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3-D imaging: GPDs & TMDs
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Deeply virtual Compton scattering

OAM(Ji 1997) 

IPD GPD (Burkardt 2000)

GPD correlation function (introducing a momentum transfer)

1-D correlation function

GPDsFactorization
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TMD PDFs
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The TMD correlation function
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The TMD PDFs (leading twist)

Transverse Momentum Dependent (TMD) Parton Distribution Functions . . . 2509

We conclude this section by presenting the full leading-twist set of po-
larization dependent and transverse momentum dependent parton densities
in a spin-1/2 hadron. These are shown in Table I and Table II, for the
quark [56, 57] and gluon [26, 58] cases respectively, including the distribu-
tions in unpolarized hadrons (top rows), longitudinally polarized hadrons
(middle rows), transversely polarized hadrons (bottom rows). (See [59–65]
for slightly different classifications.) Gauge-invariant operator definitions
may be given for each of the TMD distributions in terms of nonlocal op-
erator combinations, in which appropriate Wilson-line gauge links are as-
sociated with quark and gluon fields [6, 66–70]. Operator definitions are
instrumental in analyzing both factorization and potential sources of factor-
ization breakdown, and in setting up lattice calculations [71–74] of parton
distributions.

TABLE I

(Colour on-line) Quark TMD pdfs: columns represent quark polarization, rows
represent hadron polarization. Distributions encircled by a dashed line are the
ones which survive integration over transverse momentum. The shades of the
boxes (light gray (blue) versus medium gray (pink)) indicate structures that are
T -even or T -odd, respectively. T -even and T -odd structures involve, respectively,
an even or odd number of spin-flips.

TABLE II

(Colour on-line) Gluon TMD pdfs: columns represent gluon polarization, rows
represent hadron polarization. Distributions encircled by a dashed line are the
ones which survive integration over transverse momentum. The shades of the
boxes (light gray (blue) versus medium gray (pink)) indicate structures that are
T -even or T -odd, respectively. T -even and T -odd structures involve, respectively,
an even or odd number of spin-flips. Linearly polarized gluons represent a double
spin-flip structure.
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Drell-Yan 3-D momentum distribution and  spin-orbit 
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The sign of T-odd Sivers and Boer-Mulders 
func t i ons a re p rocess -dependen t . 
Experimental confirmation is a fundamental 
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To obtain GPDs/TMDs: Fit

DATA:
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Figure 1. (Left) The function fNP that parametrizes the non-perturbative part of TMDPDF for
pion 2.6. (Center) Pion TMDPDF for d-quark in b-space. (Right) Pion TMDPDF for d-quark in
kT -space. The bands are the 1σ uncertainty band related to the data error-bands and calculated
by the replica method.

In the present study, I have compared the predictions generated with proton TMD-

PDFs (and DNP) based on different collinear PDF, and found results alike. Particularly,

χ2-minimization with proton TMDPDFs based on MMHT14 (nnlo) [42], NNPDF3.1 (nnlo) [41]

and HERA20PDF (nnlo) [43] gives χ2/Np = 1.45, 1.70 and 1.44, correspondingly. Taking into

account, that HERA20PDF set also shows better global χ2 on the data-set from ref. [1], in

the following the proton TMDPDF and non-perturbative part of TMD evolution is based

on HERA20PDF are used. This set BSV19.HERA20PDF can be downloaded from artemide

repository [17, 18]. For pion collinear PDF JAM18pionPDF-set has been used [32].

Results of the fit. The minimization procedure for χ2-test yields the following values

of non-perturbative parameters

a1 = 0.17± 0.11± 0.03, a2 = 0.48± 0.34± 0.06, a3 = 2.15± 3.25± 0.32. (3.3)

The first error-band is due to the uncertainty of data-points. It is estimated by the replica

method, as in ref. [44], by minimization of χ2 on 100 replicas of pseudodata. The second

error is due to uncertainty in the proton TMDPDF and TMD evolution. It is estimated

by the minimization of χ2 on 100 of replicas of input distributions.

Parameters a1,2,3 are restricted to positive values. So, large error-bands in (3.3) are

the result of very asymmetric distribution of parameters. Large error bands on parameters

does not implies a significant point-by-point uncertainty for fNP, since all parameters are

correlated. For example, at b ∼ 0.5GeV−1 the uncertainty in fNP is 2–3%. However,

this band is definitely biased by the ansatz (2.8). The plot for fNP is shown in figure 1

(left). The actual values of TMDPDF in b−space and kT -space (that is obtained by Fourier

transformation) are shown in figure 1 (center, right). The pion TMDPDF obtained in this

work together with distribution of 100 replicas is available in the artemide-repository [17,

18] as Vpion19 TMDPDF set (for π−-meson).

The final values of χ2 is χ2/Np = 1.44 (Np = 80). It can be compared with the result of

fit in ref. [45] χ2/Np = 1.64, where almost the same data were used. The main contribution

to the value of χ2 comes from the systematic disagreement in the normalization between

the data and the theory. In figure 2, 3, 4, 5 the comparison of the data to the theory

prediction is shown together with the values of χ2/Np for a given subset of data-points. In
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parameterizing & fitting
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Figure 3. Comparison of the theory prediction (solid line) to E615 differential in xF. The dashed
line is the theoretical prediction after the addition of systematic shifts di. The values of the χ2 and
di are calculated for the each xF-bin with 16% correlated error.

“systematics shifts” di that are the deviation between the theory and the data due to

the normalization only. The results of the nuisance-parameters-decomposition, as well as,

average values of di are presented in figure 2, 3, 4, 5 for each bin for E615 and common

for E537.

The decomposition of χ2 for the selected data is

χ2/Np = 0.67 + 0.77 = 1.44. (3.5)

The value χ2
λ/Np = 0.77 is huge, accounting 16% systematic uncertainty. Indeed, figures 3

and 5 clearly demonstrates that the theory prediction is systematically below the data. For

the first bins (the lowest xF and Q) the difference is practically factor 2. The comparison

to E537 (figure 2 and 4 does not show such a significant problem, but the quality of E537

measurement is much worse. The visual comparison to NA3 measurement (figure 6) also

does not show any normalization problem. Neglecting the normalization part of the χ2

the agreement between the data and the theory is almost perfect, which is also clear from

comparison of dashed lines to data-points in figure 2, 3, 4, 5.
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QCD

Transverse momentum dependent distributions (TMD) 
3-D tomography in the momentum space.


Generalized parton distributions (GPD) 
3-D picture of hadrons in the mixed spatial-momentum space.


1. ADS/QCD  
2. Dyson-Schwinger equations. 
3. Effective theories and models, e.g., NJL model... 
4.  Light front QCD. 
5.  Lattice QCD. 
 etc... 

Nonperturbative QCD methods

!6

Calculation

A key step to understanding the QCD's non-perturbative properties!

To obtain GPDs/TMDs: Calculation
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DSE & symmetry preserving 
The Pion&Kaon wave function can be solved by aligning the quark DSE and hadron BSE.

To solve these equations, truncation is needed for the vertex and scattering kernel. A 
physically reasonable truncation scheme should respect QCD's (nearly) chiral symmetry, 
namely, the Axial-Vector Ward-Takahashi Identity

= iγ5 + iγ5 − i(mf +mg)Pµ Γ5µ Γ5

The simplest manifestation is the Rainbow-Ladder truncation
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BSE’
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DB kernel

Combines a description of pion properties with reasonable estimates of the masses
of heavier mesons, including axial-vector states, e.g., ⇢� a1 mass splitting.
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Beyond-RL kernel

Beyond Rainbow-LadderBSE’
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Inhomogeneous BSE
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Pion & Kaon :  motivation
Pion (and kaon) has the dual roles of being both a QCD bound state and also the 
Goldstone boson. In the presence of DCSB, one can't fully appreciate the massness 
of proton without understanding the masslessness of pion. 

Pion (and kaon) can be directly measured through Drell-Yan process.

Pion & Kaon Structure at JLab and an EIC
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At Jefferson Lab and an EIC pion and kaon structure can be accessed via the
so-called Sullivan processes

initial pion/kaon is off mass-shell – need extrapolation to pole
proven results for form factors – what about quark and gluon PDFs, TMDs, GPDs,
etc, at an EIC?

Explored this ideal at a series of workshops on “Pion and Kaon Structure at
an Electron–Ion Collider” (PIEIC)

1�2 June 2017, Argonne National Laboratory www.phy.anl.gov/theory/pieic2017/

24�25 May 2018, The Catholic University of America www.jlab.org/conferences/pieic18/

Jefferson Lab Seminar 8 / 37

Pion (and kaon) plays an important role in baryon in terms of meson 
cloud. Consequently, it's also measurable through the Sullivan 
process.

Sullivan process

Theoretically, the study of pion and kaon is well established in DSEs. The 
TMDs and GPDs pose a new challenge.  

+

(Craig Roberts, FBSY 2017)
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Light front wave functions + overlap representation
( Light front QCD )
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Fig. 2.2. The Dyson-Schwinger equation for the electron propagator.

=

{

δSξ
δψ(x)

[

δ

iδJ
,
δ

iδη
,− δ

iδη

]

+ η(x)

}

Z[η, η, Jµ] . (2.24)

After differentiating with respect to η and setting all sources to zero [η = η = J = 0] we can rewrite
Eq. (2.24) as

(i ∂̸ − mf
0) Sf(x, y) − i(ef

0)
2
∫

ddz1 ddz2 ddz3 γµD
µν(x, z1)S

f(x, z2)Γ
f
ν(z1; z2, z3)S

f(z3, y) = δd(x − y) ,

(2.25)
where Dµν(x, y) is the photon propagator which couples Eq. (2.25) to Eq. (2.19). So, one sees that the
equations for the 2-point functions are coupled to each other and that both also depend on the 3-point
function, Γfµ. This is the first indication of the general rule that the DSE for an n-point function is
coupled to other functions of lesser and the same order and to functions of order (n+1) and (n+2).

The structure of Eq. (2.25) allows one to rewrite it in terms of the fermion self energy, −iΣf (x, y),
defined such that

(i ∂̸ − mf
0) Sf(x, y) −

∫

ddz1 Σf (x, z1) Sf(z1, y) = δd(x − y) (2.26)

and hence satisfying

− iΣf (x, y) = (ef
0)

2
∫

ddz1 ddz2 γµD
µν(x, z1)S

f(x, z2)Γ
f
ν(z1; z2, y) . (2.27)

The equation for the fermion self-energy is represented diagrammatically in Fig. 2.2a) while part b) of
this figure shows the definition of the fermion self-energy (−iΣf (p)) in terms of the fermion propagator
Sf (p) with Sf

0 (p) = 1/( p̸−mf
0) the bare fermion propagator. Again, the momentum-space form for the

proper fermion self-energy (−iΣf ) is easily obtained from Fig. 2.2a) using the usual Feynman rules [or
equivalently from Fourier transforming Eq. (2.27)] and can be written as

− iΣf (p) = (ef
0)

2
∫ ddℓ

(2π)d
(iγµ)(iS

f(ℓ))(iDµν(p − ℓ))(iΓf
ν(ℓ, p)) . (2.28)

From Fig. 2.2b) or, equivalently, from Eq. (2.26), we can solve for Sf(p) to give Sf(p) = 1/[(Sf
0 )−1 −

Σf (p)] = 1/[ p̸ − mf
0 − Σf (p)].

