_{+i} \boldsymbol{k}_{T}^{i} \gamma_{5} \chi(k, p)\right] \delta\left(x p^{+}-k^{+}\right)
\end{aligned}
$$

(C. Mezrag et al, FBSY 2016)

LFWFs: $\psi_{0}\left(x, k_{\perp}^{2}\right) \& \psi_{1}\left(x, k_{\perp}^{2}\right)$

spin-antiparallel

©Point-wise accurate LFWFs extracted from parameterized realistic BS wave functions.
© $\psi 0$ (spin-antiparallel) and $\psi 1$ (spinparallel) is comparable in strength, suggesting the spin parallel contribution also has considerable contribution. Highly relativistic system.
© Strong support at infrared kT , a consequence of the DCSB which generates significant strength in the infrared region of BS wave function.
©At ultraviolet of $\mathrm{kT}, \psi 0$ scale as $1 / \mathrm{kT}^{2}$ and $\psi 1$ scale as $1 / k T^{4}$, as has been predicted by pQCD. (one-gluon exchange dominance.)
© SU(3) flavor symmetry breaking effect: u / d and s quark mass difference masked by DCSB.
$\psi_{o}\left(x, k_{T}^{2}\right)$
pion
kaon

(C.S. et al, arXiv:2003.03037, accepted by PRD)

FIG. 2. Pion's spin-anti-parallel LFWF $\psi_{0}\left(x, \boldsymbol{k}_{T}^{2}\right)$ at different values of \boldsymbol{k}_{T}^{2}, normalized to $\psi_{0}^{N}\left(x, \boldsymbol{k}_{T}^{2}\right)=\frac{\psi_{0}\left(x, \boldsymbol{k}_{T}^{2}\right)}{\int_{0}^{1} d x \psi_{0}\left(x, \boldsymbol{k}_{T}^{2}\right)}$.

GPD overlap representation

©At leading twist, the pion has one GPD:

$$
H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle p_{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|p_{1}\right\rangle\right|_{z^{+}=z_{\perp}=0}
$$

©There are two regions, ERBL and DGLAP region, named after their evolution in limiting cases

©The light front overlap representation requires $N-N$ particle LFWF overlap for DGLAP region and N-N+2 for ERBL region. In the DGLAP region (1>=|x|>=|द|):

$$
\left.H_{\pi^{+}}^{u}(x, \xi, t)\right|_{\xi \leq x}=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}}\left[\Psi_{l=0}^{*}\left(\frac{x-\xi}{1-\xi} \hat{\mathbf{k}}_{\perp}\right) \Psi_{l=0}\left(\frac{x+\xi}{1+\xi}, \tilde{\mathbf{k}}_{\perp}\right)+\hat{\mathbf{k}}_{\perp} \cdot \tilde{\mathbf{k}}_{\perp} \Psi_{l=1}^{*}\left(\frac{x-\xi}{1-\xi}, \hat{\mathbf{k}}_{\perp}\right) \Psi_{l=1}\left(\frac{x+\xi}{1+\xi}, \tilde{\mathbf{k}}_{\perp}\right)\right]
$$

GPD at zero skewedness

$H_{\left(x, 0,-\Delta_{T}^{2}\right)}$ GPD (zero skewedness)

All distributions peek at the center of impact parameter (note the plot has been multiplied with bT)

- heavier s quark is more localized as compared to light u/d quark, but not too much.

$$
\begin{aligned}
& \left\langle b_{T}^{2}\right\rangle=\int d^{2} b_{T} b_{T}^{2} \int d x \rho\left(x, b_{T}^{2}\right) \\
& \left\langle b_{T}^{2}\right\rangle_{u}^{\pi}=0.11 \mathrm{fm}^{2},\left\langle b_{T}^{2}\right\rangle_{s}^{K}=0.08 \mathrm{fm}^{2},\left\langle b_{T}^{2}\right\rangle_{u}^{K}=0.13 \mathrm{fm}^{2}
\end{aligned}
$$

$$
\rho^{(0)}\left(b_{T}\right)=\rho_{q}^{(0)}\left(b_{T}\right)-\rho_{\bar{q}}^{(0)}\left(b_{T}\right) \text { is scale- }
$$

IPD GPD

 independent, since $H(x, 0, \Delta T)$ evolution is independent of ΔT.

