

ConVAE Results

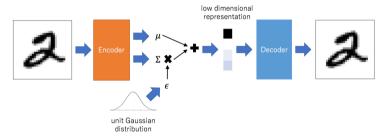
Breno Orzari

Sprace

- □ Variational Autoencoder (VAE)
- $\hfill\square$ Sparse MNIST Dataset, Motivation and Goal
- $\hfill\square$ Sparse Reconstruction Loss Term
- □ MNIST Superpixels Dataset
- Jets Dataset
- □ Latest Results

Variational Autoencoder (VAE)

 \Box A Variational Autoencoder is a neural network that has the following structure:

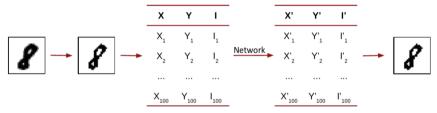


□ Its main feature is the capability of generating new outputs through the encoding of the training inputs into a low dimensional representation

- □ The cost function is given by two terms:
 - The reconstruction loss term and a KL divergence

Sparse MNIST Dataset, Motivation and Goal

The sparse MNIST dataset takes only the 100 most intense pixels from the standard MNIST dataset digits:



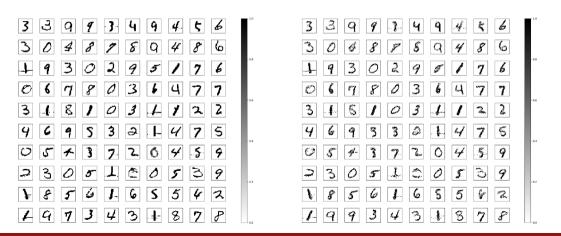
- □ What is fed into the network is a matrix that has the position (x, y) and the intensity (I) of those pixels
- □ The motivation to use this dataset comes from the particle detectors calorimeters:
 - A particle signal in a calorimeter is given by its position (η, ϕ) and its transverse momentum (p_T)
- \square The goal is to build a ConVAE capable of generating sparse MNIST digits

The first step was to test a different reconstruction loss term to be applied in the sparse data:

$$L_{rec} = \sum_{i} \min \left[d_E(x, \hat{x}_i) \right]^2 + \sum_{i} \min \left[d_E(x_i, \hat{x}) \right]^2$$
(1)

- □ It gets the distance between the closest output pixel to a given input pixel and sums with the distance between the closest input pixel to a given output pixel, of every input/output pixels of an image
- Only considering pixels positions for now (the intensities different than 0 were set to be 1.0)

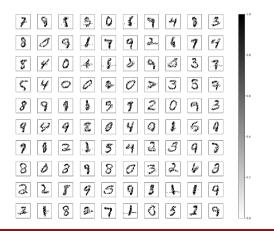
□ Reconstruction of training images



□ Reconstruction of test images



□ Generation of images



- Only 25 pixels with intensities greater than 0
- □ Very sparse
- $\hfill\square$ Using only the digit 8
 - The idea would be to train other networks for other digits

	贫	Ø		20 ⁰⁰⁰		Ø	ð	Ş	$\mathcal{D}_{\mathcal{M}}$	- 25
19 19	$\widehat{\mathcal{O}}_{\mathcal{V}}$			8	X		ŝ	32	dia?	
j. Je	X	$\phi_{i}^{(j)}$		1.4		S.	197 300		di ta	- 20
20° 200	200 752	23	209 5.5	3	J.	ŝ	82	200		
$q_{\rm p}^{(\prime)}$	0% (%)	12	8	8	$= \sum_{i=1}^{n} e_{i}$	$\frac{(N_{B}^{*})_{ij}}{(N_{B}^{*})}$	a an		85	- 15
800 100 100			Ş	$\mathbb{R}^{\mathcal{Y}}_{\mathbb{Z}}$	$\frac{Y_{i_1i_2}^{(n)}}{\langle i_1i_2\rangle}$			30 10	$\langle \hat{c} \rangle$	
$\mathcal{N}_{\mathcal{N}}^{\mathcal{N}}$				$e^{\beta^{j\prime}}$	(C).(3)			$\boldsymbol{\boldsymbol{\beta}}_{\boldsymbol{\beta}}^{(0)}$		- 10
$\sum_{i=1}^{n} i^{i}$	8		$\sum_{i=1}^{N}$		$\sum_{\substack{i=1,\dots,N\\i=1,\dots,N\\i=1}}^{i-1} (A_i)$		Ż			
8		$\frac{d_{nk}^{(i)}}{d_{nk}}$								-5
				est.	$\mathbb{X}_{\mathbb{C}}$					

