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THE DEEP UNDERGROUNG NEUTRINO EXPERIMENT
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Sanford Underground
Research Facility

System for moving the LArTPC and tracker up to 30m transverse to the beam

25.10.2022 LAURA MUNTEANU - NUINT 2022, SEOUL, SOUTH KOREA 2



DUNE PHYSICS PROGRAM

Long-baseline (LBL) Neutrino Oscillations
Supernova neutrinos

= v, from SNB

= SN and neutrino physics

= Measuring neutrino oscillation parameters
= Precision measurements

= Probing unitarity

Beyond Standard Model (BSM) Physics Solar neutrinos
" Proton decay = High energy solar neutrino flux
measurement

m Sterile neutrino searches
® Dark matter searches

® Non standard interactions
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DUNE PHYSICS PROGRAM

Long-baseline (LBL) Neutrino Oscillations
Supernova neutrinos

= v, from SNB

= SN and neutrino physics

= Measuring neutrino oscillation parameters
= Precision measurements

= Probing unitarity

Beyond Standard Model (BSM) Physics Solar neutrinos

" Proton decay = High energy solar neutrino flux

measurement
m Sterile neutrino searches

® Dark matter searches

® Non standard interactions

DUNE will have a uniquely rich
physics program!
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DUNE PHYSICS PROGRAM

Long-baseline (LBL) Neutrino Oscillations

Supernova neutrinos
= vy, from SNB

= SN and neutrino physics

= Measuring neutrino oscillation parameters
= Precision measurements

= Probing unitarity

Beyond Standard Model (BSM) Physics Solar neutrinos

= Proton decay = High energy solar neutrino flux

measurement
m Sterile neutrino searches

® Dark matter searches

® Non standard interactions

Focus of this talk
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DUNE CAPABILITIES AND CHALLENGES

= Wide and intense beam:
= Unprecedented statistics

= Multiple interaction channels and their transition regions
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GENIE 2.12.10, DUNE FD TDR CV Tune

DUNE CAPABILITIESAND CHALLENGES  —sov  —cw

= Wide and intense beam: g WL 1043
= Unprecedented statistics 52 i\%
= Multiple interaction channels and their transition regions {/ 2
2 T
= Liquid Argon detectors: u%
T

= Can exploit calorimetric information as well as particle tracks

= Low thresholds for charged hadron detection (1T and p, in particular)

MBoONE _

NuMI DATA: RUN 10811, EVENT 2549. APRIL 9, 2017.

25.10.2022 LAURA MUNTEANU - NUINT 2022, SEOUL, SOUTH KOREA 7



GENIE 2.12.10, DUNE FD TDR CV Tune

DUNE CAPABILITIESAND CHALLENGES  —sov  —cw

® Wide and intense beam:

= Unprecedented statistics

L
©
~

= Multiple interaction channels and their transition regions

= Liquid Argon detectors:

¥

o
o
(E,) 107" (/Jcm? /GeV /POT)

FD
Vi

o(E )IE, 10 (cm? /GeV /Nucleon)

= Can exploit calorimetric information as well as particle tracks

= Low thresholds for charged hadron detection (1T and p, in particular)
= Sophisticated suite of near detectors:

= This is crucial in any LBL analysis to constrain systematic uncertainties
MBoONE _

Downstream Magnetized Tracke

These capabilities will challenge
today’s models as much as today’s
experimental data challenged
yesterday’s models.

N ND-LAr

. 4 Array of modular
System for On-Axi
Neutrino Detection R ). > « C LArTPCs.

System for moving the LArTPC and tracker up to 30m transverse to the beam
25.10.2022 LAURA MUNTEANU - NUINT 2022, SEOUL, SOUTH KOREA 8

NuMI DATA: RUN 10811, EVENT 2549. APRIL 9, 2017.

o
[



PREVIOUS ITERATION OF INTERACTION MODEL

= For the previous round of sensitivity studies, a far detector-centric x10® 00 <%0
model was used

DUNE Simulation |
— Nominal "
Prefit
[ Postfit
I Wrong-sign 7
JINC

NDVM':

= Fit variables: E},°¢ and y,... = 1 — Ej*°/E}*¢
= Relativistic Fermi Gas ground state with RPA corrections 2
= Systematic effects varied primarily through GENIE parameters + 6 others

= Effects not controlled by fit parameters were assessed with fake data
studies

Phys. Rev. D 105, 072006
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PREVIOUS ITERATION OF INTERACTION MODEL

" For the previous round of sensitivity studies, a far detector-centric
model was used

= Fit variables: E},°¢ and y,... = 1 — Ej*°/E}*¢
= Relativistic Fermi Gas ground state with RPA corrections
= Systematic effects varied primarily through GENIE parameters + 6 others

