Light Meson Structure from a Basis Light-front Approach

Xingbo Zhao * with
Jiangshan Lan*, Chandan Mondal *, Shaoyang Jia†, James P. Vary \dagger

* Institute of Modern Physics, CAS, Lanzhou, China

Outline

- Basis Light-front Quantization approach
- Application to π / K
- Valence Fock section only $|q \bar{q}\rangle$
- With one dynamical gluon $|q \bar{q}\rangle+|q \bar{q} g\rangle$
- Observables sensitive to valence contribution in π / K
- Summary and Future Plan

Hamiltonian Formalism

- Schrödinger equation universally describes different physics:

$$
H|\psi\rangle=E|\psi\rangle
$$

- Wave functions encode full information of the system

Proton density

Neutron - proton density

Light-front Quantization

[Dirac, 1949]

Equal time quantization	Light-front quantization
$t \equiv x^{0}$	$t \equiv x^{+}=x^{0}+x^{3}$
x^{1}, x^{2}, x^{3}	$x^{-}=x^{0}-x^{3}$,
P^{0}, \vec{P}	$x^{\perp}=x^{1,2}$
$i \frac{\partial}{\partial t}\|\varphi(t)\rangle=H\|\varphi(t)\rangle$	$i \frac{\partial}{\partial x^{+}}\left\|\varphi\left(x^{+}\right)\right\rangle=\frac{1}{2} P^{-}\left\|\varphi\left(x^{+}\right)\right\rangle$
$P^{0}=\sqrt{m^{2}+\vec{P}^{2}}$	$P^{-}=P^{0}-P^{3}$,

- Not just a coordinate transformation.
- New theory !!!

Advantages:

- Frame-independent wave functions
- Simple vacuum structure
- No square root in Hamiltonian P^{-}

Basis Light-front Quantization

- Nonperturbative eigenvalue problem

$$
P^{-}|\beta\rangle=P_{\beta}^{-}|\beta\rangle
$$

- P^{-}: light-front Hamiltonian
- $|\beta\rangle$: mass eigenstate
- P_{β}^{-}: eigenvalue for $|\beta\rangle$
- Evaluate observables for eigenstate

$$
O \equiv\langle\beta| \widehat{O}|\beta\rangle
$$

- Fock sector expansion
- Eg. $\quad|\boldsymbol{\pi}\rangle=a|q \bar{q}\rangle+b|q \bar{q} g\rangle+c|q \bar{q} g g\rangle+d|q \bar{q} q \bar{q}\rangle+\ldots$.
- Discretized basis
- Transverse: 2D harmonic oscillator basis: $\Phi_{n, m}^{b}\left(\vec{p}_{\perp}\right)$.
- Longitudinal: plane-wave basis, labeled by k.
- Basis truncation:

$$
\begin{gathered}
\sum_{i}\left(2 n_{i}+\left|m_{i}\right|+1\right) \leq N_{\max } \\
\sum_{i} k_{i}=K
\end{gathered}
$$

$N_{\text {max }}, K$ are basis truncation parameters.

Application to Light Mesons

$$
|\boldsymbol{\pi} / \boldsymbol{K}\rangle=\left.|q \bar{q}\rangle\right|_{1} ^{1}+\cdots
$$

PDF with QCD Evolution

$$
H_{\mathrm{LF}}=\underbrace{\frac{\vec{k}_{\perp}^{2}+m_{q}^{2}}{x}+\frac{\vec{k}_{\perp}^{2}+m_{\bar{q}}^{2}}{1-x}}_{\text {LF Kinetic energy }}+\underbrace{\kappa^{4} x(1-x) \vec{r}_{\perp}^{2}}_{\text {Transverse }}-\underbrace{\frac{\kappa^{4}}{\left(m_{q}+m_{\bar{q}}\right)^{2}} \partial_{x}\left(x(1-x) \partial_{x}\right)}_{\text {Longitudinal }}+H_{\mathrm{NJL}}^{\text {eff }}
$$