- □ Test two different approaches
 - Suggested by a member of the group:

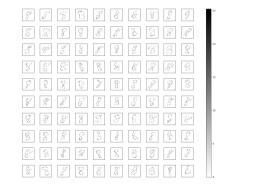
$$L_{rec} = \sum_{i} \min \left[d_E(x_i, \ \hat{x}) \right]^2 + \sum_{i} \min \left[d_E(x, \ \hat{x}_i) \right]^2 + \sum_{i} (I_i - \hat{I}_{\hat{k}})^2 + \sum_{i} (I_k - \hat{I}_i)^2$$
(2)

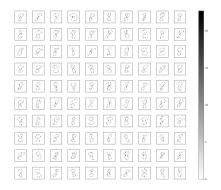
- x = (x, y) and $\hat{x} = (\hat{x}, \hat{y})$ are the positions of input and output pixels respectively; • d_E is the euclidean distance;
- I and \hat{I} are the intensities of input and output pixels respectively;
- $\hat{k} = argmin \ [d_E(x_i, \ \hat{x})]^2$ and $k = argmin \ [d_E(x, \ \hat{x}_i)]^2$;
- Use the pixel intensity as the third axis of a 3D space:

$$L_{rec} = \sum_{i} \min \left[d_E(p_i, \ \hat{p}) \right]^2 + \sum_{i} \min \left[d_E(p, \ \hat{p}_i) \right]^2$$
(3)

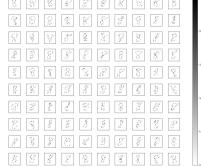
o p = (x, y, I) and $\hat{p} = (\hat{x}, \hat{y}, \hat{I})$ are input and output pixels features respectively;

□ Reconstruction of training images: first approach

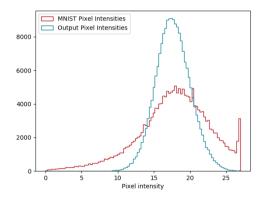




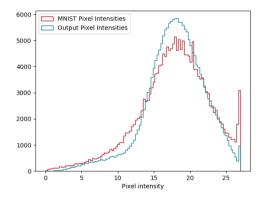
Reconstruction of training images: second approach



 $\hfill\square$ Pixel intensity comparison: first approach



□ Pixel intensity comparison: second approach

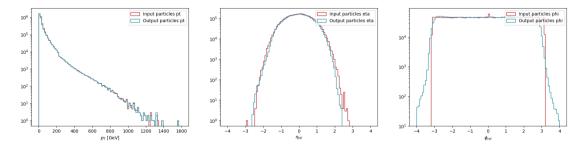


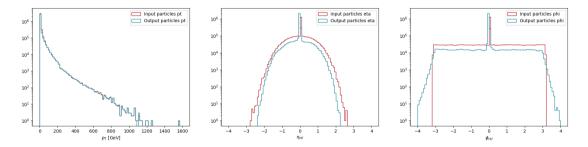
□ 5 categories of jets: gluons, quarks, W bosons, Z bosons and top jets;