= Effects not controlled by fit parameters were assessed with fake data
studies

= Lessons learned:
= FD statistics dominate appearance spectra

= ND fit is entirely systematics dominated (negligible statistical errors)
= Not enough model freedom to reproduce alternative simulated data sets

" We need a set of variables which better exploits the power of DUNE
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PREVIOUS ITERATION OF INTERACTION MODEL

= For the previous round of sensitivity studies, a far detector-centric x10® 00 <%0
model was used

DUNE Simulation |
— Nominal "

Prefit 1
[ Postfit !
I Wrong-sign 7
WaNC

= Fit variables: E},°¢ and y,... = 1 — Ej*°/E}*¢
= Relativistic Fermi Gas ground state with RPA corrections 2

= Systematic effects varied primarily through GENIE parameters + 6 others

= Effects not controlled by fit parameters were assessed with fake data L ND Vu
studies
= Lessons learned: % N — 5 10
= Disappearance spectra limited by systematics > 1>—< ' ' N
= ND fit is entirely systematics dominated (negligible statistical errors) g - Sl -
=  Not enough model freedom to reproduce alternative simulated data sets % i =Cv‘:f,:2_sign
Z osf Mine -

" We need a set of variables which better exploits the power of DUNE

FD vy

0 5 10
Reconstructed energy (GeV)

Phys. Rev. D 105, 072006

25.10.2022 LAURA MUNTEANU - NUINT 2022, SEOUL, SOUTH KOREA I


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.072006

PREVIOUS ITERATION OF INTERACTION MODEL

= For the previous round of sensitivity studies, a far detector-centric x10® 00 <%0
model was used

DUNE Simulation |
— Nominal "

Prefit 1
[ Postfit !
I Wrong-sign 7
W NC

= Fit variables: E},°¢ and y,... = 1 — Ej*°/E}*¢
= Relativistic Fermi Gas ground state with RPA corrections 2

= Systematic effects varied primarily through GENIE parameters + 6 others

= Effects not controlled by fit parameters were assessed with fake data L ND Vu
studies
= Lessons learned: ® 5 1o
x10°
= Disappearance spectra limited by systematics > 1k ' N
= ND fit is entirely systematics dominated (negligible statistical errors) g - Sl
=  Not enough model freedom to reproduce alternative simulated data sets % i =C£Z:Z_sign
" We need a set of variables which better exploits the power of DUNE & 0'5__ il |
" How we can improve this: D Vi
= Use a more flexible ground state model 0'
= Develop a new suite of uncertainties relevant for DUNE i Reconstructej energy (GeV) "
= Improve our description of hadronization-related systematics
=  More granular modelling of FSI uncerainties Phys' Rev.D 105, 072006
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FLEXIBILITY IS KEY

= The requirements for the DUNE interaction model are very different than those for
ongoing experiments

= DUNE does not have data yet

= DUNE statistics will be sensitive to subtle model differences

= But no nuclear ground state or neutrino interaction model is capable of fully describing
world data today ;.. 1810.0603

Phys. Rev. Lett. 121, 022504 (2018)

A A e * o Nature 599, 565-570 (2021)
P - ! - ur , 565—
o> 9F NEUT 5.4.0 E _Stgéﬂ _(F&tgg ature
O s8F —4— MINERVA E ot b
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8 eE i e RFG  Xhrg =309.1 3 ~
S b s xir=1108 3 L 6f
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tO4E E a 4f
g 3F E SFe =
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o b b by b b b b by g T
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= |t is essential that the DUNE interaction uncertainty model be flexible enough to capture
the model freedoms so that sensitivity studies are able to describe these data and
alternate mock-data models.

[y
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The Baseline Model
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NUCLEAR GROUND STATE MODEL

= Before tackling the interaction model, it is important to choose an appropriate
nuclear ground state model

= Will determine what systematic weights and shifts we can implement
= A suitable ground state model is

= Physically motivated

= Capable of reliable predictions for both lepton and hadron kinematics

= Available in generators

= Reweightable (i.e. can be used to study alternative ground state models)

= Relevant variables to describe ground state are the nucleon removal energy and
momentum — experimentally, E,,,;.c and p,,,;ss : (how) accessible in today's

neutrino experiments ;

Oyy
— ~S(E,,, L, W*Wé(w+M—E, —E,,
dﬂ(k’)dﬂ(pN)dE/ ( m pm) wv ( m p)

Spectral Function
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NUCLEAR GROUND STATE MODEL