GPD at zero skewedness

Unpolarized TMD PDF

©TMD overlap representation

$$
f_{1, \pi}\left(x, \mathbf{k}_{\perp}^{2}\right)=\left|\psi_{\uparrow \downarrow}\left(x, k_{\perp}^{2}\right)\right|^{2}+k_{\perp}^{2}\left|\psi_{\uparrow \uparrow}\left(x, k_{\perp}^{2}\right)\right|^{2}
$$

FIG. 7. The unpolarized TMD $f_{1 ; \pi}^{d}\left(x, \boldsymbol{k}_{T}^{2}\right)$ of pion (upper panel) and $f_{1 ; K}^{s}\left(x, \boldsymbol{k}_{T}^{2}\right)$ of kaon (lower panel).

DSE \& LF

Significant strength at low kT , resembles Gaussian form.
The TMD of kaon is slightly broader than pion.
Smooth as compared to holographic QCD.

Holographic QCD(A Bacchetta, et al, PLB2017)

TMD evolution

©The TMD evolution is more conveniently worked in coordinate space.

Renormalization group (RG) equation:

$$
\begin{aligned}
\mu^{2} \frac{d}{d \mu^{2}} F_{f \leftarrow h}(x, \vec{b} ; \mu, \zeta) & \left.=\frac{1}{2} \gamma_{F}^{f}(\mu, \zeta) F_{f \leftarrow h}(x, \vec{b} ; \mu, \zeta)\right) \\
\zeta \frac{d}{d \zeta} F_{f \leftarrow h}(x, \vec{b} ; \mu, \zeta) & =-\mathcal{D}^{f}(\mu, \vec{b}) F_{f \leftarrow h}(x, \vec{b} ; \mu, \zeta) .
\end{aligned}
$$

The scale μ is the standard RG scale, with the additional rapidity factorization scale ζ to regularize the light-cone divergence arising from Wilson lines. They were usually chosen to be the same order of scattering scale.

Solution:

$$
F_{f \leftarrow h}\left(x, \vec{b} ; \mu_{f}, \zeta_{f}\right)=\exp \left[\int_{P}\left(\gamma_{F}^{f}(\mu, \zeta) \frac{d \mu}{\mu}-\mathcal{D}^{f}(\mu, \vec{b}) \frac{d \zeta}{\zeta}\right)\right] F_{f \leftarrow h}\left(x, \vec{b} ; \mu_{i}, \zeta_{i}\right)
$$

TMD evolution:

Figure 2. U'pper panel. DSE result using the DCSB-improved kerrel for the time-reversal even t-quark TMD of the pion, $f_{\Omega}^{u}\left(x, k_{T}^{2}\right)$, at the rodel scale of $\mu_{1}^{\hat{a}}=0.52 \mathrm{GcV}^{2}$. Lower panel: Anslogous result evolved to a scale of $\mu=6 \mathrm{GcV}$ using TMD cvolution with the b^{+} preseription end $g_{2}=0.09 \mathrm{GeV}[43]$. The TMD; are given in units of GeV^{-2} and k_{T}^{2} in GeV^{2}.

\& Evolution has a significant effect, leading to approximately an order of magnitude of suppression at small k_{T}, and a broad tail at larger k_{T}.
\& The evolved TMD PDF at smaller x is significantly broader than that at large x (Non-factorizable x and k_{T} dependence).

Drell-Yan Process

Experiment (E615)

Transverse momentum dependence parameterized by function $P\left(q T ; x F, m_{\mu} \mu\right)$

$$
\begin{array}{ll}
d^{3} \sigma \\
d x_{\pi} d x_{N} d q_{T} & =\frac{d^{2} \sigma}{d x_{\pi} d x_{N}} P\left(q_{T} ; x_{F}, m_{\mu \mu}\right) .
\end{array} \begin{aligned}
& q^{0}=\frac{\sqrt{s}}{2}\left(x_{\pi}+x_{N}\right) \\
& q^{3}=\frac{\sqrt{3}}{2}\left(x_{\pi}-x_{N}\right)
\end{aligned}
$$

"Experimental study of muon pairs produced by $252-\mathrm{GeV}$ pions on tungsten", Conway, J.S. et al. Phys.Rev. D39 (1989) 92-122.