Unrenormalised Dyson-Schwinger equation for the Fermion-Photon Vertex. This equation can be de-
rived in a similar way. For completeness, we present it here in momentum space where it is most concisely
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TMD & GPD

TMDs & GPDs: Light-front approach

Figure 2: Overlap representations for SPDs in different kinematic regions for the case
ξ > 0. The flow of momenta is indicated on the lines. Top (bottom) right: the region
ξ < x̄ < 1 (−1 < x̄ < −ξ), where the SPDs are given by N → N overlaps. Middle right:
the central region −ξ < x̄ < ξ, where N + 1 → N − 1 overlaps are relevant.

3.1 The region ξ < x̄ < 1

The Fock state decomposition (8) leads to a representation of the matrix element Hq
λ′λ as

a sum over contributions from separate Fock states,

Hq
λ′λ =

∑

N

Hq(N→N)
λ′λ , (29)

with

Hq(N→N)
λ′λ =

1
√

2(1 − ξ2)

∑

c

∑

β,β′

∫
[dx̃]N [d2k̃⊥]N [dx̂′]N [d2k̂′

⊥]N Ψ∗λ′

N,β′(r̂′) Ψλ
N,β(r̃)

×
∫ dz−

2π
ei x̄ p̄ +z− ⟨N, β ′; k′

1 . . . k′
N | φ c †

q (−z̄/2)φ c
q (z̄/2) |N, β; k1, . . . , kN⟩ . (30)
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Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is diffi cult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

Light-front QCD
QCD quantized in light front coordinate. A 
natural formalism in describing hard hadron 
scattering. The PDF, GPDs and TMDs are all 
defined on the light front null plane. 

To calculate the LFWFs, the standard way is to diagonalize the light-cone Hamiltonian. 
However, this is very challenging  in QCD. In practice, light-cone Hamiltonian models are 
employed (light-front potential, holographic QCD, NJL model....)

 The light front wave functions (LFWFs) encode all the non-perturbative dynamical 
information of the hadron's internal structure. 

In the light-front formalism, the hadronic state 
takes a Fock-state expansion, characterized by 
light front wave functions.

⇠+ = 0
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"...he (’t Hooft) did not use the light–cone formalism and which nowadays might be 
called standard. Instead, he started from covariant equations... The light–cone 
Schrodinger equation was then obtained by projecting the Bethe–Salpeter 
equation onto hyper-surfaces of equal light–cone time. In this way, one avoids to 
explicitly derive the light–cone Hamiltonian, which, as explained above, can be a 
tedious enterprise in view of complicated constraints one has to solve..." (Thomas 
Heinzl)

Advantage: In the DSEs, one can selectively sum infinite 
many diagrams (which potentially incorporates higher 
Fock states) and conveniently preserves the symmetries 
of the Lagrangian. 

BSE approach
An alternative way to calculate the LFWFs.

!12

A synergy between Lagrangian formalism and Hamiltonian formalism. 

h0|d̄+(0)�+�5u+(⇠
�, ⇠?)|⇡+(P )i = i

p
6P+ 0(⇠

�, ⇠?),

h0|d̄+(0)�+i�5u+(⇠
�, ⇠?)|⇡+(P )i = �i

p
6P+@i 1(⇠

�, ⇠?).
(M. Burkardt et al, PLB 2002)

BS WFs & LFWFs

What we do: solve the BS equation first and then project the BS wave 
functions onto the light front!
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LFWFs & Bethe-Salpeter wave function

�(k;P ) = S(k)�(k;P )S(k � P )
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|⇡+(P )i = |⇡+(P )ilz=0 + |⇡+(P )i|lz|=1

|⇡+(P )ilz=0 = i

Z
d2k?
2(2⇡)3

dxp
xx̄
 0(x, k

2
?)
�ijp
3

1p
2
[b†u"i(x, k?)d

†
d#j(x̄, k̄?)� b†u#i(x, k?)d

†
d"j(x̄, k̄?)]|0i,

|⇡+(P )i|lz|=1 = i

Z
d2k?
2(2⇡)3

dxp
xx̄
 1(x, k

2
?)
�ijp
3

1p
2
[k�?b

†
u"i(x, k?)d

†
d"j(x̄, k̄?) + k+?b

†
u#i(x, k?)d

†
d#j(x̄, k̄?)]|0i,
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LFWFs

Realistic BS wave function

Intrinsic Transverse Motion of the Pion’s Valence Quarks
Chao Shi1 and Ian C. Cloët1

1
Physics Division, Argonne National Laboratory, Argonne, IL 60439 USA

Starting with the solution to the Bethe-Salpeter equation for the pion, in a beyond rainbow-ladder truncation
to QCD’s Dyson-Schwinger equations (DSEs), we determine the pion’s lz = 0 and |lz | = 1 leading Fock-state
light-front wave functions (LFWFs) [labeled by  lz (x, k2

T )]. The leading-twist time-reversal even transverse
momentum dependent parton distribution function (TMD) of the pion is then directly obtained from these LFWFs.
A key characteristic of the LFWFs, which is driven by dynamical chiral symmetry breaking, is that at typical
hadronic scales they are broad functions in the light-cone momentum fraction x. The LFWFs have a non-trivial
(x, k2

T ) dependence and in general do not factorize into separate functions of each variable. The lz = 0 LFWF is
concave with a maximum at x = 1/2, whereas orbital angular momentum e�ects causes the |lz | = 1 LFWF to
have a slight double-humped structure for quark transverse momentum in the range 0.5 . k2

T . 5 GeV2. For
k2
T . 1 GeV2 the k2

T dependence of the LFWFs is well described by a Gaussian, however for k2
T & 10 GeV2

these LFWFs behave as  0 / x(1 � x)/k2
T and  1 / x(1 � x)/k4

T , and therefore exhibit the power-law behavior
predicted by perturbative QCD. The pion’s TMD inherits many features from the LFWFs, where for k2

T . 1 GeV2

the k2
T dependence is well described by a Gaussian, and for large k2

T the TMD behaves as f
q
⇡ / x

2(1 � x)2/k4
T .

At the model scale we find the average transverse momentum, defined by a Bessel-weighted moment with
bT = 0.3 fm, to equal

⌦
k2
T

↵
= 0.19 GeV2. The TMD evolution of our result is studied using both the b

⇤ and ⇣
prescriptions which allows a qualitative comparison with existing Drell-Yan data.

Light-front quantization and the associated light-front wave
functions (LFWFs) provide a powerful framework with which
to study quantum chromodynamics (QCD) and develop an
understanding of the parton structure of hadrons [1, 2]. Hadron
observables such as form factors, parton distribution functions
(PDFs), and their multi-dimensional counterparts such as gen-
eralized and transverse momentum dependent PDFs (TMDs)
can each be expressed as overlaps of LFWFs [3, 4]. Therefore
LFWFs allow features of apparent disparate hadron observ-
ables to be straightforwardly related to underlying quark-gluon
dynamics in a QCD Fock-state expansion. In principle, the
LFWFs can be computed by diagonalizing the light-front QCD
Hamiltonian operator, using methods such as discretized light-
cone quantization [5], or basis light-front quantization [6, 7].
However, these calculations become numerically challenging
for QCD in four space-time dimensions, therefore e�ective
interactions such as holographic QCD have been used to reduce
these di�culties [8].

Another approach used to study QCD and hadron structure,
which is explicitly Poincaré-covariant, is provided by judicious
truncations to QCD’s Dyson-Schwinger equations (DSEs) [9–
11]. In the DSE framework hadron states are obtained as
solutions to Poincaré-covariant bound-state equations such as
the Bethe-Salpeter and Faddeev equations [12, 13]. Insights into
numerous aspects of hadron structure have been revealed using
the DSEs [11, 14], with particular success in understanding
the pion as both a relativistic bound-state of a dressed quark
and dressed antiquark, and the Goldstone mode associated with
dynamical chiral symmetry breaking (DCSB) in QCD [11, 15–
17]. DSE solutions to the Bethe-Salpeter equation (BSE),
which encapsulate key emergent QCD phenomena such as
DCSB and quark confinement, therefore provide an excellent
starting point from which to extract the pion’s LFWFs. In
particular, the properties of the LFWFs can then be clearly
connected to underlying quark-gluon dynamics as expressed
in the dressing functions for propagators and vertices. The
calculation of the pion’s leading Fock-state LFWFs using the

DSEs, and the application of these LFWFs to a calculation of
the pion’s leading-twist time-reversal even TMD is the main
focus of this paper. Such a study is timely because the proposed
electron-ion collider [18] has the capability to study the partonic
structure of the pion and kaon [19].

In the light-front formalism a hadron state can be expressed
as the superposition of Fock-state components classified by
their orbital angular momentum projection lz [20]. For the pion
the minimal (q̄q) Fock-state configuration reads [20, 21]:��⇡+(p)↵ = |⇡+(p)ilz=0 + |⇡+(p)i |lz |=1, (1)

where the non-perturbative content of each state is contained in
the LFWFs [4], labeled by  0(x, k2

T ) for lz = 0 and  1(x, k2
T )

for |lz | = 1, where kT is the transverse momentum of the
quark and x = k+

p+ is its light-cone momentum fraction. For
these minimal Fock-state LFWFs the antiquark has transverse
momentum �kT (in a frame where pT = 0 for the pion) and
light-cone momentum fraction 1 � x.

From the matrix element definitions of the LFWFs [20], it
can be shown that the pion’s minimal Fock-state LFWFs can
be obtained from the pion’s Poincaré-covariant Bethe-Salpeter
wave function, �(k, p), via [22]

 0(x, k2
T ) =

p
3 i

π
dk
+

dk
�

2 ⇡
⇥ TrD

⇥
�+�5 �(k, p)

⇤
�
�
x p
+ � k

+� , (2)

 1(x, k2
T ) = �

p
3 i

π
dk
+

dk
�

2 ⇡
1
k2
T

⇥ TrD
⇥
i�+ik

i
T �5 �(k, p)

⇤
�
�
x p
+ � k

+� , (3)

where the trace is over Dirac indices only. The Bethe-Salpeter
wave function for the ⇡+ is defined by the quark-antiquark
correlator �(k, p) =

Ø
d

4
z e

�ik ·z h0|Tu(z) d̄(0)|⇡+(p)i [23,
24] and can be expressed as �(k, p) = S(k) �(k, p) S(k � p),
where S(k) is the dressed quark propagator and �(k, p) the
pion’s homogeneous Bethe-Salpeter amplitude [9, 25].
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(C. Mezrag et al, FBSY 2016)



!14

LFWFs:  0(x, k2?) &  1(x, k2?)

Point-wise accurate LFWFs extracted 
from parameterized realistic BS wave 
functions. 

ψ0 (spin-antiparallel) and ψ1 (spin-
parallel) is comparable in strength, 
suggesting the spin parallel contribution 
also has considerable contribution. 
Highly relativistic system.

Strong support at infrared kT, a 
consequence of the DCSB which 
generates significant strength in the 
infrared region of BS wave function.

At ultraviolet of kT, ψ0 scale as 1/kT2  
and ψ1 scale as 1/kT4, as has been 
predicted by pQCD. (one-gluon 
exchange dominance.)

SU(3) flavor symmetry breaking effect: 
u/d and s quark mass difference 
masked by DCSB.