Eur.Phys.].ST 230 (2021) 24, 4469-448 |

= Several models available in multiple

generators - Benhar SF — Local FG
— Global FG NEUT 5.5.0, v,'60

0 — [ R R T E R T SR -====- L

0 100 200 300
Prmiss (MeV/c)
ﬁmiss = ﬁv - ﬁu - ﬁp
Emiss = w — T; remhst AMyp — Thuctremnant
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NUCLEAR GROUND STATE MODEL

= Several models available in multiple
generators

® Relativistic Fermi Gas (RFG):
= Simple, fixed binding energy (E,)

=  Widely available in generators

25.10.2022

LAURA MUNTEANU - NUINT 2022, SEOUL, SOUTH KOREA

Eur.Phys.].ST 230 (2021) 24, 4469-448 |

- Benhar SF — Local FG
— Global FG NEUT 5.5.0, v,'60

0 1 1 | 1 | 1 1 1 1 :==- I | 1 |
0 100 200 300

Pmiss (MeV/c)
Pmiss = Pv — Pu — Pp
_ pre—FSI
Emiss = w — T — Amyp — Thuctremnant
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NUCLEAR GROUND STATE MODEL

Eur.Phys.].ST 230 (2021) 24, 4469-448 |

= Several models available in multiple
generators

- Benhar SF — Local FG
— Global FG NEUT 5.5.0, v,'60

® Relativistic Fermi Gas (RFG):
= Simple, fixed binding energy (E,)

=  Widely available in generators

" Local Fermi Gas (LFG):

= E, depends on radial position

"  Good predictive power for hadron kinematics

= Covers a good portion of E,,;sc — Pmiss Space

=  Widely available in generators

0 1 1 | 1 | 1 1 1 1 -:==- I | 1

0 100 200 300
Prmiss (MeV/c)
ﬁmiss = ﬁv - ﬁu - ﬁp
Emiss =w— T; remist A n-p Tnucl.remnant
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NUCLEAR GROUND STATE MODEL

Several models available in multiple
generators

Relativistic/Global Fermi Gas (RFG):
= Simple, fixed binding energy (E,)

=  Widely available in generators

Local Fermi Gas (LFG):

= E, depends on radial position

"  Good predictive power for hadron kinematics

= Covers a good portion of E,,;ssc — Pmiss Space

=  Widely available in generators

Benhar Spectral Function (SF):
= Accounts for nuclear shell structure
= Tuned using electron scattering data

= Even better predictive power for outgoing
nucleon kinematics

= Reflects natural degrees of freedom

= Not available in all generators

LAURA MUNTEANU

Eur.Phys.].ST 230 (2021) 24, 4469-448 |
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NUCLEAR GROUND STATE MODEL

= DUNE production and reconstruction framework optimized for GENIE as a

neutrino interaction generator

= Plan to use GENIE 3.2.0 for this iteration of sensitivity studies

= Available SF model only in ID; RFG is too simplistic

" |ocal Fermi Gas (LFG) model offers enough freedom

25.10.2022

a
(=]
IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

0 50 100 150 200 250 300 350 400

LAURA MUNTEANU - NUINT 2022, SEOUL, SOUTH KOREA

Work in progress

UNIVERSAL NEUTRINO GENERATOR
& GLOBAL FIT

= QOut of the box, the ground state distribution doesn’t look like the expectation
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NUCLEAR GROUND STATE MODEL

= DUNE production and reconstruction framework optimized for GENIE as a
neutrino interaction generator

= Plan to use GENIE 3.2.0 for this iteration of sensitivity studies

= Available SF model only in ID; RFG is too simplistic

" |ocal Fermi Gas (LFG) model offers enough freedom

UNIVERSAL NEUTRINO GENERATOR
& GLOBAL FIT

= QOut of the box, the ground state distribution doesn’t look like the expectation

® Have added freedoms to the GENIE LFG o 100 s <~:
Q
model that match ND observables and = Work in progress s =
experience of other experiments £ s E
1] (3
25 ¢
o
2 I
1.5 A@
Q_E
1 _cw
0.5 g
0 1]
0 50 100 150 200 250 300 350 400 g
pmiss [MeV] '8
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NUCLEAR GROUND STATE MODEL

= DUNE production and reconstruction framework optimized for GENIE as a
neutrino interaction generator

= Plan to use GENIE 3.2.0 for this iteration of sensitivity studies

= Available SF model only in ID; RFG is too simplistic

" |ocal Fermi Gas (LFG) model offers enough freedom

UNIVERSAL NEUTRINO GENERATOR
& GLOBAL FIT

= QOut of the box, the ground state distribution doesn’t look like the expectation