- Diagonalizing $H_{\mathrm{LF}} \Longrightarrow$ LF wavefunctions \Rightarrow PDFs

The moments of pion valence quark PDF

$$
\left\langle x^{n}\right\rangle=\int_{0}^{1} d x x^{n} f_{v}^{\pi / K}\left(x, \mu^{2}\right), n=1,2,3,4 .
$$

$\langle\boldsymbol{x}\rangle$ @ $\mathbf{4} \mathbf{G e V}^{\mathbf{2}}$	Valence	Gluon	Sea
BLFQ-NJL	$\mathbf{0 . 4 8 9}$	$\mathbf{0 . 3 9 8}$	$\mathbf{0 . 1 1 3}$
[Ding et. al., BSE model 2019']	$0.48(3)$	$0.41(2)$	$0.11(2)$

Agree with other results

Drell-Yan cross section

[S. D. Drell and T.-M. Yan, PRL (1970)]
[T. Becher et al, JKEP07(2008)030]; [P. C. Barry et al, PRL121(2018)152001]
[nCTEQ 2015]
[C. Anastasiou et al, PRL91(2003)182002]

$$
\pi^{-} \text {Nucleus } \rightarrow \mu^{+} \mu^{-} \mathrm{X}_{\Sigma}
$$

$$
\frac{m^{3} d^{2} \sigma}{d m d Y}=\frac{8 \pi \alpha^{2}}{9} \frac{m^{2}}{s} \sum_{i j} d x_{1} d x_{2} \tilde{C}_{i j}\left(x_{1}, x_{2}, s, m, \mu_{f}\right) f_{i / \pi}\left(x_{1}, \mu_{f}\right) f_{j / N}\left(x_{2}, \mu_{f}\right)
$$

Agree with experimental data (FNAL E615, 326, 444, \& CERN NA3, WA-039).

πN Drell-Yan cross section

$$
\begin{gathered}
u_{v a l}^{\pi^{+}=} u^{\pi^{+}}-\bar{u}^{\pi^{+}} \quad d_{v a l}^{\pi^{-}}=d^{\pi^{-}}-\bar{d}^{\pi^{-}} \\
u_{v a l}^{\pi^{+}}=\bar{d}_{v a l}^{\pi^{+}}=\bar{u}_{v a l}^{\pi^{-}}=d_{v a l}^{\pi^{-}} \\
\bar{u}_{s e a}^{\pi}=u_{s e a}^{\pi}=\bar{d}_{s e a}^{\pi}=d_{\text {sea }}^{\pi}=\bar{s}_{\text {sea }}^{\pi}=s_{s e a}^{\pi} \\
\sigma_{\pi^{+} N^{\sim} \sim}^{9}\left(u_{v s}^{\pi} \bar{u}_{s}^{N}+\bar{u}_{s}^{\pi} u_{v s}^{N}\right)+\frac{1}{9}\left(\bar{d}_{v s}^{\pi} d_{v s}^{N}+d_{s}^{\pi} \bar{d}_{s}^{N}+\bar{s}_{s}^{\pi} s_{s}^{N}+s_{s}^{\pi} \bar{s}_{s}^{N}\right) \\
\sigma_{\pi^{-} N^{\sim}} \sim \frac{4}{9}\left(u_{s}^{\pi} \bar{u}_{s}^{N}+\bar{u}_{v s}^{\pi} u_{v s}^{N}\right)+\frac{1}{9}\left(\bar{d}_{s}^{\pi} d_{v s}^{N}+d_{v s}^{\pi} \bar{d}_{s}^{N}+\bar{s}_{s}^{\pi} s_{s}^{N}+s_{s}^{\pi} \bar{s}_{s}^{N}\right)
\end{gathered}
$$

