WP14.5

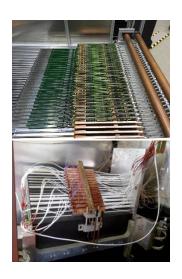
Mechanical & Thermal tools for Innovative Calorimeters

AIDA-2020 WP14 Face to Face meeting 13/02/2020

WP14.5 - Task 2 Compact and highly efficient Cooling Systems

2.1 Cooling system to test thermal modelling of large CF (carbon fiber) structures (ECAL - LPSC)2.2 Cooling system for low power calorimeter readout electronics (AHCAL - DESY)

The development of a cooling system for low power calorimeter readout electronics is based on design close to those of the ILD innovative calorimeters @ ILC



Deliverables 14.8 (June 2018) / Large leak-less System, thermal model

- > Construction of a real size water cooling circuit for both calorimeters
 - Demonstrators and results

HCAL: (Stainless Steel absorber stack structures +...)
Cooling system for the full EUDET stack
(40 active layers of 2*2 HBUs)
Thermal coupling & system parameters

ECAL: (CFRP+W structures + Silicon detectors) full size leak-less cooling-loop on 3 levels (13m-10m-9m)

Task 2-1

ECAL: towards ILD - cooling developments (LPSC)

➤ Location of the cooling station (summer 2019)

(possibility to install it on the moving platform)

 Demonstration and performance of the full size leak-less cooling loop on 3 levels

Leakless-Cooling station can operate on the ILD platform

Julien Giraud										
	Channel	Name	Unit	Range	Location	Flow	Experimental	Simulation	Simulation	Simulation
	LEAK LESS COOLING						Real test	Loop 1	Loop 2	£ doo7
	1	Q1	I/min	3 - 60	Outlet pump	12	13.42			
	2	Q2	l/min	0.08 - 20	loop 1	4	4	4		
	3	Q3	I/min	0.08 - 20	loop 2	4	4		4	
	4	Q4	I/min	0.08 - 20	loop 3	4	4			4
	5	Pr	m Bars	- 1000 / 3000	Tank pressure		-750	-500	-600	-600
	6	Pd	m Bars	- 1000 / 3000	Starting pressure		1079	765	1515	1515
	7	Pr	m Bars	- 1000 / 3000	Return Pressure		-613			
Basse	8	P1b	m Bars	- 1000 / 3000	Pression ligne 1 basse		44	-120		
	9	P1m	m Bars	- 1000 / 3000	Pression ligne 1 milieu		-610	-790		
	10	P1h	m Bars	- 1000 / 3000	Pression ligne 1 haute		-337	-320		
Milieu	11	P2b	m Bars	- 1000 / 3000	Pression ligne 2 basse		-55		-180	
	12	P2m	m Bars	- 1000 / 3000	Pression ligne 2 milieu		-466		-570	
	13	P2h	m Bars	- 1000 / 3000	Pression ligne 2 haute		-459		-600	
Haute	14	P3b	m Bars	- 1000 / 3000	Pression ligne 3 basse		-262			-380
	15	P3m	m Bars	- 1000 / 3000	Pression ligne 3 milieu		-690			-720
	16	P3h	m Bars	- 1000 / 3000	Pression ligne 3 haute		-575			-600

Real dimensions detector / zone of tests

Maximum elevation between ground and ECAL top is 13m

Task 2-1 ECAL: towards ILD - cooling developments (LPSC)

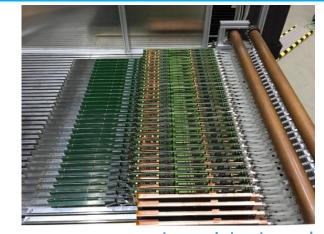
- ➤ Test of a Polarographic probe (for dissolved oxygen) (summer 2019)
 - To determine the rapidity of leak detection
 (first results : not convincing evidence of operation)
 => Goal: insert directly in cooling return-lines
 - Effort at LPSC definitively limited by available engineering person power

