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Outline
● The T2K experiment and ND280

● The ND280 selection

● Data analysis

● The future and summary
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The T2K experiment

The “pit” 280m after the target 
station, housing ND280, INGRID, 

and other near-detectors
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● 295 km long-baseline neutrino 
oscillation experiment in Japan

● Starts at J-PARC in Tokai, going towards 
Super-Kamiokande (SK), in Kamioka

● 30 GeV proton beam, 3-horn system, 
2.5° off-axis, suite of near-detectors, 
Super-Kamiokande as far detector

The T2K experiment

J-PARC

SK
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Why a near detector?
● Characterise the neutrino beam before long-baseline oscillations

● Model relates observables at FD (e.g. pμ, θμ) to neutrino energy (Eν), 
which constrains the oscillation parameters

● The ND constrains a convolution of neutrino flux, cross sections, 
and detector effects
– Can not perfectly separate them in the ND analysis
– Cross-section effects may be absorbed as flux effects, with different 

energy dependency, causing bias
● Develop selections that better isolate and separate the effects, and 

perform bias testing with alternate models
● Use near-detector selections that match the far detector to 

constrain the major signal and background processes

are physical 
observables
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The T2K oscillation analysis

● T2K fits its systematic model to near-detector data, including external 
constraints, and uses that model for SK prediction
– For details on the cross-section model, see Stephen’s talk
– For details on the flux model, see Yoshikazu’s talk 

● Can propagate ND constraint to FD piece-wise, or run simultaneous 
ND+FD fit

● Frequentist gradient-descent and Bayesian MCMC analyses

Hadron 
production

INGRID + beam 
monitors

Flux model

Interaction 
modelν scattering 

data and fits

ND280 fitND280 
model

ND280 data

Systematics 
constraints for SK

External inputs Modelling

https://indico.cern.ch/event/881216/contributions/5048753/
https://indico.cern.ch/event/881216/contributions/5048841/
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The ND280 near detector

ν

ν

ν
ν

● Segmented detector with multiple sub-detectors
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The ND280 near detector

Fine Grained 
Detectors (FGD)

CH, H2O

Main target for 
neutrino 

measurementsν

ν

ν
ν
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The ND280 near detector

ν

ν

ν
ν

Time Projection 
Chambers (TPCs)

GAr TPC
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The ND280 near detector

ν

ν

ν
ν

Electromagnetic 
Calorimeter (ECal)
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The ND280 near detector

ν

ν

ν
ν

Side Muon Range 
Detector (SMRD)
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The ND280 near detector

ν

ν

ν
ν

UA1 magnet 
(0.2T)
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The ND280 near detector

Pi-Zero 
Detector (P0D)
C8H8, H2O, Pb, 

brass
~16t (13t)

ν

ν

ν
ν



14 Clarence Wret

The ND280 selections
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● Oscillation analysis utilises the FGD+TPC selections, and ECal for 
tagging escaping particles and photon candidates
– Use FGD1 (CH) and FGD2 (CH, H2O) to constrain neutrino flux and 

interaction cross-section
– Water target is critically important, as it’s the target in SK

● Sign selection; ~8% MIP resolution in TPC; 0.2% μ/e confusion
– Can constrain wrong-sign backgrounds in-situ, and momentum resolution 

that exceeds that of the far detector

The ND280 selections

μ-
π+νμ p

π-

π0

ECal
FGD

TPC

Magnet, SMRD
P0D, P0D ECal

FGD

TPC

TPC

ND280 side-view
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● Have three pion tagging methods, increasing in pπ

– Michel electron
– FGD contained
– FGD-TPC track

TPC1 TPC2 TPC3

FGD1 FGD2

Delayed Michel 
electron without track
→ low momentum

The ND280 selections



17 Clarence Wret

● Have three pion tagging methods, increasing in pπ

– Michel electron
– FGD contained
– FGD-TPC track

TPC1 TPC2 TPC3

FGD1 FGD2

Visible track 
contained in FGD 
→ Somewhat low 
momentum

The ND280 selections
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● Have three pion tagging methods, increasing in pπ

– Michel electron
– FGD contained
– FGD-TPC track

TPC1 TPC2 TPC3

FGD1 FGD2

TPC track matched 
to FGD and vertex 
→ higher 
momentum

The ND280 selections
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● Have two photon tagging methods
– TPC-tagged electron candidates
– ECal photon cluster

TPC1 TPC2 TPC3

FGD1 FGD2
At least one electron 
tagged in TPC

The ND280 selections
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● Have two photon tagging methods
– TPC-tagged electron candidates
– ECal photon cluster

TPC1 TPC2 TPC3

FGD1 FGD2

ECal 
cluster 
detected

The ND280 selections
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● Have two proton tagging methods, increasing in pp