" Have added freedoms to the GENIE LFG = 100 35
model that match ND observables and =, Work in progress 3
experience of other experiments uié 2.5
= Adding correlated tail further increases phase 2

space 15
1
0.5
00 50 100 150 200 - - 30 350 400 0
P iss [MeV]
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NUCLEAR GROUND STATE MODEL

= DUNE production and reconstruction framework optimized for GENIE as a
neutrino interaction generator

= Plan to use GENIE 3.2.0 for this iteration of sensitivity studies

= Available SF model only in ID; RFG is too simplistic

" |ocal Fermi Gas (LFG) model offers enough freedom

UNIVERSAL NEUTRINO GENERATOR
& GLOBAL FIT

= QOut of the box, the ground state distribution doesn’t look like the expectation

= Have added freedoms to the GENIE LFG =
model that match ND observables and =, Work in progress 3
experience of other experiments mé

= Adding correlated tail further increases phase
space

N
[$)]
) [10*2 cm2 MeV?]

. . . 1 £

= Validations ongoing o

05 2

T . . £

= Will issue a custom configuration for 0 SENE o W

e e . . 0 50 100 150 200 250 300 350 400 S

sensitivity studies p_[MeV] 3
miss
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GROUND STATE MODEL UNCERTAINTIES

® Uncertainties related to the ground state will impact all interaction channels

® Our model can broadly be described as having a Fermi gas (FG) component and a correlated
tail (CT) component

= Can alter the relative strength of the FG vs CT components

Work in progress g

E. s [MeV]
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GROUND STATE MODEL UNCERTAINTIES

® Uncertainties related to the ground state will impact all interaction channels

® Our model can broadly be described as having a Fermi gas (FG) component and a correlated
tail (CT) component

= Can alter the relative strength of the FG vs CT components

= Shape of FG component can be altered by changing radial density distribution
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= 40 600
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GROUND STATE MODEL UNCERTAINTIES

® Uncertainties related to the ground state will impact all interaction channels

® Our model can broadly be described as having a Fermi gas (FG) component and a correlated
tail (CT) component

= Can alter the relative strength of the FG vs CT components

= Shape of FG component can be altered by changing radial density distribution

Lateral E;,i55 shifts as a function of g3 motivated by electron scattering data

0.01

NuFACT 2022 +
S.Dolan’s NEUT talk

0.005

Work in progress g

0

AE [GeV]

-0.005

E. s [MeV]

-0.01

-0.015

-0.02

Bodek, Cai
Eur. Phys. |. C 80, 655 (2020)

-0.025

003 Scaling derived

0035 from ee’ data
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Interaction
Uncertainties



INTERACTION MODEL — CCQE

® CCQE-focused samples can be reconstructed with the best resolution

= Account for ~30% of total event rate

= Operating experiments are already sensitive to all the effects below.

® |nteraction model: Valencia Iplh

= Easily reweightable and best predictive power for hadron kinematics within GENIE

" Freedom to account for collective effects (RPA) for each neutrino species and nucleus type

= Optical potential uncertainty

m Z-expansion form factor

= Motivation to explore more models (e.g. LQCD)

= Pauli-blocking freedom

= Ad-hoc energy dependence freedom

25.10.2022
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.073001

INTERACTION MODEL - 2P2H

" Small fraction of interactions at DUNE (~8%)
= But crucial to control because it overlaps with QE and A region
= Can have a significant impact on sensitivity to .p

(contributions are different between v and v)

:?O n2h.n dieti
? 3 LV 1) Pl Ccuicuvurnio
gzs — Martini, v,
<@ N
S [ — Nieves, v,
2 of
£ [—susawy, —
15
~"F _ _—
w v,
B/ 1 /
05F S e
02 04 06 08 1 EE3
E, (GeV)
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INTERACTION MODEL - 2P2H

Vi

= Small fraction of interactions at DUNE (~8%) ! W
|
= But crucial to control because it overlaps with QE and A region |
. . fro . o . . '
= Can have a significant impact on sensitivity to .p n p
(contributions are different between v and v) / I\
® Interaction model: SuSAv2 2p2h /\
= Better phase space coverage than previous model (Nieves 2p2h) g 2000 g 0
= 3.5
so can reweight to other models o SuSAv2 2p2h 30
1200 | 25
® Shape freedoms L 1000 20
_ _ 2 3 | 2p2n predictions 600 £ o
® Inclusive cross-section model = | , 200 £ 10
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37°f 200
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= Normalization freedoms g < w0 Nieves 2p2h vo
I A 1400
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.. . g VR 1200 [ 25
= Additional uncertainties on N e | ey 1000 E- 20
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nucleon ejection kinematics ot 10
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.033003

do/dQ? 108 cm2/GeV?