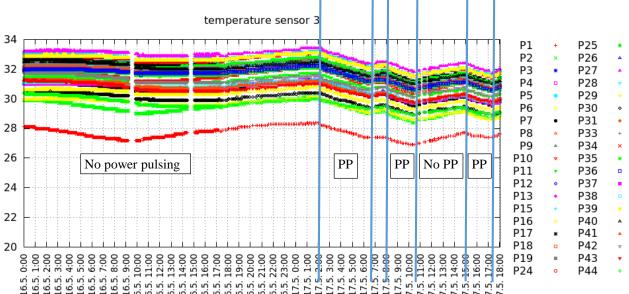
Julien Giraud

Integration Polarographic probe : OK

Control Interface: OK

No continuation (LPSC not involved in AIDA++)

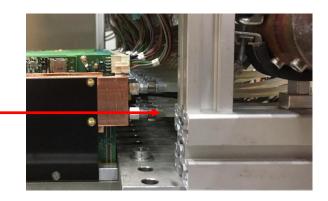



Task 2-2 AHCAL: Cooling system for low power calorimeter readout electronics

AHCAL: (Stainless Steel absorber stack structures +...)

➤ EUDET stack equipped with 38 active layers of 2*2 HBUs

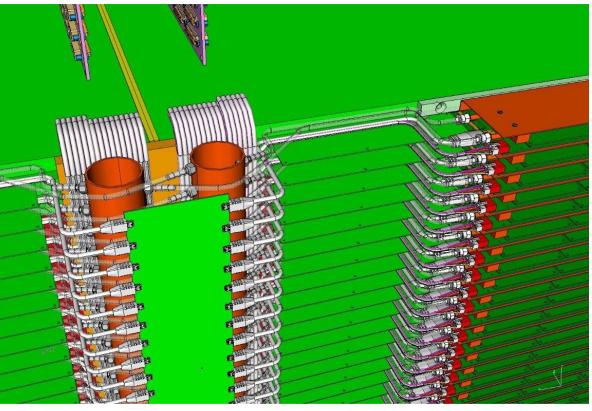
- allows test of system aspects (e.g. distribution of cooling water between layers)
- several testbeams at CERN SPS with prototype in 2018, so reliable cooling essential
 - stay with the previous over-pressure system
 - system parameters like pipe diameters are already designed for leak-less system, so experience gained with this prototype will be valuable lesson for leak-less system
- Reliable operation during all periods with and without power pulsing
 - 2 weeks + 1 week AHCAL stand-alone + 2 weeks combined with CMS HGCAL prototype
- documented in D14.8 report