3

that is

hxmi0(k2
T ) =

p
3 i

|P+ |

π
dk
+
dk

�

2�

✓
k
+

P+

◆m

TrD[�+�5 � (k+,k�;kT , P)],
(8)

hxmi1(k2
T ) = �

p
3 i

|P+ |k2
T

π
dk
+
dk

�

2�

✓
k
+

P+

◆m

TrD[i�+i kiT � (k+,k�;kT , P)]. (9)

Since we have an analytical form for � (k, P) obtained
by parametrizing the numerical DSE solution, the two-
dimensional momentum integrations can be completed
with the help of Feynman parametrization. In practice, we
transform the integration variables to rewrite the integral
in the form

hxmilz (k
2
T ) =

π 1

0
d� �

m
π

d�d� flz (�,k2
T , �,� ). (10)

Comparison with Eq. (7) then reveals that the LFWFs
are identified as �lz (x,k2

T ) =
Ø
d�d� flz (x,k2

T , �,� ).
We present plots of the leading Fock state LFWFs for

the pion and kaon in Fig. 1. For concreteness, we focus our
discussion to the case of �� and K

�, so the d and s are the
valence quarks and ū is valence anti-quark. In general we
find that all the LFWFs are smooth functions decaying as
k2
T increases or x approaches the end-points. As expected

for light mesons, the x-dependence of the LFWFs is broad
at low k2

T and get narrower as k2
T increases, approaching

an asymptotic form for large k2
T proportional to x(1 � x).

Fig. 2 provides an example of how the x-dependence
of �0(x,k2

T ) changes with k2
T . The strong support of

the LFWFs at infrared k2
T originates from the strength

of the covariant Bethe-Salpeter wave functions at low
|kT |, which is closely connected to DCSB, as illustrated
model-independently in Ref. [36]. Therefore, our LFWFs
faithfully inherit the DCSB property from the covariant
DSEs calculation. At large k2

T , the LFWFs decay as
�0(x,k2

T ) ⇠ 1/k2
T and �1(x,k2

T ) ⇠ 1/k4
T , in line with the

perturbative QCD expectations [49]. The e↵ects of SU(3)
flavor symmetry breaking are clearly apparent in the kaon,
as the heavier s quark gains more support at large x and
the LFWFs become skewed. This indicates that the s

quark carries more of the kaon’s light-cone momentum
fraction. However, these SU(3) flavor symmetry breaking
e↵ects diminish as k2

T increases. Further analysis of these
e↵ects will be given in later sections when GPD and TMD
results are presented.

The LFWFs are normalized so that the quark number

sum rule
Ø 1

0
dx f (x ; µ0) = 1 is satisfied. Therefore, with

only the leading Fock state the valence quark distribution
function f (x ; µ0) is given by

f (x ; µ0) =
π

d
2kT

(2� )3
h���0(x,k2

T )
��2 + k2

T
���1(x,k2

T )
��2i . (11)

FIG. 1. The top row gives the LFWFs for pion and the bottom
row gives the kaon results. The left column is �0(x,k2

T ) and
the right column is �1(x,k2

T ), where k2
T is in GeV2.

ψ0N(x,kT2=0)
ψ0N(x,kT2=0.5)
ψ0N(x,kT2=1)
ψ0N(x,kT2=10)
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x
ψ
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(x
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T2
)

FIG. 2. Pion’s spin-anti-parallel LFWF �0(x,k2
T ) at di↵erent

values of k2
T , normalized to �

N
0 (x,k2

T ) =
�0(x ,k2

T )Ø 1

0
dx�0(x ,k2

T )
.

This approximation to the full valence quark distribution
function is best at a low hadronic scale µ0, which in
Ref. [33] was determined to be µ0 = 520MeV. In a non-
relativistic system �1(x,k2

T ) would vanish because the
quarks are in a relative p-wave, however we find that
the contribution to the quark number sum rule from
�1(x,k2

T ) equals 0.36 for the pion and 0.31 for the kaon.
Therefore, we find that the valence quarks in both the
pion and kaon are highly relativistic. Importantly, the
relative strength between �0(x,k2

T ) and �1(x,k2
T ) in our

approach is completely determined by the Bethe-Salpeter
wave function, which itself is governed by the underlying
quark-gluon interaction. The significant contribution of
�1(x,k2

T ) to observables likely also implies that higher
Fock states may not be negligible in a more realistic
calculation. Nevertheless, the higher Fock states are much
more di�cult to calculate and are beyond the scope of
this work.
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that is
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T ) =
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π
dk
+
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�
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dimensional momentum integrations can be completed
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transform the integration variables to rewrite the integral
in the form
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This approximation to the full valence quark distribution
function is best at a low hadronic scale µ0, which in
Ref. [33] was determined to be µ0 = 520MeV. In a non-
relativistic system �1(x,k2

T ) would vanish because the
quarks are in a relative p-wave, however we find that
the contribution to the quark number sum rule from
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T ) equals 0.36 for the pion and 0.31 for the kaon.
Therefore, we find that the valence quarks in both the
pion and kaon are highly relativistic. Importantly, the
relative strength between �0(x,k2

T ) and �1(x,k2
T ) in our

approach is completely determined by the Bethe-Salpeter
wave function, which itself is governed by the underlying
quark-gluon interaction. The significant contribution of
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calculation. Nevertheless, the higher Fock states are much
more di�cult to calculate and are beyond the scope of
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its vanishing relying only on the correct normalization of both DA 
and PDF and, accordingly, imposing for the l.h.s. that3

1∫

0

dx D+(x,0) = 0 , (17)

the condition given by (7), resulting here from a soft pion theorem.
If we restrain ourselves to the pion valence-quark GPD and as-

sume that D+ is a continuous function, we can be fully general 
when writing

D+(α,0) = (1 − α2)

∞∑

i=1

ci C (3/2)
2i (α) , (18)

where the factor 1 −α2 reflects that D(±1, 0) = 0, a condition im-
posed by factorisation, as the GPD has to be continuous at x = ±ξ . 
On top of this, the expansion in the orthogonal 3/2-Gegenbauer 
polynomials of even degree (excluding the first one, C (3/2)

0 = 1) 
guarantees both the α-even parity and the fulfilling of the condi-
tion (17),

1∫

0

dα D+(α,0) (19)

= 1
2

∞∑

i=1

ci

1∫

−1

dα (1 − α2) C (3/2)
0 (α) C (3/2)

2i (α) = 0 .

Therefore, D+ and D− can be always chosen so that the soft pion 
theorem expressed by Eqs. (9)–(10) may be fulfilled and, for the 
same price, the ambiguities in the covariant extension from DGLAP 
to ERBL domains be constrained at vanishing squared momentum 
transfer.

Indeed, the issue of the observance of the soft pion theorem 
can be approached in the other way around.

We should emphasise once more that, in terms of LFWFs, the 
ERBL region is understood as an overlap of N and N + 2 partons 
LFWFs, starting in the case of the pion at N = 2. On the other hand, 
the covariant extension based on the Radon transform insures the 
polynomiality property, and any idea of Fock state truncation in 
the ERBL region is lost. One can only say that the information from 
higher Fock states LFWFs required to fulfil polynomiality is prop-
erly captured. But since the PDA is completely described by the 
two-body LFWF, one can wonder whether there is some genuine 
information in the 4-body LFWF interplaying with the 2-body one 
via overlap to produce a GPD fulfilling the soft pion theorem in 
our lowest-Fock-states approach.

Rephrasing the question in a more technical way, in connection 
with the Radon transform representation: does the information 
along the line β = 0 in DD space play a crucial role to guaran-
tee the correct limit in the ERBL maximally skewed kinematic? To 
the extent of our knowledge, there is no conclusive answer to this 
question. Previous results [28] have shown how critical the im-
plementation of the Axial-Vector Ward-Takahashi identity is when 
solving the Dyson-Schwinger and Bethe–Salpeter equations in or-
der to fulfil the soft pion theorem in covariant computations. We 
certainly expect the same thing to be true within the overlap of 
LFWFs framework. If the covariant extension of the DGLAP GPD 

3 The even parity of D+ , manifest from Eq. (15 )’s r.h.s. because ϕ(x) is symmetric 
under the exchange x → 1 − x, implies ∫ 1

0 dαD+ = 0 as the immediate consequence 
of its vanishing after integration over its support [−1, 1].

obtained from the appropriate 2-body LFWFs is not sufficient to 
fully reconstruct the ERBL in the kinematic limit of the soft pion 
theorem, the terms D+ and D− should be eventually adjusted in 
any case to supply a full description of the pion.

4. The Nakanishi-based Bethe–Salpeter model

We have described a systematic and fully general prescription 
aimed at obtaining a hadron GPD, on its entire kinematic domain, 
from the knowledge of the relevant LFWFs. The prescription is 
essentially based on accommodating the overlap of these LFWFs 
within the DD representation. The pion has been so far used as a 
simple guiding case and, still in what follows, we will consider a 
specific pion GPD model, the one introduced in Ref. [18] in order 
to illustrate this prescription. Owing to the simplicity of the pion 
model, we will produce fully algebraic results and, very specially, 
show how to deal with the soft pion theorem and the ambiguities 
in the covariant extension from DGLAP to ERBL kinematic domains.

The basic ingredient for the GPD construction is the LFWF 
obtained by the appropriate integration and projection of the 
pion Bethe–Salpeter wave function resulting from the algebraic 
model described in [42] and based on its Nakanishi represen-
tation [26 ,27]. In this model developed in euclidean space, the 
quark propagator is S(q) = [−iγ ·q + M]/[q2 + M2]and the Bethe–
Salpeter amplitude is given by:

&π (q, P ) = iNγ5

∞∫

0

dω

1∫

−1

dz
ρ(ω, z)M2

(
q − 1−z

2 P
)2 + M2 + ω

, (20)

where ρ(ω, z) is the Nakanishi weight modelled as ρ(ω, z) =
δ(ω)(1 − z2) and N is an overall normalization constant. The 
Bethe–Salpeter wave function is obtained as S(q)&π (q, P )S(q − P ). 
As shown in Ref. [18] (the details of the computation can be found 
therein), there are two contributions to the LFWF, the helicity-0:

+l=0 (x,k⊥) = 8
√

15 π
M3

(
k2

⊥ + M2
)2 (1 − x) x , (21)

and the helicity-1:

i k⊥ j +l=1 (x,k⊥) = 8
√

15 π
k⊥ j M2

(
k2

⊥ + M2
)2 (1 − x) x (22)

with j = 1, 2 and where M is the model mass parameter intro-
duced above. One can readily notice that our LFWFs do not show 
any (x, k⊥) correlations, and can be written as f (x) g(k2

⊥). This 
is due to our simple choice of the Nakanishi weight in Eq. (20), 
ρ(ω, z). There is no doubt that correlations would arise from a 
proper solution of the BSE. But, despite the lack of correlations, 
this simple algebraic model remains insightful for our exploratory 
work, and illustrates well our extension technique. Proceeding with 
the computations, Eqs. (21), (22) can then be combined into the 
following expression,

Hu
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Eq. (2) for the GPD of our special π+ case. One is thus left with:
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its vanishing relying only on the correct normalization of both DA 
and PDF and, accordingly, imposing for the l.h.s. that3

1∫

0

dx D+(x,0) = 0 , (17)

the condition given by (7), resulting here from a soft pion theorem.
If we restrain ourselves to the pion valence-quark GPD and as-

sume that D+ is a continuous function, we can be fully general 
when writing

D+(α,0) = (1 − α2)
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ci C (3/2)
2i (α) , (18)

where the factor 1 −α2 reflects that D(±1, 0) = 0, a condition im-
posed by factorisation, as the GPD has to be continuous at x = ±ξ . 
On top of this, the expansion in the orthogonal 3/2-Gegenbauer 
polynomials of even degree (excluding the first one, C (3/2)
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guarantees both the α-even parity and the fulfilling of the condi-
tion (17),
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Therefore, D+ and D− can be always chosen so that the soft pion 
theorem expressed by Eqs. (9)–(10) may be fulfilled and, for the 
same price, the ambiguities in the covariant extension from DGLAP 
to ERBL domains be constrained at vanishing squared momentum 
transfer.