Ratio

T
1
Ratio

RESONANT INTERACTIONS i g

= large fraction of DUNE interactions (~30%), especially in the peak region

=,

= GENIE v3 has significant changes in resonance model

=

- T 1 T T T T

eutron BS/ BS old form factors:

: %*3‘:;:\\ factors and FSI.

0.1

o.sm & % :': " Tt\on BS/ BS old form factors_:
\":'\ ) g [ E ] = Main changes GENIEV2 to
C “'\ ] 3 .
: % ] T N ] GENIEv3 are new vector form

M\an_,
|- Neutron GENIEv3 Berger Sehgal BSnoGVGN | Proton GENIEv3 Berger Sehgal noGVGN

| Neutron GENIEv3 Berger Sehgal Proton GENIEv3 Berger Sehgal ] u But Change might use n UCIeon

2 51 Mnﬂm form factors to instead account
1W 1f_ﬂﬂ-*’"“ E for nuclear effects.
4 ]
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do/dQ? 108 cm2/GeV?

Ratio

T
1
Ratio

RESONANT INTERACTIONS V\I/

= Large fraction of DUNE interactions (~30%), especially in the peak region

|
I

= GENIE v3 has significant changes in resonance model ! Tt
|

= T2K-inspired uncertainties p
=  Form factor freedoms /
= Additional NOvA- and MINERvVA-inspired freedoms

= Low Q2 suppression

= Channel normalizations

= Removal energy shifts

= Pauli Blocking-like shift

= Non-resonant background strength Want a set of systematics

1 . . . , as rich as for QE!

osWon BS/BS oId form factors_- % f roton BS/ BS old form factors
- \ ] % \ﬁ = Main changes GENIEvV2 to

r q‘\n% ] T GENIEv3 are new vector form
ot “m\, ] %"‘“ factors and FSI.

I "’"ﬂ

[ Noutron GENIEVS Berger Sehgal o ] i 5?2332 GENIEVS Berger Sengal T = But change might use nucleon

2 51 WMMWW form factors to instead account
1W 1f_ﬂﬂ-*”“ E for nuclear effects.
4 ]

0.8 02 04 06 0.8 1 0.5 02 04 06 0.8
square 4-momentum transfer Q2 (GeV2) square 4-momentum transfer Q2 (GeV2)

Rik Gran, Ishmam Mahbub, Ben Utt
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DIS/SIS INTERACTIONS v\l/

= Significant portion of DUNE interactions (~40%)

|

|

= But resolution not as good as for CCQE-like samples |
|

Phys. Rev.D 101, 112007

13 [ I
_1a) +
>
: I
= 11} |
Q) BT '
E 1 1l l._l_'_i ]
s b e g
%._ o9 b —— MINERVA Data
B —— GENIE2.8.4
s 0.8

’ = NuWro 19.02
0.7 —— GiBUU 2019
0 0.5 1 1.5 2 2.5

Muon Transverse Momentum (GeV)
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DIS/SIS INTERACTIONS V\I/

= Significant portion of DUNE interactions (~40%)

|
W
= But resolution not as good as for CCQE-like samples |
|
= Cross-section in the SIS region is poorly understood y X
" Also crucial to model hadron multiplicities — ongoing work!
= Bodek-Yang parametrization
= Hybrid hadronization model (as in previous sensitivity studies)
= Previous sensitivity studies included a number of uncertainties
= Use theory-based uncertainties with E,,, Q% and Phys. Rev.D 101, 112007
Bjorken x dependence whenever possible 13} I
"  Ad-hoc uncertainties as needed inspired by z 12y —}« I
L
> 11} |
NOVA and MINERVA g *-m-‘ ‘ |
g 1 '1.,_ lﬁy=l_'_i ;
" Ad-hoc uncertainties - Energy dependence i oo b e —— MINERVA Data
lé —— GENIE2.8.4
0.8 — NuWro 19.02
0.7 — GiBUU 2019
0 0.5 1 1.5 2 25

Muon Transverse Momentum (GeV)
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Charge Exchange [5)

Elastic
Scattering

FINAL STATE INTERACTIONS

= Probability for nucleons to undergo FSl in Ar ~60%
(compared to ~30% in C)

= FSI directly impacts reconstructed energy

Absorption

= Neutron emission P S

Pion Production

= Pion/proton absorption/charge exchange affects topologies

= Altered hadron (esp. neutron) multiplicities arXiv:2103.13910

P.D.F.