Target with nucleus of $A=2 Z$:

$$
\sigma_{\pi^{-} N}-\sigma_{\pi^{+}{ }_{N}} \sim \frac{4}{9} \bar{u}_{v}^{\pi} u_{v}^{N}-\frac{1}{9} \bar{d}_{v}^{\pi} d_{v}^{N} \xrightarrow{\text { for } C \text { target }} \sim \frac{3}{9} \bar{u}_{v}^{\pi} u_{v}^{N} \quad \text { contribution from Valence }
$$

Table 6: PYTHIA Drell-Yan cross sections in LO, for the dimuon mass range $4.3<M_{\mu \mu} /\left(\mathrm{GeV} / c^{2}\right)<8.5$.

COMPASS+\|AMBER	 proposal
beam and target $\sigma_{\mathrm{LO}}^{\mathrm{DY} \rightarrow \mu \mu}(\mathrm{nb})$ $\pi^{+} p$ 0.026 $\pi^{+} n$ 0.039 $\pi^{-} p$ 0.106 $\pi^{-} n$ 0.051	

$$
\Sigma_{\text {val }}^{\pi D}=-\sigma^{\pi^{+} D}+\sigma^{\pi^{-} D} \quad \Sigma_{\text {sea }}^{\pi D}=4 \sigma^{\pi^{+} D}-\sigma^{\pi^{-} D}
$$

BLFQ-NJL result

- Only consider the valence Fock sector.
- Smaller sea contribution compared to JAM global fit
- Valence Fock sector not enough?

$$
|\pi / K\rangle=|q \bar{q}\rangle_{1}^{\prime}+\cdots
$$

$$
|\boldsymbol{\pi} / \boldsymbol{K}\rangle=a|q \bar{q}\rangle+b|q \bar{q} g\rangle_{1}^{\prime}+\cdots
$$

Interaction Part of Hamiltonian

$$
\begin{aligned}
|\boldsymbol{\pi} / \boldsymbol{K}\rangle & =a|q \bar{q}\rangle+b|q \bar{q} g\rangle_{1}^{\prime}+c|q \bar{q} q \bar{q}\rangle+\ldots \\
H_{\mathrm{eff}}= & \frac{\overrightarrow{k_{\perp}^{2}}+m_{q}^{2}}{x}+\frac{\overrightarrow{k_{\perp}^{2}}+m_{\bar{q}}^{2}}{1-x}+\kappa^{4} x(1-x) \vec{r}_{\perp}^{2} \\
& -\frac{\kappa^{4}}{\left(m_{q}+m_{\bar{q}}\right)^{2}} \partial_{x}\left(x(1-x) \partial_{x}\right)+\boldsymbol{H}_{\text {int }}
\end{aligned}
$$

$H_{\text {int }}$	$\|q \bar{q}\rangle$	$\|q \bar{q} g\rangle$
$\langle q \bar{q}\|$	$\cdots \sigma^{6}$	$\sigma^{\sigma^{6^{6}}}$
$\langle q \bar{q} g\|$	$\ldots \sigma^{\sigma^{6}}$	$\mathbf{0}$

Pion PDF with high Fock sector

Ratio of cross section with high Fock sector

$$
|\pi\rangle=|q \bar{q}\rangle_{1}^{1}+\cdots \Rightarrow|\pi\rangle=a|q \bar{q}\rangle+b|q \bar{q} g\rangle_{1}^{1}+\cdots
$$

With $|q \bar{q} g\rangle$, the contribution from sea quark increases, but still not enough?
$|q \bar{q} q \bar{q}\rangle$ sector is needed?

$$
|\pi\rangle=a|q \bar{q}\rangle+b|q \bar{q} g\rangle+c|q \bar{q} \bar{q} q\rangle+\cdots
$$