AHCAL: Status and Plans

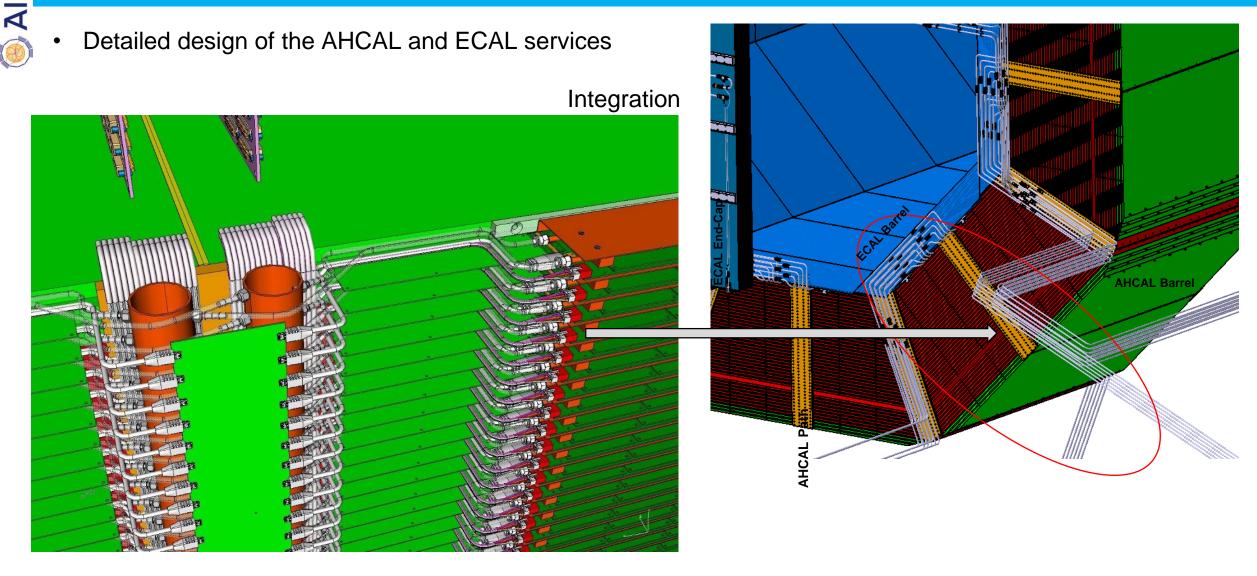
- Cooling system for 40-layer testbeam prototype
 - Successfully operated in several beam tests
 - Next steps:
 - At the moment cooling plates are thermally decoupled from absorber to understand cooling of interface boards
 - Replace by thermally conductive material and understand influence of absorber
- > Thermal test with full layer
 - Horizontal steel structure for 3 full layers exists
 - assembled electronics for first large layer (3*6 HBUs)
 - Final mechanics (~2 m long casettes) not yet available
- Adaptations for leakless system
 - Flexible cooling pipes need to be replaced by rigid ones
 - Each cooling plate needs a valve to regulate the flow
 - Figure 1 Tests with different configurations (horizontal / vertical)
- ➤ Effort at DESY strongly limited by available engineering person power and development objectives should be concentrated on electronics within AIDAinnova





AHCAL/ECAL services – updates

Detailed design of the AHCAL and ECAL services



AHCAL/ECAL services integration

WP 14.5-2 – Outlook on relevant publications

Overview on the publications since the beginning of AIDA2020:

Common running of calorimeter prototypes /

Krüger, K. (DESY)

AIDA-2020-D14.5.- Geneva: CERN, 2018 AIDA-2020, 14.5 Fulltext: 5.PDF;

Large leak-less system, thermal model /

Grondin, D. (CNRS-LPSC); Krüger, K. (DESY); Giraud, J. (CNRS-LPSC) AIDA-2020-D14.8.- Geneva: CERN, 2018 AIDA-2020, 14.8 Fulltext: 8.PDF;

Design of cooling systems for tungsten / carbon fibre and for hadron calorimeter structures /

Grondin, D. (CNRS-LPSC); Krüger, K. (DESY); Giraud, J. (CNRS-LPSC) AIDA-2020-MS31.- Geneva: CERN, 2016 AIDA-2020, 31 Fulltext: PDF;

CALICE Si/W ECAL: Endcap structures and cooling system /

<u>Grondin, D.</u> (LPSC, Grenoble); <u>Giraud, J.</u> (LPSC, Grenoble); <u>Hostachy, J.-Y</u>. (LPSC, Grenoble)

The next major project of particle physics will be the International Linear Collider: a linear accelerator in which electrons and positrons will collide with energies of 500 to around 1000 billion electronvolts. [...] arXiv:1702.03770. - 2017. - 12 p. Preprint - Full text

No publication since the last Annual Meeting in Oxford

WP14.5 - Task 2 Compact and highly efficient Cooling Systems

Contributions and outlooks on the future including AIDA++ (AIDAinnova):

- > AHCAL
 - > Cooling system worked well and cooled the detector interfaces reliably
 - Further analysis of the data to perform
 - hardware is back at DESY, so further tests possible, but very little person power
 - Developments will be concentrated on <u>electronics</u> within AIDAinnova

- **ECAL**: the work on the cooling station will stop in 2020 no involvement in AIDAinnova, but for FCC-ee?
 - Except for Cooling network of a real size large End-Cap module (full network on rear side of a module)
 - > If necessary: Test of the compatibility of the cooling system with the SL-Board developed at IJCLab