= 254} DUNE Sensitivity B 7 years (staged)
L ---no FSI e C Al Systematics = :: years (stage:)
I~ ' B t
0.12— FSI ; : 2.52[ Normal Ordering No::::(:n.ge )
- E . [ sin?20,, = 0.088 unconstrained On-axis Only Example:
I~ H E 25 = 90% C.L. (2d.o.f.) Shifted visible energy
O.IT E : E *  "True" Value
: . : E 'f°: 2.48:_
008 GENIE 3.02.00 P X 2.46f
L v > L .
- G18_10a_00_000 P 3 uf
0.06{— S : a8 Ok
- CC inclusive : .
- _ g =
oos—  Vu DUNE on-axis flux :
~  Artarget 24
0.02|— 2.38F
Oj-r--;--:---l-.-l--;l--.l ! - | ! ! ! : |SI 1 1 1 L_l ! - 2.36--lllllllllIlllllllllllllllllll
—02 —0.1° 0.1 —0.0° 0 pRee ET,?,;PS 035 04 045 05 055 06 065
Plot by OliviaValentino = —v sin“0,,
Evnle
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FINAL STATE INTERACTIONS

= Probability for nucleons to undergo FSl in Ar ~60%
(compared to ~30% in C)

= FSI directly impacts reconstructed energy
=  Neutron emission
= Pion/proton absorption/charge exchange affects topologies

= Altered hadron (esp. neutron) multiplicities

Charge Exchange [5)

Elastic
Scattering

Absorption

Pion Production

= Little data on hadron scattering on Ar
600

= But protoDUNE is changing that!
® And approximate cascade/empirical models £400

= For flexibility — use GENIE hA2018 model (easily
reweightable)

DUNE:ProtoDUNE-SP Absorption
TR L — 1

Geant4 10.6

¢ ProtoDUNE-SP

0 Kotlinski et al. (2000)
~  Rowntree et al. (1999)

DUNE
Preliminary

1 1 1 | 1 1 1 l 1 1 1 I 1 1

bt

= Use existing GENIE uncertainties O 200 400 600

= Model predictions differ significantly (GENIE models and
others)

® |nclude additional ad-hoc uncertainties to cover spread

25.10.2022 LAURA MUNTEANU - NUINT 2022, SEOUL, SOUTH KOREA

800 1000
Kinetic Energy [MeV]

T — Ar scattering
Jake Calcutt, Francesca Stoker
Paper in progress
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AND AFTER THE ND CONSTRAINT?

= The DUNE near detectors will be crucial in constraining all of the systematic errors
listed in previous slides

= But even if the ND fit is perfect, we must address uncertainties which
" |[mpact the ND to FD extrapolation
= Cannot be constrained at the ND

= Things we must consider with extra caution:

® Modelling the bias in reconstructed neutrino energy — direct impact on oscillation
parameters

= FD flux is different from ND flux due to oscillations — must control o(E,,) for
extrapolation

= ND cannot constrain v, samples — must account for v, /v, differences at relevant energies
= v /v differences — crucial for §;p measurement

= C to Ar differences — needed to use SAND samples in analysis
Will not discuss these points in detail in this talk!
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SUMMARY

= DUNE will probe several key areas of particle physics, and have a world-leading LBL
neutrino oscillation program

= At DUNE statistics, systematic uncertainties due to neutrino-nucleus interactions
will be the dominant source of uncertainty on neutrino oscillation parameters

= The DUNE near detectors will play a crucial role in constraining interaction
uncertainties

® For second round of sensitivity studies aim to build a robust neutrino interaction
model

= Multiple interaction channels and their transition regions at DUNE energies
= Complex to define appropriate uncertainties

" Need iteration with the theory community and ongoing measurements!

Thank you for listening!
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Back-Up
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THE DEEP UNDERGROUNG NEUTRINO EXPERIMENT

25.10.2022

Sanford
Underground
Research
Facility

Fermilab

.....
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THE DEEP UNDERGROUNG NEUTRINO EXPERIMENT

Sanford
Underground - - -
Research B e G
Facility

Fermilab

Phys.Rev. D 101, 032002

104 —FHC v,---RHC v,
- —FHC v,-~RHC ¥,
g —FHC v,--RHC v,
a 10° —FHC ¥,---RHC 7,
13
2
G 10°
»
3
107

oINPT I AT BN A e e P
105 10 15 20 25 30 35 40

Neutrino energy (GeV)
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THE DEEP UNDERGROUNG NEUTRINO EXPERIMENT

Sanford
Underground
Research
Facility

Fermilab

.....

Downstream Magnetized Tracker

Array of modular
LArTPCs.

#4

System for moving the LArTPC and tracker up to 30m transverse to the beam
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THE DEEP UNDERGROUNG NEUTRINO EXPERIMENT

Sanford
Fermilab

Underground
Research
Facility

.....

