

Very short status on activities in Task 14.3.1: Infrastructure for Silicon Calorimeters

Vincent Boudry

École polytechnique, Palaiseau

Publications

ELSEVIER

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Volume 950, 11 January 2020, 162969

Beam Test (DAQ → see dedicated presentation)

- DESY-2017-06:
 - on FEV10/11: NIM A accepted
 - Beam test performance of the highly granular SiW-ECAL technological prototype for the ILC
 - on log slab: VCI conf. paper published (NIMA)
 - Update presented at CHEF-2019 on S/N ratios
- DESY-2019-07
 - LCWS proceedings (in prep) + CHEF'19 presentations
 - FEV13: timing perf.
 - FEV-COB: first commissioning

Development and test of the chip-on-board PCB solution for the SiW-ECAL of the ILD.

Preparation and operation of SiW-ECAL technological prototype for DESY test beam 2019

Beam test performance of the highly granular SiW-ECAL technological prototype for the ILC

K. Kawagoe ^a, Y. Miura ^a, I. Sekiya ^a, T. Suehara ^a, T. Yoshioka ^a, S. Bilokin ^{b, 1}, J. Bonis ^b, P. Cornebise ^b, A. Gallas ^b, A. Irles ^b, $^{\circ}$ $^{\bowtie}$, R. Pöschl ^b, F. Richard ^b, A. Thiebault ^b, D. Zerwas ^b, M. Anduze ^c, V. Balagura ^c, V. Boudry ^c, J-C. Brient ^c ... D. Jeans ^h

⊞ Show more

https://doi.org/10.1016/j.nima.2019.162969

Get rights and content

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment

Available online 17 September 2019, 162732
In Press, Corrected Proof (?)

ILD silicon tungsten electromagnetic calorimeter first full scale electronic prototype

Frédéric Magniette ^A ⊠, Jérôme Nanni, Rémi Guillaumat, Marc Louzir, Marc Anduze, Evelyne Edy, Oleksandr Korostyshevskyi, Vladislav Balagura, Vincent Boudry, Jean-Claude Brient, ILD concept group

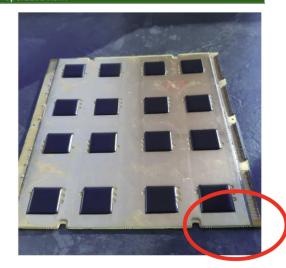
⊞ Show more

https://doi.org/10.1016/j.nima.2019.162732

Get rights and content

Preparation of 2020 beam tests

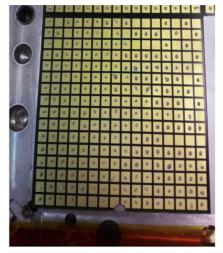
FEV10/11 status


DESY in March

- Unprecedented number of layers: 16–22
 - 11(+1) FEV10/11:
 - Adaptation to compact DAQ
 - 3 recovered
 - 2 FEV12 completed (1→4 wafers)
 - with some difficulties
 - 1 uncompleted COP
 - Defect procedure in encapsulating chips
 (Hybrid SA): cooked at 140°C for 6h → bending
 - 2(+3) FEV13
 - (2 FEV13):
 - Material tested and send to Japan for assembly
- First use of the Compact DAQ at full capacity (15 Layers)

DESY in November:

- all in 2 single structure


	DESY 2017		CERN 2018		
SLAB	status	calibrated cells	status	calibrated cells	Comments and 2020 status
13		0%		0%	Glue spilled in the SMBv. Recovered for 2020
14		0%		0%	Error in the SR retour \rightarrow fixed
15		0%		0%	Stopped working during the 2017 commissioning. Being recovered for 2020?
16		92%		?	At CERN: low performance on the corners of the ASU and SMB interface
17		93%		95%	
18		94%		?	At CERN: a pattern of lower MIP values is seen in the center of the ASU.
19		93%		93%	
20		94%		96%	
21		54%		0%	Stopped working at DESY 2018. Fully recovered for 2020
22		84%		87%	
XX		0%		0%	FEV10 Never used → operative now.

FEV12 post-processing

FEV12 (two ASUs)

- ► Threshold issue during 2019 → fixed.
- ▶ 3 more 500um wafers glued in each ASU
- ➤ ASU 86, some issues were found during the gluing made the result "less optimal" than usual due to:
 - Different glue (different viscosity)
 - Connectors were in place → need of readaptation of the aspiration plate
 - New software for the robot → needed some tuning
 - Intrinsic difficulty of gluing wafers on a board with a wafer.
- Result:
 - Wafers slightly missaligned → the one near the connectors is 100-200um outside → DANGER
 - One wafer with only 90% of cells connected.
- The other looks perfect.
- ► Both are operative (tests ongoing)