– FGD contained
– FGD-TPC track

TPC1 TPC2 TPC3

FGD1 FGD2

Visible track 
contained in 
FGD →
Somewhat low 
momentum

The ND280 selections
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● Have two proton tagging methods, increasing in pp

– FGD contained
– FGD-TPC track

TPC1 TPC2 TPC3

FGD1 FGD2

TPC track matched 
to FGD and vertex → 
higher momentum

The ND280 selections
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● Have two proton tagging methods, increasing in pp

– FGD contained
– FGD-TPC track

TPC1 TPC2 TPC3

FGD1 FGD2

TPC track matched 
to FGD and vertex → 
higher momentum

The ND280 selections

Proton threshold in ND280 is 
~450 MeV/c → Not very 

sensitive to nuclear effects on 
proton (e.g. Pauli blocking)
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● Separate selections into 
– Beam mode: Forward Horn Current (FHC, νμ dominated) or Reverse 

Horn Current (RHC, anti-νμ dominated) including wrong-sign 
background for RHC

– Vertex location: FGD1 and FGD2
● FHC and RHC selections differ due to statistics and final states
● Dominated by CCQE interaction → Lots of CC0π events

The ND280 selections

CC0π is when a charged lepton is 
observed, with no pions and any 
number of nucleons in the final state

Can have contributions from non-
QE processes, such as 2p2h or 
resonant (where pion is absorbed)
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● Select on photon, charged pion and proton multiplicity
● Proton multiplicity in CC0π separates CCQE and 2p2h processes, 

and low and high Q2

● Pion multiplicity separates neutrino interaction modes 
– CC0π is CCQE, 2p2h and resonant+FSI
– CC1π is predominantly resonant
– CC Other is SIS/DIS, and CC photon is mixture

The ND280 FHC selections

CC-
inclusive

CC-0π 0ɣ

CC with 
photon

CC without 
photon

CC-0π 0p 0ɣ

CC-0π Np 0ɣ
CC-1π 0ɣ

CC-Other 0ɣ

ɣ > 0

ɣ = 0 π+ = 0

π+ = 1

π+ > 1, or π- > 0

p = 0

p > 0

μ- = 1
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● Start with μ+/- identification
– μ+ candidate → right-sign; μ- candidate → wrong-sign
– Charged pion needs to be opposite sign to muon candidate

● No proton or photon tagging
● 12 RHC selections, 10 FHC selections

The ND280 RHC selections

CC-
inclusive

CC-0π 0ɣ 
νμ bkg

CC-1π 0ɣ 
νμ bkg

CC-Other 0ɣ 
νμ bkg

π+ = 0

π+ = 1

π+ > 1, or π-, π0 > 0

μ- = 1

CC-
inclusive

CC-0π 0ɣ 
anti-νμ

CC-1π 0ɣ 
anti-νμ

CC-Other 0ɣ 
anti-νμ

π- = 0

π- = 1

π- > 1, or π+, π0 > 0

μ+ = 1
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The uncertainty model

Hadron 
production

INGRID + beam 
monitors

Flux model

Interaction 
modelν scattering 

data and fits

ND280 fitND280 
model

ND280 data

Systematics 
constraints for SK

External inputs Modelling
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Neutrino flux uncertainties
● NA61/SHINE hadron production experiment at CERN SPS
● Dedicated T2K data at p=31 GeV/c, with thin and replica target

Eur. Phys. J., C76(11):617, 2016
Eur. Phys. J., C76(2):84, 2016

● Replica target data decreases 
flux uncertainty from ~10% to 
~5% in Eν peak
– Increases nominal νμ and νe fluxes
– Largest remaining uncertainty is 

proton beam related
● NA61/SHINE 2010 data 

includes kaon and proton yields 
(improves high Eν νμ and νe)

Reduction

See 
Yoshikazu’s 

talk

https://link.springer.com/article/10.1140/epjc/s10052-016-4440-y
https://link.springer.com/article/10.1140/epjc/s10052-016-3898-y


29 Clarence Wret

Neutrino interaction uncertainties
● Benhar Spectral Function model for nuclear structure

– CCQE nucleon interaction tuned to bubble chamber data

● Removal energy treatment developed for spectral function
● CCQE and 2p2h model hugely benefitted from collaborations 

with the ND280 Upgrade
– optical potential, Pauli blocking, 2p2h shape, short-range 

correlated vs MF pairs, etc

Old initial state 
model (RFG)

Shell structure 
of nucleus

Initial nucleon 
momentum

Removal 
energy

See Stephen’s talk
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ND280 detector uncertainties
● Dedicated detector systematics for 

– mis-ID probabilities in TPCs and FGD, magnetic field distortions, 
momentum resolution and scale, cluster efficiencies, tracking and 
track matching, Michel tagging efficiency, pile-up, FGD mass, out-of-
fiducial volume, and sand muon backgrounds