Indeed, the issue of the observance of the soft pion theorem 
can be approached in the other way around.

We should emphasise once more that, in terms of LFWFs, the 
ERBL region is understood as an overlap of N and N + 2 partons 
LFWFs, starting in the case of the pion at N = 2. On the other hand, 
the covariant extension based on the Radon transform insures the 
polynomiality property, and any idea of Fock state truncation in 
the ERBL region is lost. One can only say that the information from 
higher Fock states LFWFs required to fulfil polynomiality is prop-
erly captured. But since the PDA is completely described by the 
two-body LFWF, one can wonder whether there is some genuine 
information in the 4-body LFWF interplaying with the 2-body one 
via overlap to produce a GPD fulfilling the soft pion theorem in 
our lowest-Fock-states approach.

Rephrasing the question in a more technical way, in connection 
with the Radon transform representation: does the information 
along the line β = 0 in DD space play a crucial role to guaran-
tee the correct limit in the ERBL maximally skewed kinematic? To 
the extent of our knowledge, there is no conclusive answer to this 
question. Previous results [28] have shown how critical the im-
plementation of the Axial-Vector Ward-Takahashi identity is when 
solving the Dyson-Schwinger and Bethe–Salpeter equations in or-
der to fulfil the soft pion theorem in covariant computations. We 
certainly expect the same thing to be true within the overlap of 
LFWFs framework. If the covariant extension of the DGLAP GPD 

3 The even parity of D+ , manifest from Eq. (15 )’s r.h.s. because ϕ(x) is symmetric 
under the exchange x → 1 − x, implies ∫ 1

0 dαD+ = 0 as the immediate consequence 
of its vanishing after integration over its support [−1, 1].

obtained from the appropriate 2-body LFWFs is not sufficient to 
fully reconstruct the ERBL in the kinematic limit of the soft pion 
theorem, the terms D+ and D− should be eventually adjusted in 
any case to supply a full description of the pion.

4. The Nakanishi-based Bethe–Salpeter model

We have described a systematic and fully general prescription 
aimed at obtaining a hadron GPD, on its entire kinematic domain, 
from the knowledge of the relevant LFWFs. The prescription is 
essentially based on accommodating the overlap of these LFWFs 
within the DD representation. The pion has been so far used as a 
simple guiding case and, still in what follows, we will consider a 
specific pion GPD model, the one introduced in Ref. [18] in order 
to illustrate this prescription. Owing to the simplicity of the pion 
model, we will produce fully algebraic results and, very specially, 
show how to deal with the soft pion theorem and the ambiguities 
in the covariant extension from DGLAP to ERBL kinematic domains.

The basic ingredient for the GPD construction is the LFWF 
obtained by the appropriate integration and projection of the 
pion Bethe–Salpeter wave function resulting from the algebraic 
model described in [42] and based on its Nakanishi represen-
tation [26 ,27]. In this model developed in euclidean space, the 
quark propagator is S(q) = [−iγ ·q + M]/[q2 + M2]and the Bethe–
Salpeter amplitude is given by:
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where ρ(ω, z) is the Nakanishi weight modelled as ρ(ω, z) =
δ(ω)(1 − z2) and N is an overall normalization constant. The 
Bethe–Salpeter wave function is obtained as S(q)&π (q, P )S(q − P ). 
As shown in Ref. [18] (the details of the computation can be found 
therein), there are two contributions to the LFWF, the helicity-0:
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with j = 1, 2 and where M is the model mass parameter intro-
duced above. One can readily notice that our LFWFs do not show 
any (x, k⊥) correlations, and can be written as f (x) g(k2

⊥). This 
is due to our simple choice of the Nakanishi weight in Eq. (20), 
ρ(ω, z). There is no doubt that correlations would arise from a 
proper solution of the BSE. But, despite the lack of correlations, 
this simple algebraic model remains insightful for our exploratory 
work, and illustrates well our extension technique. Proceeding with 
the computations, Eqs. (21), (22) can then be combined into the 
following expression,
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its vanishing relying only on the correct normalization of both DA 
and PDF and, accordingly, imposing for the l.h.s. that3

1∫

0

dx D+(x,0) = 0 , (17)

the condition given by (7), resulting here from a soft pion theorem.
If we restrain ourselves to the pion valence-quark GPD and as-

sume that D+ is a continuous function, we can be fully general 
when writing

D+(α,0) = (1 − α2)
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i=1

ci C (3/2)
2i (α) , (18)

where the factor 1 −α2 reflects that D(±1, 0) = 0, a condition im-
posed by factorisation, as the GPD has to be continuous at x = ±ξ . 
On top of this, the expansion in the orthogonal 3/2-Gegenbauer 
polynomials of even degree (excluding the first one, C (3/2)
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guarantees both the α-even parity and the fulfilling of the condi-
tion (17),
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Therefore, D+ and D− can be always chosen so that the soft pion 
theorem expressed by Eqs. (9)–(10) may be fulfilled and, for the 
same price, the ambiguities in the covariant extension from DGLAP 
to ERBL domains be constrained at vanishing squared momentum 
transfer.

Indeed, the issue of the observance of the soft pion theorem 
can be approached in the other way around.

We should emphasise once more that, in terms of LFWFs, the 
ERBL region is understood as an overlap of N and N + 2 partons 
LFWFs, starting in the case of the pion at N = 2. On the other hand, 
the covariant extension based on the Radon transform insures the 
polynomiality property, and any idea of Fock state truncation in 
the ERBL region is lost. One can only say that the information from 
higher Fock states LFWFs required to fulfil polynomiality is prop-
erly captured. But since the PDA is completely described by the 
two-body LFWF, one can wonder whether there is some genuine 
information in the 4-body LFWF interplaying with the 2-body one 
via overlap to produce a GPD fulfilling the soft pion theorem in 
our lowest-Fock-states approach.

Rephrasing the question in a more technical way, in connection 
with the Radon transform representation: does the information 
along the line β = 0 in DD space play a crucial role to guaran-
tee the correct limit in the ERBL maximally skewed kinematic? To 
the extent of our knowledge, there is no conclusive answer to this 
question. Previous results [28] have shown how critical the im-
plementation of the Axial-Vector Ward-Takahashi identity is when 
solving the Dyson-Schwinger and Bethe–Salpeter equations in or-
der to fulfil the soft pion theorem in covariant computations. We 
certainly expect the same thing to be true within the overlap of 
LFWFs framework. If the covariant extension of the DGLAP GPD 

3 The even parity of D+ , manifest from Eq. (15 )’s r.h.s. because ϕ(x) is symmetric 
under the exchange x → 1 − x, implies ∫ 1

0 dαD+ = 0 as the immediate consequence 
of its vanishing after integration over its support [−1, 1].

obtained from the appropriate 2-body LFWFs is not sufficient to 
fully reconstruct the ERBL in the kinematic limit of the soft pion 
theorem, the terms D+ and D− should be eventually adjusted in 
any case to supply a full description of the pion.

4. The Nakanishi-based Bethe–Salpeter model

We have described a systematic and fully general prescription 
aimed at obtaining a hadron GPD, on its entire kinematic domain, 
from the knowledge of the relevant LFWFs. The prescription is 
essentially based on accommodating the overlap of these LFWFs 
within the DD representation. The pion has been so far used as a 
simple guiding case and, still in what follows, we will consider a 
specific pion GPD model, the one introduced in Ref. [18] in order 
to illustrate this prescription. Owing to the simplicity of the pion 
model, we will produce fully algebraic results and, very specially, 
show how to deal with the soft pion theorem and the ambiguities 
in the covariant extension from DGLAP to ERBL kinematic domains.

The basic ingredient for the GPD construction is the LFWF 
obtained by the appropriate integration and projection of the 
pion Bethe–Salpeter wave function resulting from the algebraic 
model described in [42] and based on its Nakanishi represen-
tation [26 ,27]. In this model developed in euclidean space, the 
quark propagator is S(q) = [−iγ ·q + M]/[q2 + M2]and the Bethe–
Salpeter amplitude is given by:
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where ρ(ω, z) is the Nakanishi weight modelled as ρ(ω, z) =
δ(ω)(1 − z2) and N is an overall normalization constant. The 
Bethe–Salpeter wave function is obtained as S(q)&π (q, P )S(q − P ). 
As shown in Ref. [18] (the details of the computation can be found 
therein), there are two contributions to the LFWF, the helicity-0:
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with j = 1, 2 and where M is the model mass parameter intro-
duced above. One can readily notice that our LFWFs do not show 
any (x, k⊥) correlations, and can be written as f (x) g(k2

⊥). This 
is due to our simple choice of the Nakanishi weight in Eq. (20), 
ρ(ω, z). There is no doubt that correlations would arise from a 
proper solution of the BSE. But, despite the lack of correlations, 
this simple algebraic model remains insightful for our exploratory 
work, and illustrates well our extension technique. Proceeding with 
the computations, Eqs. (21), (22) can then be combined into the 
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2 , which extends 
Eq. (2) for the GPD of our special π+ case. One is thus left with:

At leading twist, the pion has one GPD:

The light front overlap representation requires N-N particle LFWF overlap for DGLAP region 
and N-N+2 for ERBL region. In the  DGLAP region (1>=|x|>=|ξ|):

There are two regions, ERBL and DGLAP region, named after their evolution in limiting cases

ERBL DGLAPDGLAP
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GPD at zero skewedness
4

III. GPDS AT ZERO SKEWNESS

The leading twist spin-independent quark GPD for a
meson M is defined in light-cone gauge as

H
q
M (x, � , t) = 1

2

π
dz

�

2�
e
ixP+z�

⌦
P + �

2

���̄q(� z�
2 )�+�q( z�2 )

�� P � �
2

↵
,
(12)

where the gauge link is unity [2, 20], x denotes the par-
ton’s averaged light-cone momentum fraction, the skew-
ness parameter is � = � �+

2P+ , and the momentum trans-

fer t = �2 = � 4� 2m2
M+�

2
T

1�� 2 . The physical support region

of H
q
M (x, � , t) is given by x 2 [�1, 1], � 2 [�1, 1] and

t < � 4� 2m2
M

1�� 2 . GPDs have two distinct domains, where

|x | < |� | is the Efremov–Radyushkin–Brodsky–Lepage
(ERBL) region and 1 > |x | > |� | is the Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi (DGLAP) region, following the
pattern of their evolution with scale µ, which is implicit
in the definition Eq. (12).