- □ Each jet is a list of particles (30p, 50p, 100p or 150p), with their respective p_T , η and ϕ , ordered by decreasing p_T ;
- □ The goal is to train a ConVAE on this dataset to be able to generate jets;
- \Box The loss function being used is:

$$L_{rec} = \sum_{i} \min \left[d_E(p_i, \ \hat{p}) \right]^2 + \sum_{i} \min \left[d_E(p, \ \hat{p}_i) \right]^2$$
(4)

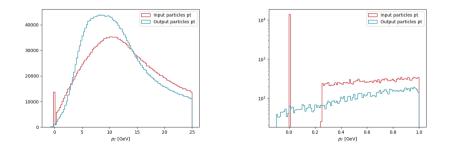
• where $p = (p_T, \eta, \phi)$ and $\hat{p} = (\hat{p_T}, \hat{\eta}, \hat{\phi})$ are input and output particles features respectively, and d_E is the Euclidean distance;



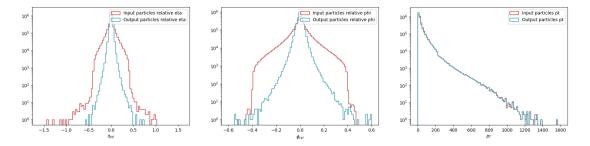


Latest Results

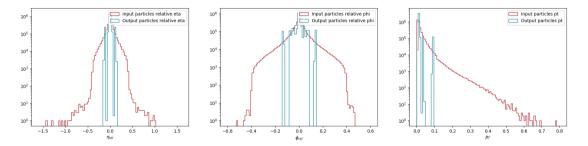
- □ Three problems appeared:
 - ghost particles have p_T , η and ϕ are zero \rightarrow we could pad them away from the particles in the jets;
 - how to handle the periodicity of $\phi \rightarrow$ use the relative quantities η_{rel} and ϕ_{rel} ;
 - low p_T reconstruction (images below);



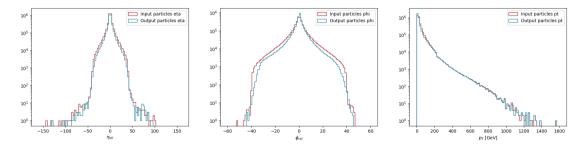
30p relative features: no changes in input



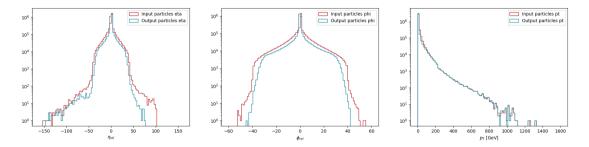
30p relative features: dividing p_T by 2000



30p relative features: multiplying η_{rel} and ϕ_{rel} by 100

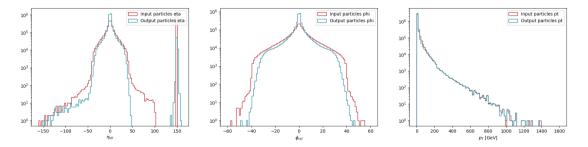


100p relative features: multiplying η_{rel} and ϕ_{rel} by 100, without padding

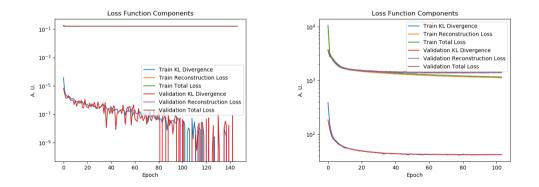


100p relative features: multiplying η_{rel} and ϕ_{rel} by 100, with padding

100p gluon jets



Loss plots



Backup

Neural Network for the jets dataset

- □ In the Conv layers: kernel = (1,5) ((3,5) only in input and output layers), stride = (1), padding = (0,1); the order is *channels* × *rows* × *columns* (also for ConvTranspose)
- □ No dropout or pool (for now)
- \Box ReLU activation function after all Conv and ConvTranspose (the output is an exception), the first dense layer, and all dense layers that appear after the latent vector

