UNIVERSITY OF COPENHAGEN

Status report for IS602

Submitted to the ISOLDE and Neutron Time-of-Flight Experiments Committee

Cu^I, Ag^I, Cd^{II}, Hg^{II}, and Pb^{II} binding to biomolecules studied by Perturbed Angular Correlation of γ-rays (PAC) spectroscopy

Spokesperson: Lars Hemmingsen, University of Copenhagen, Denmark February 5, 2020, INTC Meeting, CERN

UNIVERSITY OF COPENHAGEN

Research progress Bacterial metal ion sensor proteins

Giedroc and Arunkumar Dalton Trans. 2007, 29, 3107

In E. coli Cu^I and Ag^I is controlled by CueR

CueR metal binding: How are mono- and divalent metal ions discriminated?

UNIVERSITY OF COPENHAGEN

CueR metal binding: How are mono- and divalent metal ions discriminated?

Research progress - ongoing projects

- Sensor proteins CueR, ArsR, Attila Jancso, Uni of Szeged, Hungary
- Zinc-hooks & DNA repair Artur Krezel, Marek Luczkowski, Uni of Wroclaw, Poland
- γ-Crystallins and cataract of the eye Liliana Quintanar, Cinvestav, Mexico
- **De novo designed proteins** Vincent L. Pecoraro, Uni of Michigan, USA
- The HAH1 Cu(I) transporter David Hufmann, Uni of Western Michigan, USA

Difficulties encountered

- ¹¹¹Ag
 - Implantation into ice failed, activity mainly on sample holder
 - Implantation into and extraction from polyethylene failed (activity remained in polyethylene)
 - Alternative production (at ILL) worked

- ^{68m}Cu (not done within IS602)
 - Implantation into Cu₂O demonstrated that the electric quadrupole moment of the relevant nuclear state is small [Fenta et al. EPL 115 (2016) 62002] combined with short half life of intermediate state
 - => measurement of NQIs in biomolecules will be difficult

Conclusions

- Metal ion specificity for the CueR metal ion sensor protein explored & published (^{199m}Hg PAC)
- Several ongoing projects, some of which will be completed with the remaining 9¹/₂ shifts
- ¹¹¹Ag and ^{68m}Cu abandoned (for now)
- Focus for remaining 9½ shifts mainly on ^{199m}Hg PAC spectroscopy, with ^{111m}Cd and ^{204m}Pb as alternative isotopes (reply to TAC question)

University of Szeged, Hungary

Attila Jancso

Béla Gyurcsik,

Ria K. Balogh

Uniwersytet

Wrocławski

Flemming H.

Larsen

CERN

Karl

Johnston

Christensen

199192

Juliana

Schell

Peter W. Thulstrup

Joao

G.M. Correia

Collaborations

COPENHAGEN

Vincent L. Pecoraro

Liliana Quintanar

Niels J.

Funding

Bundesministerium für Bildung und Forschung

Danish Agency for Science Technology and Innovation

Ministry of Science Technology and Innovation

Metal ion transfer between proteins: The Cu(I) binding protein HAH1

CueR metal binding: How are mono- and divalent metal ions discriminated?

By recruiting auxiliary ligands for divalent metal ions, disrupting the functional protein structure