Theory

$$
\frac{d^{3} \sigma}{d x_{\pi} d x_{N} d q_{T}} \propto\left|q_{T}\right| F_{u u}^{1}\left(x_{\pi}, x_{N}, q_{T}\right)
$$

(leading twist)
TMD formalism: $F_{U U}^{1}\left(x_{1}, x_{2}, q_{T}\right)=\frac{1}{N_{c}} \sum_{a} e_{a}^{2} \int d^{2} \boldsymbol{k}_{1 \perp} d^{2} \boldsymbol{k}_{2 \perp} \delta^{(2)}\left(\boldsymbol{q}_{T}-\boldsymbol{k}_{1 \perp}-\boldsymbol{k}_{2 \perp}\right) f_{1, \pi}^{\bar{a}\left(x_{1}, \boldsymbol{k}_{1 \perp}^{2}\right) f_{1, N}^{a}\left(x_{2}, \boldsymbol{k}_{2 \perp}^{2}\right)}$

Examine: $P\left(q_{T} ; x_{F}, m_{\mu \mu}\right) \propto\left|q_{T}\right| F_{U U}^{1}\left(q_{T} ; x_{F}, \tau\right)$

E615:

(C.S. et al, PRL2019)

The fitting function $P\left(q_{T} ; x_{F}, m_{\mu \mu}\right) / q_{T}$ at $x_{F}=0.0$ (red solid), 0.25 (green solid) and 0.5 (blue solid). The band colored bands are our results based on b*-prescription, with upper boundary corresponding to $g_{2}=0.09$ and lower boundary for $g_{0}=0.0$. The dashed lines are obtained following ζ-prescription where g_{2} is found to be consistent with zero at NNLL/NNLO.
\%Our results using two evolution schemes generally agree with E615 measurement. In particular, when the non-perturbative sudakov factor goes to zero as suggested by ζ prescription at higher order. (The deviation is less than 10% for $\mathrm{x}_{\mathrm{F}}=0$ and 0.25 , and increases to 30% at most for $\mathrm{x}_{\mathrm{F}}=0.5$.)
\% Our calculation also shows the TMD formalism becomes less valid as X_{F} goes larger (also in Aurore's talk)

Pion TMD PDF global fit

E615

NLO
b*-pres

Figure 1. The fitted cross section (solid line) of pion-nucleon Drell-Yan as functions of q_{\perp}, compared with the E615 data (full squre), for different x_{F} bins in the range $0<x_{F}<0.8$. The error bars shown here include the statistical error and the 16% systematic error.

Experiment	$\sqrt{s}[\mathrm{GeV}]$	$Q[\mathrm{GeV}]$	x_{F}	N_{pt}	corr. err.	Typical stat. err.
E537 (Q-diff.)	15.3	$4.0<Q<9.0$ in 10 bins	$-0.1<x_{\mathrm{F}}<1.0$	$60 / 146$	8%	$\sim 20 \%$
E537 (x_{F}-diff.)	15.3	$4.0<Q<9.0$	$-0.1<x_{\mathrm{F}}<1.0$ in 11 bins	$110 / 165$	8%	$\sim 20 \%$
E615 (Q-diff.)	21.8	$4.05<Q<13.05$ in $10(8)$ bins	$0.0<x_{\mathrm{F}}<1.0$	$51 / 155$	16%	$\sim 5 \%$
E615 (x_{F}-diff.)	21.8	$4.05<Q<8.55$	$0.0<x_{\mathrm{F}}<1.0$ in 10 bins	$90 / 159$	16%	$\sim 5 \%$
NA3	$16.8,19.4$	$4.1<Q<8.5$	$y>0(?)$	-	15%	-
	22.9	$4.1<Q<4.7$	$0<y<0.4$			

NNLO zeta-pres

(Xiaoyu, et al, JHEP2017)

(Alexey Vladimirov, JHEP2019)

Conclusions

©LFWFs can be obtained from Bethe-Salpeter wave functions, rendering a variety of light front distributions calculable.
© In a realistic calculation, the spin-parallel LFWF of pion and kaon contributes considerably, exhibiting a highly relativistic system. How about higher Fock state?
©Higher Fock state appears necessary in a realistic calculation for EMFF. While PDF, GFF and TMD are in general agreement with existing calculations and/or data. Resolved by mimicking higher Fock states.