● Use dedicated control samples for specific systematics
– e.g. through-going muons for FGD-TPC matching, stopping cosmic 

muons for Michel e tagging efficiency
● For pion selections, pion secondary interactions (SI) is the largest 

systematic
● For proton selections, proton SI is the largest systematic
● Future data from EMPHATIC and other hadron scattering 

experiments, and models from e.g. INCL, will help in the global 
tuning effort
– Nailing down the secondary interaction systematics will also be 

imperative to next-generation experiments and neutron tagging
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● With these selections, the T2K ND280 analysis can expose 
mismodelling of
– Neutrino vs anti-neutrino
– Carbon vs Oxygen
– Specific interactions (CC0π, CC1π, …)

● Separate and correlate neutrino interaction model within reason
– e.g. completely separating MA

QE for carbon and oxygen 
interactions is not motivated

– Different cross-section of 2p2h in (q0, q3) for nn/np seems 
reasonable from theory calculations

● Analysis in pμ cosθμ in reconstructed space, with cross-checks on 
proton and pion kinematics
– The pion and proton tagging methods with different efficiency 

provide an implicit sensitivity to pion and proton kinematics
● Stir until convergence!

The ND280 selections

See Stephen’s talk
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The analysis

Hadron 
production

INGRID + beam 
monitors

Flux model

Interaction 
modelν scattering 

data and fits

ND280 fitND280 
model

ND280 data

Systematics 
constraints for SK

External inputs Modelling
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● νμ CC0π Np selection has significantly larger fraction 
of true CC1π events than 0p selection

● νμ CC0π 0p selection clearly underpredicted, Np 
selection is well predicted

Before the ND280 analysis
FGD1 CC0π 0p 0ɣ FGD1 CC0π Np 0ɣ
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After the ND280 analysis
FGD1 CC0π 0p 0ɣ FGD1 CC0π Np 0ɣ

● CCQE fraction increases
● 2p2h fraction increases
● 2p2h shape changes
● CC1π+ contributions decreases
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Before the ND280 analysis
FGD1 anti-νμ CC0π FGD1 CC1π

● Anti-νμ CC0π selection also relatively well-predicted
● νμ CC1π selection slightly overestimated
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After the ND280 analysis
FGD1 anti-νμ CC0π FGD1 CC1π

● CCQE fraction increases
● 2p2h and CC1π fractions stay the same
● CC1π fraction decreases
● CC multi-π and DIS fractions increase
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● CC0π0p final states are underestimated, whereas CC0πNp 
and anti-νμ CC0π are predicted within statistical uncertainty

● CC1π samples are largely well-described
● Parameters pulled to compensate

– Increased 2p2h cross-section
– Increased CCQE cross-section
– Decreased CC1π cross-section
– Visible shape changes, even in muon momentum

The general results
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● Neutrino flux parameters significantly increase at low energies 
for both νμ and anti-νμ

● At 0.6 GeV (flux peak), see 10% increase in νμ and ~7% increase 
in anti-νμ

● Although chi-by-eye looks large, this spectrum distortion incurs a 
χ2~60 penalty for 100 neutrino flux parameters
– Not much tension with input prior from neutrino flux group

The flux parameters
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● 2p2h normalisation parameters are both increased
– Neutrino and anti-neutrinos slightly different (~1.2 vs ~1.05)

● 2p2h shapes consistently pulled towards non-Δ region (shift 2p2h 
towards low q0), for C/O and nn/np separated parameters

● MA
QE increased above input prior, norm. of SF SRC pairs increased, CCQE 

high Q2 cross-section increased
● Amount of Pauli blocking increased: changes low Q2 region of CC0π 0p 

with little effect on CC0π Np events

The 2p2h and CCQE parameters
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● Neutrino flux and cross-section parameters correlate between each other due 
to degenerate effects
– e.g. norm of 2p2h has roughly similar effect to a number of flux parameters

● Finally also perform a p-value test of observed 
fit to data compared to the model before the fit
– 10.9% using the total χ2

The general results

Flux 
parameters

Cross-
section 
parameters
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● Cross-section systematics are the largest uncertainties before 
fitting to ND280 data

● After the fit to ND280 data, cross-section and flux systematics 
are the largest contributors, between 2.5-3.5% effects

● ND280 detector uncertainties are between 1-2% effects with 
the current selections

Inspecting the ND280 constraint
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● Before the ND280 constraint, impact at SK is similar to ND280: dominated 
by cross-section uncertainties

● After the ND280 analysis and correlating the flux and cross-section 
systematics, the flux+cross-section uncertainties are often smaller than SK 
det uncertainties

Propagating the ND280 constraint
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Propagating the ND280 constraint
● The ND280 analysis also changes the prediction at SK