To calculate H
q
M (x, � , t) we employ its light front over-

lap representation. This result can be obtained using
light-cone quantization and expanding the quark field in
Eq. (12) using the canonical field mode expansion and
the hadron state ket using a Fock state expansion. Con-
tracting all the operators, one gets the light front overlap
representation of the GPD in terms of LFWFs. However,
in the ERBL region this requires the overlap of LFWFs
with di↵erent numbers of constituents, i.e., N and N + 2.
The ERBL region is therefore inaccessible in a leading
Fock state expansion due to the lack of a 4-particle Fock
state.

In a meson M with active quark f , the GPD H
f
M (x, � , t)

in the DGLAP region can be expressed as the overlap of
LFWFs [19, 20, 38, 50]

H
f
M (x, � , t) =

π
d
2kT

(2� )3
⇥
�
⇤
0(x̂, k̂T )�0(x̃, k̃T )

+ k̂T · k̃T � ⇤
1(x̂, k̂T )�1(x̃, k̃T )

⇤
, (13)

with x̂ =
x��
1�� , x̃ =

x+�
1+� , k̂T = kT + 1�x

1��
�T
2 and k̃T =

kT � 1�x
1+�

�T
2 . For the active anti-quark h̄, the GPD can

be obtained analogously as [20]

H
h
M (x, � , t) = �

π
d
2kT

(2� )3
⇥
�
⇤
0(x̂ 0, k̂

0
T )�0(x̃ 0, k̃

0
T )

+ k̂
0
T · k̃ 0

T�
⇤
1(x̂ 0, k̂

0
T )�1(x̃ 0, k̃

0
T )
⇤
,
(14)

with x̂
0 = 1 � �x��

1�� , x̃
0 = 1 � �x+�

1+� , k̂
0
T = kT + 1+x

1��
�T
2

and k̃
0
T = kT � 1+x

1+�
�T
2 . In the absence of an accessi-

ble ERBL region we limit our study to zero skewness,
H
q
M (x, 0, t), which still allows access to many interesting

FIG. 3. H
q
M (x, � = 0, t) for pion and kaon at the model scale

(µ0 = 520MeV). The green surface (upper at x ⇠ 0.8) is for
the s quark in kaon, blue surface (lower at x ⇠ 0.8) is for the
ū in kaon, and the red surface (middle at x ⇠ 0.8) is for pion.

quantities, e.g., the collinear PDF f
q
M (x), the impact pa-

rameter dependent parton distributions (IPDs) �
q
M (x,b2

T ),
the electromagnetic form factor (EMFF) FM (t), and the

gravitational form factor (GFF) Aq,M
2,0 (t).

We present the GPDs at the model scale µ0 in Fig. 3.
For the ease of comparison, for antiquark h̄ we plot
�Hh

M (�x, 0, t). Since the GPD reduces to the PDF at
zero momentum transfer, i.e., Hq(x, 0, 0) = f

q(x). The
initial scale µ0 is determined as follows (see Ref. [33]): At
the scale of Q2 = 4 GeV2, the �N Drell-Yan analysis gives
averaged momentum fraction of valence quark distribu-
tion in pion as 2 hxi� = 0.47(2) [51, 52] and the lattice
QCD gives 2 hxi� = 0.48(4) [53]. To match this result, we
determine µ0 = 0.52 GeV, so that hxi� = 0.5 at µ0 reduces
to hxi� = 0.24 at 2 GeV by NLO DGLAP evolution.

The two-dimensional Fourier transform of Hq
M (x, 0,�2

T )
gives the IPDs:

�
q
M (x,b2

T ) =
π

d
2�T

(2� )2 H
q
M (x, 0,��2

T ) e
ibT ·�T , (15)

The IPDs have the interpretation of parton distributions
in the transverse plane [5, 6], with x the light-cone momen-
tum fraction and bT the transverse separation between
the active parton and the origin of transverse center of
momentum RT . In the valence picture with two con-
stituents, RT = x rT ,1 + (1 � x)rT ,2, where rT ,i is the
transverse position of ith quark. The impact parameter
is then bT ,1 = rT ,1 � RT . In Fig. 4 we plot �

q
M (x,b2

T ) for
pion and kaon. An important observation is that as x

becomes larger, the width of the curves shrinks and the
quark distributions are more spatially localized. When
x ! 1, the width is vanishingly small and the quark stays
near the center of transverse momentum. This can be
understood since when one quark carries almost all of
the light-cone momentum (as x ! 1), then RT ! rT ,1
and bT ,1 ! 0, namely, this quark defines the transverse
center of momentum. Alternatively, if we consider the
overlap representation of �(x,b2

T ) in terms of LFWFs in
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FIG. 4. Upper panel: IPDs �
q
M (x,b2T ) for the valence quarks in

pion and kaon at model scale (µ0 = 520 MeV). The line styles
are indicated in the plot. For each quark distribution with
same line style, the three peaks from left to right correspond
to x = 0.98, x = 0.7 and x = 0.3 respectively. Lower panel:
The �

(0)(b2T ) of pion and kaon as defined in Eq. (17).

the coordinate space, that is [29, 54]

�(x,b2
T ) =

1

(1 � x)2
’
�1,�2

�����̃�1,�2

✓
x,

bT
1 � x

◆ ����
2

. (16)

where �̃�1�2
(x, r ) =

Ø
d
2k eikr ��1�2

(x,k),1 then, as x ! 1
the impact parameter bT must approach zero so bT /(1�x)
doesn’t go large.

Flavor symmetry breaking e↵ects are clearly evident in
Fig. 4. Typically, at smaller x (x = 0.3) there is more ū

quark than s quark in kaon over the whole bT range. At
larger x (x = 0.7) the situation is reversed. This suggests
the s quark is more likely distributed near the center of
kaon while the u quark is more spread out. We can also
look at

�
(0)(b2

T ) =
π 1

0
dx �(x,b2

T ), (17)

1 Recall that ��1�2 (x , kT ) has been defined in Eq. (1) and can be

easily be related to �0(x , k2
T ) and �1(x , k2

T ) via comparison with
Eqs. (2)–(4).

which characterizes the quark density at transverse sep-
aration bT . As shown in the lower panel of Fig. 4,
the s quark in kaon favors small bT and ū quark has
a broader distribution, with d quark in pion lying in
between. If we look at their mean-squared bT , i.e.,

hb2
T i =

Ø
d
2bTb

2
T
Ø 1

0
dx�(x,b2

T ), we find hb2
T i�u = 0.11 fm2,

hb2
T iKs = 0.08 fm2, and hb2

T iKu = 0.13 fm2. It’s worth men-
tioning here that in our calculation, the current quark

mass we used are m
� =2GeV
u/d = 4.3MeV and m

� =2GeV
s =

110MeV. This big mass di↵erence gets weakened by the
DCSB, and the di↵erence in the u/d and s quark distri-
butions is no longer so dramatic.

Further, on can define the valence-like distribution
�
(0)
� (b2

T ) = �
(0)
q (b2

T ) � �
(0)
q̄ (b2

T ), where q is the active quark.

Because �
(0)
q̄ (b2

T ) vanishes at the model scale in our lead-

ing Fock state calculation, then �
(0)
� (b2

T ) is equivalent to

�
(0)
q (b2

T ) plotted in Fig. 4. However, it’s worth mentioning

that �
(0)
� (b2

T ) is independent of the renormalization scale,
because DGLAP evolution conserves the quark number
density at every slice of bT . Equivalently, H (x, 0, t) evolves
independently of t [5]. Thus the lower panel of Fig. 4
can also be viewed as the valence (anti-)quark spatial
distribution at any scale.

IV. ELECTROMAGNETIC AND
GRAVITATIONAL FORM FACTORS

The electromagnetic form factors of a hadron provide
important information about its spatial structure. The
pion and kaon have one electromagnetic form factor de-
fined by

’
q=u ,d

⌦
M(p 0)

��eq � µq (0)��M(p)
↵
= (p 0µ + pµ )FM (t), (18)

with �
µ
q (x) = �̄q(x)� µ

�q(x) and t = �Q2 = (p 0 � p)2. The
pion and kaon electromagnetic form factors are also given
by the lowest x-weighted moment of their GPDs

FM (t) =
π 1

�1
dx

h
eu H

u
M (x, � , t) + ed Hd

M (x, � , t)
i
, (19)

which is independent of skewness � because of the polyno-
miality property of the GPDs. The result for the pion’s
electromagnetic form factor obtained using Eq. (19) is
given by the dashed curve in Fig. 5. In general we find
that our result overshoots the data for all Q2, and also the
full DSE calculation that uses the Bethe-Salpeter wave
function and a dressed quark-photon vertex to directly
calculate the pion’s form factor [45]. As we will explain,
the origin of these discrepancies is naturally explained by
the Fock state truncation and the LFWF normalization
condition [see Eq. (11)].

At (very) large Q
2 perturbative QCD predicts that the

Fourier Transform
IPD GPD

x=0.3

x=0.7

x=0.98

All distributions peek at the center of impact 
parameter (note the plot has been multiplied with bT)

 heavier s quark is more localized as compared to 
light u/d quark, but not too much.

   is scale-
independent, since H(x,0,ΔT) evolution is 
independent of ΔT.

hb2T i =
Z

d2bT b
2
T

Z
dx⇢(x, b2T )

<latexit sha1_base64="F+2P1rw6S07pQVFwH83Z6c13yPc="></latexit>

hb2T i⇡u = 0.11fm2, hb2T iKs = 0.08fm2, hb2T iKu = 0.13fm2

<latexit sha1_base64="BWPAPrXW3rBY8ST/qTk2Xf1ryvM="></latexit>

⇢(0)(bT ) = ⇢(0)q (bT )� ⇢(0)q̄ (bT )

<latexit sha1_base64="6b+Xb+MCw23mhIl/pGaLxZRenu0="></latexit>
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FIG. 5. Electromagnetic form factor F (t) of pion in the
space-like region. The data is the from NA7 Collaboration [55]
(red empty circle) and Je↵erson Lab [56] (green filled square).
The dashed (blue) curve is based on the unmodified GPD in
Eq. (13), while the solid (black) curve uses a GPD with a
dressed operator to simulate higher Fock states, see Eq. (24).
The dotted curve is the full rainbow-ladder DSE result from
Ref. [45] that including an infinite tower of Fock states.

pion’s electromagnetic form factor behaves as [57]

9Q0 >�QCD | Q2
F� (Q2)

Q2>Q2
0⇡ 16� CF �s (Q2)w2

� , (20)

where w� is the x
�1 moment of parton distribution ampli-

tude (PDA) w� =
Ø 1

0
dx x

�1
�� (x,Q2), where in this case

the PDA �� (x,Q2) is normalized at the scale of Q2 such
that

�� (x,Q2) =
π
k2
T Q2

d
2kT

16�3
�0(x,k2

T ), (21)

π 1

0
dx �� (x,Q2) = f�

2
p

3
, (22)

where f� = 92.4 MeV is the pion’s electroweak decay con-
stant. The DSE calculation based on Eqs. (20)–(22) has
been presented in Ref. [46] and the result is reasonable.
However, the LFWF normalized by Eq. (22) is signifi-
cantly smaller than required due to our normalization
condition in Eq. (11). The (very) large Q2 behavior of the
pion’s electromagnetic form factor is dominated by the
leading Fock state, and thus the deviation at large Q2 can
be explained by the normalization condition. Similarly,
in a full calculation some of the charge of the pion will
be carried by the higher Fock states, which would reduce
the normalization of the leading Fock state and thereby
bring our result into much better agreement with data
at large Q

2. However, we see from Fig. 5 that the Q
2 de-

pendence of the LFWF result of the full DSE result does
begin to track each other—only di↵ering by a constant
normalization—as Q2 become large. This indicates the
onset of the dominance of the leading Fock state.