Valence contribution

Observables discriminating the valence distribution between π / K

KN Drell-Yan cross section

Relations between cross sections and the valence PDFs

$$
\begin{gathered}
11 \frac{3}{4} \frac{\sigma_{K^{-} c}-\sigma_{K^{+} c}}{\sigma_{\pi^{-} c}-\sigma_{\pi^{+} c}} \sim \overline{\boldsymbol{u}}_{v}^{K} / \overline{\boldsymbol{u}}_{v}^{\boldsymbol{\pi}} \\
\frac{\sigma_{\pi^{-} c}-\sigma_{K^{+} c}}{\sigma_{\pi^{-}-}-\sigma_{\pi^{+} c}} \sim \frac{4}{3}+\frac{4 \bar{u}_{S}^{C}\left(u_{v}^{\pi}-u_{v}^{K}\right)+\overline{\boldsymbol{d}}_{\boldsymbol{S}}^{C}\left(d_{v}^{\pi}-s_{v}^{K}\right)}{3 \bar{u}_{v}^{\pi} u_{v}^{C}}
\end{gathered}
$$

The detail expressions for the cross sections

$$
\begin{aligned}
& \sigma_{\pi^{+} N \sim} \sim \frac{4}{9}\left(u_{v s}^{\pi} \bar{u}_{s}^{N}+\bar{u}_{s}^{\pi} u_{v s}^{N}\right)+\frac{1}{9}\left(\bar{d}_{v s}^{\pi} d_{v s}^{N}+d_{s}^{\pi} \bar{d}_{s}^{N}+\bar{s}_{s}^{\pi} s_{s}^{N}+s_{s}^{\pi} \bar{s}_{s}^{N}\right) \\
& \sigma_{\pi^{-} N^{\sim} \sim} \sim \frac{4}{9}\left(u_{s}^{\pi} \bar{u}_{s}^{N}+\bar{u}_{v s}^{\pi} u_{v s}^{N}\right)+\frac{1}{9}\left(\bar{d}_{s}^{\pi} d_{v s}^{N}+d_{v s}^{\pi} \bar{d}_{s}^{N}+\bar{s}_{s}^{\pi} s_{s}^{N}+s_{s}^{\pi} \bar{s}_{s}^{N}\right) \\
& \sigma_{K^{+} N \sim} \sim \frac{4}{9}\left(u_{v s}^{K} \bar{u}_{s}^{N}+\bar{u}_{s}^{K} u_{v s}^{N}\right)+\frac{1}{9}\left(\bar{s}_{v s}^{K} s_{s}^{N}+s_{s}^{K} \bar{s}_{s}^{N}+\bar{d}_{s}^{K} d_{v s}^{N}+d_{s}^{K} \bar{d}_{s}^{N}\right) \\
& \sigma_{K^{-} N \sim}^{\sim} \frac{4}{9}\left(u_{s}^{K} \bar{u}_{s}^{N}+\bar{u}_{v s}^{K} u_{v s}^{N}\right)+\frac{1}{9}\left(\bar{s}_{s}^{K} s_{s}^{N}+s_{v s}^{K} \bar{s}_{s}^{N}+\bar{d}_{s}^{K} d_{v s}^{N}+d_{s}^{K} \bar{d}_{s}^{N}\right)
\end{aligned}
$$

$$
\pi^{ \pm} N \xrightarrow{\text { Drell-Yan }} \mu^{+} \mu^{-} X
$$

$$
K^{ \pm} N \xrightarrow{\text { Drell-Yan }} \mu^{+} \mu^{-} X
$$

$$
\sigma_{\pi^{-} N}-\sigma_{\pi^{+} N^{\prime}} \sim \frac{4}{9} \bar{u}_{v}^{\pi} u_{v}^{N}-\frac{1}{9} \bar{d}_{v}^{\pi} d_{v}^{N} \xrightarrow{\text { for } C \text { target }} \sim \frac{3}{9} \bar{u}_{v}^{\pi} u_{v}^{C} \quad \sigma_{K^{-} N}-\sigma_{K^{+} N^{\prime}} \sim \frac{4}{9} \bar{u}_{v}^{K} u_{v}^{C}
$$

(1) $\frac{3}{4} \frac{\sigma_{K^{-}} c^{-} \sigma_{K^{+} c}}{\sigma_{\pi^{-} c^{-}} \sigma_{\pi^{+} c}} \sim \bar{u}_{v}^{K} / \bar{u}_{v}^{\pi}$

With decreasing the range of invariant mass of leptonic pair, our results tend to agree with extracted data.