Downstream Magnetized Tracker

Long-Baseline Neutrino Facility
South Dakota Site Neutrinos from
e Fermi National
¢ Accelerator Laboratory
in lllinois

Oscillations

Ross Shaft
1.5 km to surface

Facility

and cryogenic
support systems
One of four SAN D
detector modules of the System for On-Axi Arrat’Aofrg‘gdUIar
Neutrino Detection rTPCs.

Deep Underground
Neutrino Experiment

4850 Level of
Sanford Underground
Research Facility

System for moving the LArTPC and tracker up to 30m transverse to the beam
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MODELING NEUTRINO INTERACTIONS

® Neutrino interactions with nuclei are complex to model

= |n generators, we often factorize the different elements of the cross-section

= |nitial state nucleons are not at rest inside the nucleus (Fermi motion)
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MODELING NEUTRINO INTERACTIONS

= Neutrino interactions with nuclei are complex to model

= |n generators, we often factorize the different elements of the cross-section
= |nitial state nucleons are not at rest inside the nucleus (Fermi motion)

= Assume the neutrino interacts with a single nucleon

v, |
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MODELING NEUTRINO INTERACTIONS

® Neutrino interactions with nuclei are complex to model

= |n generators, we often factorize the different elements of the cross-section
= |nitial state nucleons are not at rest inside the nucleus (Fermi motion)

= Assume the neutrino interacts with a single nucleon

= Calculate the probability of hadronization (production of other hadrons in the process)
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MODELING NEUTRINO INTERACTIONS

® Neutrino interactions with nuclei are complex to model

= |n generators, we often factorize the different elements of the cross-section
= |nitial state nucleons are not at rest inside the nucleus (Fermi motion)
= Assume the neutrino interacts with a single nucleon
= Calculate the probability of hadronization (production of other hadrons in the process)

= Model hadron transport inside the nucleus (Final State Interactions, FSI)
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MODELING NEUTRINO INTERACTIONS

= Neutrino interactions with nuclei are complex to model

= |n generators, we often factorize the different elements of the cross-section
= |nitial state nucleons are not at rest inside the nucleus (Fermi motion)
= Assume the neutrino interacts with a single nucleon
= Calculate the probability of hadronization (production of other hadrons in the process)
= Model hadron transport inside the nucleus (Final State Interactions, FSI)

® The total cross-section is the convolution of the above

= Factorization remains a useful approximation

v
A
g - - = l—___\/____f\
| ) Nl
|

| | N I
| | |
| |

g . — tinse. 44 L |
| nuclear model |pnmary interaction |  hadronization hadron transport

— e em— — e e — — e— S
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MEASURING NEUTRINO OSCILLATION PARAMETERS

" The observed event rate at the FD is the result of the convolution of multiple effects
Nops = ®P(E,) ® 0(E,) ® €™’ ® Py (Ev)
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MEASURING NEUTRINO OSCILLATION PARAMETERS

" The observed event rate at the FD is the result of the convolution of multiple effects
Nops = ®P(E,) ® 0(E,) ® €™ ® Py (Ev)

Neutrino flux
“What was sent”
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MEASURING NEUTRINO OSCILLATION PARAMETERS

" The observed event rate at the FD is the result of the convolution of multiple effects
Nops = ®P(E,) ® 0(E,) ® €™’ ® Py (Ev)

\

Neutrino flux Interaction cross-section
“What was sent” “What was produced”
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MEASURING NEUTRINO OSCILLATION PARAMETERS

" The observed event rate at the FD is the result of the convolution of multiple effects
Nops = ®P(E,) ® 0(E,) ® €’ ® Py (Ev)

\

Neutrino flux Interaction cross-section  Detector efficiency
“What was sent” “What was produced” “What was actually seen”

25.10.2022 LAURA MUNTEANU - NUINT 2022, SEOUL, SOUTH KOREA 52




MEASURING NEUTRINO OSCILLATION PARAMETERS

" The observed event rate at the FD is the result of the convolution of multiple effects

NE2 = d"P(E) @ o(E) Q /P & B, (Ey)[*..for each flavor

Neutrino flux Interaction cross-section  Detector efficiency
“What was sent” “What was produced” “What was actually seen”
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MEASURING NEUTRINO OSCILLATION PARAMETERS

" The observed event rate at the FD is the result of the convolution of multiple effects

NI2 = d'P(E) @ o(E) Q P & PVOHV (E,)f*—..for each flavor

Neutrino flux Interaction cross-section  Detector efficiency
“What was sent” “What was produced” “What was actually seen”
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MEASURING NEUTRINO OSCILLATION PARAMETERS

" The observed event rate at the FD is the result of the convolution of multiple effects
Nops = ®P(E,) ® 0(E,) ® €™’ ® Py (Ev)