The deviation in the low Q
2 region is also easy to under-

stand. The normalized condition for the LFWFs is such

that F� (0) = 1. However, as mentioned higher Fock states
will carry some charge, which, if included, would cause
a modification to the form factor at low to intermediate
Q

2. In addition, there are important contributions that
can dramatically change the charge radius but do not im-
pact the charge. Traditionally, these are associated with
vector meson dominance (VMD) contributions. VMD
is associated with meson poles in the time-like region,
where for the pion electromagnetic form factor the rho
pole is the most important. In the LFWF approach these
VMD contributions can only be obtained by including
an infinite tower of Fock states. This is natural in the
complete DSE calculation with a dressed quark-photon
vertex, but very challenging in a rigorous light-front ap-
proach. It is therefore not possible for a leading Fock
state calculation—that is intimately connected to under-
lying QCD dynamics—to give a good description of the
electromagnetic form factor for all Q2.

With the pion’s (Breit-frame) charge radius defined by

r
2
c = �6

@ F� (Q2)
@Q2

����
Q2=0

, (23)

we obtain from the leading Fock state calculation rc =
0.41 fm, which is significantly smaller than the experiment
value of rc = 0.67 fm [58]. A similar result was also found
using a relativistic constituent quark model based on
an e↵ective qq̄ Hamiltonian [59], where a pion charge
radius of rc = 0.45 fm was found [60]. In this work the
authors argue that the discrepancy with experiment can
be corrected by taking into account the constituent quark
charge radius, which is analogous to dressing the vertex
as in a full DSE calculation.

In a complete DSE calculation the operator that defines
the GPDs would be dressed. Such a calculation from
the DSE is very di�cult and beyond the scope of this
work. However, we can use an analogous calculation for
this dressed operator from the NJL model to obtain a
qualitative measure of the impact of a dressed vertex, or
equivalently higher Fock states. Using a dressed operator
that defines the GPD from the NJL model [61], we find
in the impulse approximation that our leading Fock state
DSE result is modified such that

H
0
d (x, 0, t) = Hd (x, 0, t) + � (x) F̃� (t)

π 1

�1
d�HI=1(�, 0, t), (24)

where

HI=1(x, 0, t) = Hu (x, 0, t) � Hd (x, 0, t), (25)

and the modified GPD at zero skewness is denoted by
H

0
d (x, 0, t). Note, in the pion Hu (x, 0, t) can be obtained

from Hd (x, 0, t) by charge symmetry. The second term on
the right hand side of Eq. (24) comes from the dressing of
the quark vertex in the impulse approximation and pro-
vides an additional contribution (see App. B for details).
Using H

0(x, 0, t), we get the solid curve in Fig. 5 and a
charge radius rc = 0.59 fm, with the low to intermediate
�t region also significantly improved.

EMFF

Z

dxH(x, 0,� 2
)

<latexit sha1_base64="NpbHgKPsXZ4OYjQywPbw1XSr6r0=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSxChVKSYtFdi7rosoJ9QBPLZDJph04ezEykJdaNX+A/uHGhiFv/wp0f4T84fSy09cCFwzn3cu89TsSokIbxpS0sLi2vrKbW0usbm1vb+s5uXYQxx6SGQxbypoMEYTQgNUklI82IE+Q7jDSc3sXIb9wSLmgYXMtBRGwfdQLqUYykktr6vkUDCV3Yh5VsP2fkrEvCJLopHLf1jJE3xoDzxJySTLmUL5buvh+rbf3TckMc+ySQmCEhWqYRSTtBXFLMyDBtxYJECPdQh7QUDZBPhJ2MPxjCI6W40Au5KnXPWP09kSBfiIHvqE4fya6Y9Ubif14rlt6ZndAgiiUJ8GSRFzMoQziKA7qUEyzZQBGEOVW3QtxFHGGpQkurEMzZl+dJvZA3T/LFK5XGOZggBQ7AIcgCE5yCMqiAKqgBDO7BE3gBr9qD9qy9ae+T1gVtOrMH/kD7+AGXLJgM</latexit>

Z
dxxH(x, 0,�2)

<latexit sha1_base64="JITG+usEdZ6esJVjP2EGUw/MCCo=">AAACA3icbVDLSgMxFM34rPU16k43wSJUKGWmWHTXoi66rGAf0BlLJpNpQzMPkoy0jAU3foA/4caFIm79CXd+hP9g+lho6wmBwzn3cu89TsSokIbxpS0sLi2vrKbW0usbm1vb+s5uXYQxx6SGQxbypoMEYTQgNUklI82IE+Q7jDSc3sXIb9wSLmgYXMtBRGwfdQLqUYykktr6vkUDCV3YV6+S7eeMnHVJmEQ3heO2njHyxhhwnphTkimX8sXS3fdjta1/Wm6IY58EEjMkRMs0ImkniEuKGRmmrViQCOEe6pCWogHyibCT8Q1DeKQUF3ohV19tNFZ/dyTIF2LgO6rSR7IrZr2R+J/XiqV3Zic0iGJJAjwZ5MUMyhCOAoEu5QRLNlAEYU7VrhB3EUdYqtjSKgRz9uR5Ui/kzZN88UqlcQ4mSIEDcAiywASnoAwqoApqAIN78ARewKv2oD1rb9r7pHRBm/bsgT/QPn4A1yWYuA==</latexit>
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The modification term in Eq.(24) has many inter-
esting properties. For instance, its dressing function
F̃� (t) vanishes at t = 0, so the PDF is unchanged, i.e.,
H

0(x, 0, 0) = H (x, 0, 0). While at non-vanishing t , the mod-
ification term proportional to � (x) is infinitely negative.
Its integration over x yields a finite suppression to the
electromagnetic form factor. In terms of the overlap
representation, this correction can only be obtained by
including an infinite tower of Fock states containing q̄q

pairs. The modification in Eq. (24) brings no change to
�(x,b2

T ) for x > 0 and all the results in last section still
hold.

The higher moments of the GPD at � = 0, i.e.,

π 1

�1
dx x

m
H

0q(x, 0, t) = A
q
m+1,0(t)

���
m�1
, (26)

are not a↵ected by this modification term, as a conse-
quence of the � (x). Among these moments, Aq

2,0(t) con-
tributes partially to the pion’s gravitational form fac-
tor �2(t), defined through the matrix element of energy-
momentum tensor for one-pion states [62]

h�+(p 0)|�µ� (0)|�+(p)i = 1

2
[P µ

P
��2(t)

+ (�µ�q2 � q
µ
q
� )�1(t)]. (27)

with P = p + p 0, q = p
0 � p and t = q

2. The form factor
�2(t) is scale independent, while its individual quark
contributions Aq

2,0(t) evolve with scale. At the low model

scale, the valence picture gives �2(t) =
Õ
q A

q
2,0(t). As

the scale increases, Aq
2,0(t ; µ) evolves accordingly to the

evolution of the GPD.

In Fig. 6 we show pion’s A
d ;�
2,0 (t) (solid red curve) at

the scale of 2GeV and the curve lies within the lattice
simulation data. It is closer to the NJL model result
(blue dashed) [63] than to the spectral quark model [63].
We have illustrated the kaon GFFs Aū;K

2,0 (t) and A
s ;K
2,0 (t) as

well.

A light-cone energy radius can be defined in relation to
the gravitational form factor A2,0(t), and is given by [65]

⌦
r
2
E ,LC

↵
= �4

@A2,0(Q2)
@Q2

����
Q2=0

, (28)

which can be contrasted with an analogous light-cone
charge radius defined by

⌦
r
2
c ,LC

↵
= �4 @ F (Q2)/@Q2

��
Q2=0

.

For the pion we find r
u ,�
c ,LC = 0.331 fm and r

u ,�
E ,LC = 0.185,

meaning the energy radius is about 56% smaller that the
light-cone charge radius. Both these radii will be impacted
by higher Fock states, however, based on vector meson
dominance the light-cone charge radius will increase more
because it is impacted by the � meson pole whereas the
light-cone energy radius is impacted by spin-2 mesons
which are much heavier and further from Q

2 = 0. There-
fore, we predict that ru ,�E ,LC/r

u ,�
c ,LC = 0.56 is an upper bound

on this ratio. For the kaon we find light-cone charge radii
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FIG. 6. The quark part of gravitational form factor A
q
2,0(t)

in pion and kaon. The solid, dash-dash-dotted and dotted
curves are obtained by our DSEs-based LFWFs. All the other
curves and data are taken from [63] .The dot-dashed curve
is the spectral quark model prediction and the dashed curve
is by NJL model with the Pauli-Villars (PV) regularization.
The data is from lattice QCD [64].

FIG. 7. The unpolarized TMD f
d
1;� (x,k

2
T ) of pion (upper

panel) and f
s
1;K (x,k

2
T ) of kaon (lower panel).

of ru ,Kc ,LC = 0.358 fm and r
s ,K
c ,LC = 0.281 fm, and light-cone

energy radii of ru ,KE ,LC = 0.192 fm and r
s ,K
E ,LC = 0.173 fm. In

each case the s quark has a smaller extent than the u

quark.

GFF (quark part) 

Lattice data by D. Brommel  
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III. GPDS AT ZERO SKEWNESS

The leading twist spin-independent quark GPD for a
meson M is defined in light-cone gauge as

H
q
M (x, � , t) = 1

2

π
dz

�

2�
e
ixP+z�

⌦
P + �

2

���̄q(� z�
2 )�+�q( z�2 )

�� P � �
2

↵
,
(12)

where the gauge link is unity [2, 20], x denotes the par-
ton’s averaged light-cone momentum fraction, the skew-
ness parameter is � = � �+

2P+ , and the momentum trans-

fer t = �2 = � 4� 2m2
M+�

2
T

1�� 2 . The physical support region

of H
q
M (x, � , t) is given by x 2 [�1, 1], � 2 [�1, 1] and

t < � 4� 2m2
M

1�� 2 . GPDs have two distinct domains, where

|x | < |� | is the Efremov–Radyushkin–Brodsky–Lepage
(ERBL) region and 1 > |x | > |� | is the Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi (DGLAP) region, following the
pattern of their evolution with scale µ, which is implicit
in the definition Eq. (12).

To calculate H
q
M (x, � , t) we employ its light front over-

lap representation. This result can be obtained using
light-cone quantization and expanding the quark field in
Eq. (12) using the canonical field mode expansion and
the hadron state ket using a Fock state expansion. Con-
tracting all the operators, one gets the light front overlap
representation of the GPD in terms of LFWFs. However,
in the ERBL region this requires the overlap of LFWFs
with di↵erent numbers of constituents, i.e., N and N + 2.
The ERBL region is therefore inaccessible in a leading
Fock state expansion due to the lack of a 4-particle Fock
state.