Second relation

(2) $\frac{\sigma_{\pi}{ }^{-}-\sigma_{K^{+}}}{\sigma_{\pi^{-}-}-\sigma_{\pi^{+} C}} \sim \frac{4}{3}+\frac{4 \bar{u}_{s}^{C}\left(u_{v}^{\pi}-u_{v}^{K}\right)+\bar{d}_{s}^{C}\left(d_{v}^{\pi}-s_{v}^{K}\right)}{3 \bar{u}_{v}^{\pi} u_{v}^{C}}$

How much difference for $\left\langle x_{v}\right\rangle$ between valence u and valence s in the kaon?

$$
<x_{v}^{u}>:<x_{v}^{s}>\sim 2: 3
$$

distributions calculated in the framework of the Dyson-Schwinger Equations (DSE)

Phys. Rev. D93 (7) (2016) 074021

DSE: momentum carried by $\bar{s}^{K}>u^{K}$ u^{K} and u^{π} are almost same

[Lan, Mondal, Jia, Zhao, Vary, PRD101,034024(2020)]

BLFQ-NJL: momentum carried by valence quarks of pion and kaon are comparable

Second relation

(2) $\frac{\sigma_{\pi^{-} c}-\sigma_{K^{+} c}}{\sigma_{\pi^{-} c^{-}} \sigma_{\pi^{+} c}} \tau \frac{4}{3}+\frac{4 \bar{u}_{s}^{C}\left(u_{v}^{\pi}-u_{v}^{K}\right)+\bar{d}_{s}^{C}\left(d_{v}^{\pi}-s_{v}^{K}\right)}{3 \bar{u}_{v}^{\pi} u_{v}^{C}}$

$$
\left(u_{v}^{\pi}-u_{v}^{K}\right) \sim \mathbf{0} \text { within } 0.2<x<0.4
$$

- Large difference between d_{v}^{π} and s_{v}^{K}
- Small difference between d_{v}^{π} and s_{v}^{K}

Second relation $<4 / 3$
Second relation $>4 / 3$

Conclusions

- Basis Light-front Quantization: nonperturbative approach to relativistic bound states
- Light-front Hamiltonian \Longrightarrow Wavefunction \Longrightarrow Observables
- Systematically expandable by including higher Fock sectors

$$
|\boldsymbol{\pi} / \boldsymbol{K}\rangle=a|q \bar{q}\rangle+b|q \bar{q} g\rangle+c|q \bar{q} q \bar{q}\rangle+\ldots
$$

Future Plans

- Meson: heavy quarkonia \Rightarrow heavy-light meson \Rightarrow strange meson
- Baryon: nucleon \Rightarrow excited nucleon \Rightarrow baryons with s, b, c quarks...
- Expansion in Fock sectors:
$-\mid$ Baryon $\rangle=|q q q\rangle+|q q q g g\rangle+|q q q q \bar{q}\rangle+\cdots$
$-\mid$ Meson $\rangle=|q \bar{q}\rangle+|q \bar{q} g\rangle+|q \bar{q} q \bar{q}\rangle+\cdots$
- \mid Exotic hadrons $\rangle=|q \bar{q} q \bar{q}\rangle+\cdots$
- Evaluation of observables: FF, PDF, DY cross section, PDA, GPD, TMD, GTMD...
- Tremendous amount of possibilities...
Thank you!