● Increases the single-ring 
muon selections
– Equivalent to CC0π

● Decreases the new CC1π
muon selection
– Large fraction of CC1π events

FHC 1Rμ RHC 1Rμ

FHC CC1π
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Propagating the ND280 constraint
● Similar applies to the electron neutrino selections at SK

● General increase in CC0π and 
decrease in CC1π cross-section 
reflected in samples at SK

FHC 1Re RHC 1Re

FHC 1Re 1de
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The future and summary
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Future plans
● Analysis in proton and pion kinematics, possibility of single 

transverse variables
– Proton tagging in CC1π mode better separates resonant channels 

and SIS/DIS
– Pion and proton kinematics will require significant interaction 

model development
● Full kinematic coverage selections with backward-going muons

– Higher Q2 events will enter analysis
– See Danaisis’ talk for one of the cross-section measurements and 

status
● ND280 Upgrade will significantly improve particle thresholds 

and resolution, geometric acceptance, neutron tagging
– See more in Laura’s talk

● Significantly more data to be collected, allowing for further 
refinement of our selections (e.g. proton tagging in anti-νμ)

https://indico.cern.ch/event/881216/contributions/5048749/
https://indico.cern.ch/event/881216/contributions/5048752/
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Summary
● Near-detector analysis on T2K starts with a CC-inclusive 

selection
– Splits into 22 selections and performs a fit to expose weaknesses in 

model for oscillation analysis; both signal and background
● Complementary tool to dedicated cross-section analyses

– With a focus on impact on oscillation results
– Entire analysis in reconstructed space

● Impact of analysis on cross-section uncertainties at SK go from 
10-15% to 3-4%

● Can also change the central value prediction at SK
– This analysis increases CCQE and 2p2h cross section
– Decreases CC1π cross section
– Generally consistent with previous T2K ND280 analyses

● Hoping to write up analysis into dedicated publication on 
interaction model and near-detector analysis
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Thanks!
T2K May 2022 hybrid meeting

Questions or comments? c.wret@rochester.edu

Tokai

CERN

Online
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Backups
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● Fluxes: νμ and anti-νμ dominated with different Eν

– ND280: 2.5° off-axis, 0.6 GeV narrow band – used in OA
– INGRID: on-axis, 1.3 GeV wide band – used for monitoring

● Multiple targets in INGRID and ND280: C8H8, H2O, Ar, Pb, Fe
● More detectors rolling into the ND280 pit, e.g. 

WAGASCI/BabyMIND, NINJA, proton and water modules

The T2K near detectors

INGRID flux (on-axis)ND280 flux (off-axis)

Phys. Rev. D 102, 072006 (2020)PTEP 2021 4 (2021)JINST 12 (2017)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.072006
https://academic.oup.com/ptep/article/2021/4/043C01/6156643
https://iopscience.iop.org/article/10.1088/1748-0221/12/07/C07028
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● Arranged in cross pattern for beam direction measurements
– INGRID monitors ν direction and rate spill-by-spill

● Proton module for dedicated cross section measurements
– No iron plates: fully plastic scintillator

The INGRID near detector

10 m

7.1t fiducial mass 
per module

14 modules in 
cross pattern
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INGRID monitoring
● Good neutrino beam stability observed in INGRID
● Well within ±1 mrad tolerance on beam direction 
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Off-axis effect
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Flux tune
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Flux uncertainties, FHC
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Flux uncertainties, RHC
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● Modelling relates observables (e.g. pμ θμ) to neutrino energy, 
Eν, which constrains the oscillation parameters

● MUMON monitors muons, INGRID monitors neutrinos
● ND280 and SK used directly in analysis, constraining the 

systematics and oscillation parameters

Target

p

Decay 
volumeHorns Beam 

dump

MUMON

ND280

INGRID

SK

π, K, p... μ, ...ν
ν

ν

on-axis

off-axis

The T2K uncertainty sources

Neutrino flux 
constraints Neutrino 

cross-section 
constraints

Neutrino flux 
uncertainty
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● Neutrino interaction is an important shared systematic for ~GeV 
scale neutrino oscillation experiments

The T2K uncertainty sources

T2K Neutrino 2020

NOvA Neutrino 2020

Before fit to T2K ND data

After NOvA ND extrapolation

https://zenodo.org/record/3959558#.X3n36HVKiuU
https://zenodo.org/record/3959581#.X3n4CnVKiuU
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Proton tagging in ND280
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● Relevant ND280 selection: FHC νμ FGD1/2 CC1π+

● Each tag sculpted by pion kinematics; momentum and angle

Pion kinematics dependence

Produces track above 
this momentum

Poor systematics 
understanding cuts out 
up/downwards going 
pions (along FGD bar)

TPC coverage is only 
up/downstream, not 
up/down
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● Relevant ND280 selection: FHC νμ FGD1/2 CC1π+

● Look at where true FGD1/2 CC1π+ events end up

Efficiencies
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