In a meson M with active quark f , the GPD H
f
M (x, � , t)

in the DGLAP region can be expressed as the overlap of
LFWFs [19, 20, 38, 50]

H
f
M (x, � , t) =

π
d
2kT

(2� )3
⇥
�
⇤
0(x̂, k̂T )�0(x̃, k̃T )

+ k̂T · k̃T � ⇤
1(x̂, k̂T )�1(x̃, k̃T )

⇤
, (13)

with x̂ =
x��
1�� , x̃ =

x+�
1+� , k̂T = kT + 1�x

1��
�T
2 and k̃T =

kT � 1�x
1+�

�T
2 . For the active anti-quark h̄, the GPD can

be obtained analogously as [20]

H
h
M (x, � , t) = �

π
d
2kT

(2� )3
⇥
�
⇤
0(x̂ 0, k̂

0
T )�0(x̃ 0, k̃

0
T )

+ k̂
0
T · k̃ 0

T�
⇤
1(x̂ 0, k̂

0
T )�1(x̃ 0, k̃

0
T )
⇤
,
(14)

with x̂
0 = 1 � �x��

1�� , x̃
0 = 1 � �x+�

1+� , k̂
0
T = kT + 1+x

1��
�T
2

and k̃
0
T = kT � 1+x

1+�
�T
2 . In the absence of an accessi-

ble ERBL region we limit our study to zero skewness,
H
q
M (x, 0, t), which still allows access to many interesting

FIG. 3. H
q
M (x, � = 0, t) for pion and kaon at the model scale

(µ0 = 520MeV). The green surface (upper at x ⇠ 0.8) is for
the s quark in kaon, blue surface (lower at x ⇠ 0.8) is for the
ū in kaon, and the red surface (middle at x ⇠ 0.8) is for pion.

quantities, e.g., the collinear PDF f
q
M (x), the impact pa-

rameter dependent parton distributions (IPDs) �
q
M (x,b2

T ),
the electromagnetic form factor (EMFF) FM (t), and the

gravitational form factor (GFF) Aq,M
2,0 (t).

We present the GPDs at the model scale µ0 in Fig. 3.
For the ease of comparison, for antiquark h̄ we plot
�Hh

M (�x, 0, t). Since the GPD reduces to the PDF at
zero momentum transfer, i.e., Hq(x, 0, 0) = f

q(x). The
initial scale µ0 is determined as follows (see Ref. [33]): At
the scale of Q2 = 4 GeV2, the �N Drell-Yan analysis gives
averaged momentum fraction of valence quark distribu-
tion in pion as 2 hxi� = 0.47(2) [51, 52] and the lattice
QCD gives 2 hxi� = 0.48(4) [53]. To match this result, we
determine µ0 = 0.52 GeV, so that hxi� = 0.5 at µ0 reduces
to hxi� = 0.24 at 2 GeV by NLO DGLAP evolution.

The two-dimensional Fourier transform of Hq
M (x, 0,�2

T )
gives the IPDs:

�
q
M (x,b2

T ) =
π

d
2�T

(2� )2 H
q
M (x, 0,��2

T ) e
ibT ·�T , (15)

The IPDs have the interpretation of parton distributions
in the transverse plane [5, 6], with x the light-cone momen-
tum fraction and bT the transverse separation between
the active parton and the origin of transverse center of
momentum RT . In the valence picture with two con-
stituents, RT = x rT ,1 + (1 � x)rT ,2, where rT ,i is the
transverse position of ith quark. The impact parameter
is then bT ,1 = rT ,1 � RT . In Fig. 4 we plot �

q
M (x,b2

T ) for
pion and kaon. An important observation is that as x

becomes larger, the width of the curves shrinks and the
quark distributions are more spatially localized. When
x ! 1, the width is vanishingly small and the quark stays
near the center of transverse momentum. This can be
understood since when one quark carries almost all of
the light-cone momentum (as x ! 1), then RT ! rT ,1
and bT ,1 ! 0, namely, this quark defines the transverse
center of momentum. Alternatively, if we consider the
overlap representation of �(x,b2

T ) in terms of LFWFs in

GPD (zero skewedness)
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GFF is in general agreement with 
lattice simulation.
EMFF overshoots the data.
 A modification mimicking higher 
Fock state effect refines EMFF while 
preserve the GFF simultaneously. 
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Fig. 2. Results for the quark PDF of the pion as function of x from the pure-valence LFWF (a) and the effective-valence LFWF (b), with the two sets of parameters in Table 1
corresponding with the lowest values of χ2

d.o.f. for non-vanishing quark mass. Solid curves: results at the initial scale of the model. Dashed curves: results after NLO evolution 
to Q = 5 GeV. Dashed band: parametrization at Q = 5 GeV from Ref. [67].

Fig. 3. Results for the quark TMD of the pion as function of x and k2
⊥ from the pure-valence LFWF (left) and the effective-valence LFWF (right) with the two sets of parameters 

in Table 1 corresponding with the lowest values of χ2
d.o.f. for non-vanishing quark mass.

correspond to a higher hadronic scale. This is the case when com-
paring the results between the effective-valence and pure-valence 
LFWF with m = 200 MeV and similar values of κ . However, for 
the other quark-mass scenarios we find similar values of Q 0 in the 
two models, which are compensated by much lower values for the 
parameter κ in the case of the effective-valence LFWF. Both the 
values of κ and the initial scale Q 0 differ with respect to [76,77].

3. TMD analysis

3.1. TMD evolution

The unpolarized TMD f1(x, k2
⊥) can be obtained from the fol-

lowing LFWF overlap [46]

f1(x,k2
⊥; Q 0) = 1

16π3 |ψqq/π (x, k⊥) |2, (10)

which reduces to the PDF in Eq. (5) after integration over k⊥ . Us-
ing the expressions in Eqs. (3) and (8), one finds that the TMD in 
both models is a Gaussian distribution in k⊥ , with an x-dependent 
mean square transverse momenta, i.e.

f V
1 (x,k2

⊥; Q 0) = A2

πκ2x(1 − x)
e
− k2

⊥+m2

κ2x(1−x) ,

⟨k2
⊥(x)⟩V = κ2x(1 − x), (11)

f E
1 (x,k2

⊥; Q 0) =
A2 log

(
1
x

)

πκ2(1 − x)2 e
− log

(
1
x

) k2
⊥+m2

κ2(1−x)2 ,

⟨k2
⊥(x)⟩E = κ2(1 − x)2

log(1/x)
, (12)

where k⊥ = |k⊥|. In Fig. 3 we show the results for the TMD in the 
two models, as function of x and k2

⊥ . As in the case of the PDF, 
the pure-valence model is symmetric under the exchange of x →
1 − x, while this symmetry is lost when including effects beyond 
the valence sector in the effective-valence LFWF. The fall-off in k2

⊥
is Gaussian in both models.

The width of the distribution ⟨k2
⊥(x)⟩ is shown as function of 

x in Fig. 4. It is slightly larger in the pure-valence model, with a 
maximum at x = 0.5 and the characteristic symmetric behaviour 
around the maximum. Integrating over x, one obtains ⟨k2

⊥⟩V =
0.023 GeV2. In the case of the effective-valence LFWF the maxi-
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Unpolarized TMD PDF

Holographic QCD(A Bacchetta, et al, PLB2017)

f1,⇡(x,k
2
?) = | "#(x, k

2
?)|2 + k2?| ""(x, k

2
?)|2

TMD overlap representation

7

The modification term in Eq.(24) has many inter-
esting properties. For instance, its dressing function
F̃� (t) vanishes at t = 0, so the PDF is unchanged, i.e.,
H

0(x, 0, 0) = H (x, 0, 0). While at non-vanishing t , the mod-
ification term proportional to � (x) is infinitely negative.
Its integration over x yields a finite suppression to the
electromagnetic form factor. In terms of the overlap
representation, this correction can only be obtained by
including an infinite tower of Fock states containing q̄q

pairs. The modification in Eq. (24) brings no change to
�(x,b2

T ) for x > 0 and all the results in last section still
hold.

The higher moments of the GPD at � = 0, i.e.,

π 1

�1
dx x

m
H

0q(x, 0, t) = A
q
m+1,0(t)

���
m�1
, (26)

are not a↵ected by this modification term, as a conse-
quence of the � (x). Among these moments, Aq

2,0(t) con-
tributes partially to the pion’s gravitational form fac-
tor �2(t), defined through the matrix element of energy-
momentum tensor for one-pion states [62]

h�+(p 0)|�µ� (0)|�+(p)i = 1

2
[P µ

P
��2(t)

+ (�µ�q2 � q
µ
q
� )�1(t)]. (27)

with P = p + p 0, q = p
0 � p and t = q

2. The form factor
�2(t) is scale independent, while its individual quark
contributions Aq

2,0(t) evolve with scale. At the low model

scale, the valence picture gives �2(t) =
Õ
q A

q
2,0(t). As

the scale increases, Aq
2,0(t ; µ) evolves accordingly to the

evolution of the GPD.

In Fig. 6 we show pion’s A
d ;�
2,0 (t) (solid red curve) at

the scale of 2GeV and the curve lies within the lattice
simulation data. It is closer to the NJL model result
(blue dashed) [63] than to the spectral quark model [63].
We have illustrated the kaon GFFs Aū;K

2,0 (t) and A
s ;K
2,0 (t) as

well.

A light-cone energy radius can be defined in relation to
the gravitational form factor A2,0(t), and is given by [65]

⌦
r
2
E ,LC

↵
= �4

@A2,0(Q2)
@Q2

����
Q2=0

, (28)

which can be contrasted with an analogous light-cone
charge radius defined by

⌦
r
2
c ,LC

↵
= �4 @ F (Q2)/@Q2

��
Q2=0

.

For the pion we find r
u ,�
c ,LC = 0.331 fm and r

u ,�
E ,LC = 0.185,

meaning the energy radius is about 56% smaller that the
light-cone charge radius. Both these radii will be impacted
by higher Fock states, however, based on vector meson
dominance the light-cone charge radius will increase more
because it is impacted by the � meson pole whereas the
light-cone energy radius is impacted by spin-2 mesons
which are much heavier and further from Q

2 = 0. There-
fore, we predict that ru ,�E ,LC/r

u ,�
c ,LC = 0.56 is an upper bound

on this ratio. For the kaon we find light-cone charge radii

Rthk

Thamarai

.,

m.g.g.am
.

A

§g. "
mqua mamma

ABBOTT

A2,0
d;π(t), LFWF
A2,0
s;K(t), LFWF
A2,0
u_;K(t), LFWF
A2,0
d;π(t), SQM
A2,0
d;π(t), NJL

0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

-t (GeV2)

A
2,
0(
t)

FIG. 6. The quark part of gravitational form factor A
q
2,0(t)

in pion and kaon. The solid, dash-dash-dotted and dotted
curves are obtained by our DSEs-based LFWFs. All the other
curves and data are taken from [63] .The dot-dashed curve
is the spectral quark model prediction and the dashed curve
is by NJL model with the Pauli-Villars (PV) regularization.
The data is from lattice QCD [64].

FIG. 7. The unpolarized TMD f
d
1;� (x,k

2
T ) of pion (upper

panel) and f
s
1;K (x,k

2
T ) of kaon (lower panel).

of ru ,Kc ,LC = 0.358 fm and r
s ,K
c ,LC = 0.281 fm, and light-cone

energy radii of ru ,KE ,LC = 0.192 fm and r
s ,K
E ,LC = 0.173 fm. In

each case the s quark has a smaller extent than the u

quark.

DSE & LF

Significant strength at low kT , resembles Gaussian form.


 The TMD of kaon is slightly broader than pion.

 Smooth as compared to holographic QCD. 



TMD evolution

µ2 d

dµ2
Ff h(x,~b;µ, ⇣) =

1

2
�f
F (µ, ⇣)Ff h(x,~b;µ, ⇣),

⇣
d

d⇣
Ff h(x,~b;µ, ⇣) = �Df (µ,~b)Ff h(x,~b;µ, ⇣).
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The scale μ is the standard RG scale, with the additional rapidity factorization scale ζ to 
regularize the light-cone divergence arising from Wilson lines. They were usually chosen to 
be the same order of scattering scale.

Renormalization group (RG) equation:
Anomalous Dimension

TMD PDF in the 
coordinate space

Ff h(x,~b;µf , ⇣f ) = exp[

Z

P
(�f

F (µ, ⇣)
dµ

µ
�Df (µ,~b)

d⇣

⇣
)]Ff h(x,~b;µi, ⇣i)
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Solution:

The TMD evolution is more conveniently worked in coordinate space.

!19
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Evolution has a significant effect, leading to 
approximately  an  order  of  magnitude  of 
suppression at small kT , and a broad tail at 
larger kT.  

The  evolved  TMD  PDF  at  smaller  x  is 
significantly  broader  than  that  at  large  x 
(Non-factorizable x and  kT  dependence).

TMD evolution:
quark TMD PDFs

6

�ij(k, P ;S, T ) ⇠ F.T. hPST |  ̄j(0) U[0,⇠]  i(⇠) |PST i|LF

extraction of a quark
not collinear with the proton



!21

"Experimental study of muon pairs produced by 252-GeV pions on tungsten",   Conway, J.S. et al. 
Phys.Rev. D39 (1989) 92-122.

Transverse momentum dependence parameterized by function P(qT;xF ,mμ μ )

Experiment (E615)

Theory

d3�

dx⇡dxNdqT
=

d2�

dx⇡dxN
P (qT ;xF ,mµµ).
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q0 =

p
s

2
(x⇡ + xN )

q3 =

p
3

2
(x⇡ � xN )
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F 1
UU (x1, x2, qT ) =

1

Nc

X

a

e2a

Z
d2k1?d

2k2?�
(2)(qT � k1? � k2?)f

ā
1,⇡(x1, k

2
1?)f

a
1,N (x2, k

2
2?).
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P (qT ;xF ,mµµ) / |qT |F 1
UU (qT ;xF , ⌧)
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TMD formalism:

(leading twist)

offered by DSEs&evolution borrow from global analysis

Examine:

Drell-Yan Process

d3�

dx⇡dxNdqT
/ |qT |F 1

uu(x⇡, xN , qT )
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Our results using two evolution schemes generally agree with E615 measurement. In 
particular, when the non-perturbative sudakov factor goes to zero as suggested by ζ-
prescription at higher order. (The deviation is less than 10%for  xF =0 and 0.25, and 
increases to 30% at most for xF = 0.5. )

 Our calculation also shows the TMD formalism becomes less valid as xF goes larger (also 
in Aurore's talk)

E615:
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The fitting function P (qT ;xF ,mµµ)/qT at xF = 0.0 (red solid), 0.25 (green

solid) and 0.5 (blue solid). The band colored bands are our results based on

b*-prescription, with upper boundary corresponding to g2 = 0.09 and lower

boundary for g0 = 0.0. The dashed lines are obtained following ⇣-prescription
where g2 is found to be consistent with zero at NNLL/NNLO.
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Pion TMD PDF global fit
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Figure 1. The fitted cross section (solid line) of pion-nucleon Drell-Yan as functions of q⊥, com-
pared with the E615 data (full squre), for different xF bins in the range 0 < xF < 0.8. The error
bars shown here include the statistical error and the 16% systematic error.

error bars are also depicted for comparison. As figure 1 demonstrates, a good fit is obtained

at the region xF < 0.8. We also check the theoretical result in the region xF > 0.8. It

turns out that, using the two parameters of the Sudakov form factor for the pion meson, the

theoretical calculation underestimates the experimental data in that region, particularly

when xF > 0.9. Part of the reasons for this is that at large xF region the higher-twist effects
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(Xiaoyu, et al, JHEP2017)
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Figure 3. The transverse spectrum of lepton pair production in the unpolarized pion-nucleon Drell-
Yan process, with an NH3 target at COMPASS. The dashed line is our theoretical calculation using
the extracted Sudakov form factor for the pion TMD PDF. The solid line shows the experimental
measurement at COMPASS.

framework and applying the nonperturbative Sudakov form factor extracted in the pre-

vious section. The COMPASS Collaboration recently reported the measurements on the

transverse-spin-dependent azimuthal asymmetries with three different modulations in the

π−N Drell-Yan process [11], in which a π− beam with Pπ = 190 GeV collides on a NH3 tar-

get (10 protons and 7 neutrons). These asymmetries provide a great opportunity to access

the proton TMD distributions, such as the Sivers function, the transversity and prezelozity

distributions, as well as the pion Boer-Mulders function. Besides the measurement on the

spin asymmetries, the COMPASS collaboration also presented the distribution of dimuon

pairs as a function of the transverse momentum q⊥ of the dimuon, up to q⊥ = 5.4GeV,

which corresponds to the result in the case of an unpolarized target, since the azimuthal

angles are integrated out. The study of the unpolarized cross-section of πN Drell-Yan is

equally important, since it appears in the denominator of various asymmetries. In particu-

lar, the study on the transverse momentum spectrum may also shed light on the unpolarized

TMD distribution of the pion.

We use the following kinematics at COMPASS to calculate the q⊥ distribution of the

dimuon in πN Drell-Yan process

0.05 < xN < 0.4, 0.05 < xπ < 0.9, 4.3 GeV < Q < 8.5 GeV. (4.1)

The differential cross section at COMPASS can be calculated via eq. (3.2) by replacing

the integration limit of Q. As shown in ref. [11], the events of the dimuon production

were measured for different q⊥ bins with an interval of 0.20 GeV. It can be also written

as N = σ × L, where σ is the total cross section and L is the integrated luminosity of

incident hadrons. To cancel the uncertainty of the integrated luminosity, we resort to the
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Experiment
√
s [GeV] Q [GeV] xF Npt corr. err.

Typical

stat. err.

E537 (Q-diff.) 15.3
4.0 < Q < 9.0

in 10 bins
−0.1 < xF < 1.0 60/146 8% ∼ 20%

E537 (xF-diff.) 15.3 4.0 < Q < 9.0
−0.1 < xF < 1.0

in 11 bins
110/165 8% ∼ 20%

E615 (Q-diff.) 21.8
4.05 < Q < 13.05

in 10 (8) bins
0.0 < xF < 1.0 51/155 16% ∼ 5%

E615 (xF-diff.) 21.8 4.05 < Q < 8.55
0.0 < xF < 1.0

in 10 bins
90/159 16% ∼ 5%

NA3
16.8, 19.4

22.9

4.1 < Q < 8.5 y > 0 (?)
— 15% —

4.1 < Q < 4.7 0 < y < 0.4

Table 1. The synopsis on the data used in the work. Npt is the number of points in the data set
after/before the application of TMD factorization cut. Typical statistical error is estimated from
the first 3 points for each (Q, xF)-bin, and presented only for demonstration purposes. The data
for NA3 is available only as a figure (figures 1 and 2 in ref. [39]).

• The ζpert(µ, b) in (2.12) is taken at NNLO (i.e. up to a2s-terms inclusively) [9].

• The ζexact(µ, b) in (2.12) is taken at NNLO (i.e. up to a1s-terms inclusively), see

eqs. (A.6)–(A.9).

• To evaluate expressions for last three points one needs cusp anomalous dimension

and γV anomalous dimension up to a3s-terms and a2s-terms, receptively. They could

be found in [37, 38].

Thus, the computation is done at complete NNLO perturbative accuracy.

3 Comparison to the data

Review of available data. There are three available measurements of transverse

momentum cross-section for pion-induced Drell-Yan process. They were performed by

NA3 [39], E537 [31] and E615 [21] experiments. The measurement by NA3 is presented

only by a plot in ref. [39], and the exact values of data-points and their error-bars are not

available. Therefore, only the visual comparison with NA3 is possible (figure 6). The data

tables for E537 [31] and E615 [21] can be can be found in [40].

Both experiments E537 and E615 have been performed in the same environment at

different energies of the pion beam, Pbeam = 125GeV for E537 and Pbeam = 252GeV

for E615, which corresponds to s = 235.4GeV2 and s = 473.6GeV2, respectively. The

data for both experiments are provided in two alternative binning: differential in xF, or

differential in Q. In table 1, the summary of kinematics for each data set is shown. Let

me mention that both of measurements are made at high values of x1,2. In particular, the

lowest accessible value of xπ is 0.26 (for E537) and 0.18 (for E615).
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Figure 7. (Left) Comparison of theory prediction to the preliminary results of COMPASS [52].
The experimental values are normalized to the theory. Vertical line shows approximate boundary
of TMD factorization approach. (Right) Comparison of unpolarized TMDPDF of d-quark in pion
and proton at x = 0.3.

and conclude that I do not see any possibility to obtain such a significant factor within the

modern TMD factorization framework. There is a possibility that the observed normal-

ization problem has an experimental origin. The comparison of the theory with E537 and

NA3 has not such a problem, but the both experiments have much worse precision, and

could not seriously compete with E615. A similar problem has been recently observed in

the TMD spectrum of proton-nucleus Drell-Yan process in [22].

Within the nearest future, the COMPASS collaboration will repeat the analysis of the

pion-induced Drell-Yan process in the similar kinematics regime. The announcement of

this measurement is presented in [52]. In figure 7 (left) the comparison of the preliminary

COMPASS data to the prediction made with Vpion19 is shown. Hopefully, the COMPASS

measurement will resolve the problem with the normalization of E615 experiment.

A particularly engaging point to study pion TMDPDF is its comparison to proton

TMDPDF since the confined motion of partons in mesons and baryons could be funda-

mentally different. However, any principal difference is not observed (at moderate x), see

figure 7 (right). At high-x distributions looks different, but no conclusion can be done since

high-x region is not well controlled both experimentally and theoretically. Definitely, the

future measurements of TMD cross-section for pion-induced Drell-Yan process will shed

light to this side of parton dynamics.
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A Special null-evolution line at large b

The concept of the special null-evolution line plays the central role in ζ-prescription. The

ζ-prescription, the double evolution and properties of TMD evolution have been elaborated

in ref. [9], where I refer for further details. In this appendix, I derive the (perturbative)
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Conclusions

-

In a realistic calculation, the spin-parallel LFWF of pion and kaon contributes 
considerably, exhibiting a highly relativistic system. How about higher Fock 
state?

LFWFs can be obtained from Bethe-Salpeter wave functions, rendering a 
variety of  light front distributions calculable. 

Higher Fock state  appears necessary in a realistic calculation for EMFF. While 
PDF, GFF and TMD are in general agreement with existing calculations and/or data.  
Resolved by mimicking higher Fock states. 