" The observed rate at the ND is identical in form, up to the last term
Nops = @2 (E,) ® o(E,) @ €7

25.10.2022 LAURA MUNTEANU - NUINT 2022, SEOUL, SOUTH KOREA 55



MEASURING NEUTRINO OSCILLATION PARAMETERS

" The observed event rate at the FD is the result of the convolution of multiple effects
Nops = PP(E,) @ 0(E,) @ €™ ® Py (Ev)
® The observed rate at the ND is identical in form, up to the last term
Nops = ®VP(E,) @ o(Ey) ® P

® The near detector(s) play a key role in constraining systematic uncertainties for
oscillation parameter measurements

= But it’s not a trivial task due to experiment resolution
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MEASURING NEUTRINO OSCILLATION PARAMETERS

" The observed event rate at the FD is the result of the convolution of multiple effects
Nops = PP(E,) @ 0(E,) @ €™ ® Py (Ev)
® The observed rate at the ND is identical in form, up to the last term
Nops = ®VP(E,) @ o(Ey) ® P

® The near detector(s) play a key role in constraining systematic uncertainties for
oscillation parameter measurements

= But it’s not a trivial task due to experiment resolution

. NP = OFP (even without oscillations) so relies on flux models to extrapolate
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MEASURING NEUTRINO OSCILLATION PARAMETERS

" The observed event rate at the FD is the result of the convolution of multiple effects
Nops = PP(E,) @ 0(E,) @ €™ ® Py (Ev)
® The observed rate at the ND is identical in form, up to the last term
Nops = ®VP(E,) @ o(Ey) ® P

® The near detector(s) play a key role in constraining systematic uncertainties for
oscillation parameter measurements

= But it’s not a trivial task due to experiment resolution
. NP = OFP (even without oscillations) so relies on flux models to extrapolate

= Detector efficiency needs to be well understood
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MEASURING NEUTRINO OSCILLATION PARAMETERS

" The observed event rate at the FD is the result of the convolution of multiple effects
Nops = PP(E,) @ 0(E,) @ €™ ® Py (Ev)
® The observed rate at the ND is identical in form, up to the last term
Nops = ®VP(E,) @ o(Ey) ® P

® The near detector(s) play a key role in constraining systematic uncertainties for
oscillation parameter measurements

= But it’s not a trivial task due to experiment resolution
. NP = OFP (even without oscillations) so relies on flux models to extrapolate
= Detector efficiency needs to be well understood

® ¢g(E,) has an intrinsic dependence on E|,
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MEASURING NEUTRINO OSCILLATION PARAMETERS

" The observed event rate at the FD is the result of the convolution of multiple effects
Nops = PP(E,) @ 0(E,) @ €™ ® Py (Ev)
® The observed rate at the ND is identical in form, up to the last term
Nops = ®VP(E,) @ o(Ey) ® P

® The near detector(s) play a key role in constraining systematic uncertainties for
oscillation parameter measurements

= But it’s not a trivial task due to experiment resolution
. NP = OFP (even without oscillations) so relies on flux models to extrapolate
= Detector efficiency needs to be well understood

® ¢g(E,) has an intrinsic dependence on E|,

= ...and we do not know enough about neutrino interactions with matter in general!
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MEASURING NEUTRINO OSCILLATION PARAMETERS

" The observed event rate at the FD is the result of the convolution of multiple effects
N(flg)s = CDFD(Ev) K o(E) X e’ ® Pva_,vﬁ (Ev)
® The observed rate at the ND is identical in form, up to the last term
Nops = ®VP(E,) @ o(E,) ® €"P

® The near detector(s) play a key role in constraining systematic uncertainties for
oscillation parameter measurements

= But it’s not a trivial task due to experiment resolution
m *PND = OFP (even without oscillations) so relies on flux models to extrapolate
= Detector efficiency needs to be well understood

= *g(E,) has an intrinsic dependence on E,,

= ...and we do not know enough about neutrino interactions with matter in general!

*But DUNE-PRISM might change that!

See for details
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https://arxiv.org/pdf/2103.13910.pdf

MEASURING NEUTRINO OSCILLATION PARAMETERS

" The observed event rate at the FD is the result of the convolution of multiple effects
Nops = PP(E,) @ 0(E,) @ €™ ® Py (Ev)
® The observed rate at the ND is identical in form, up to the last term
Nops = ®VP(E,) @ o(Ey) ® P

® The near detector(s) play a key role in constraining systematic uncertainties for
oscillation parameter measurements

= But it’'s not a trivial task due to experiment resolution
. NP = OFP (even without oscillations) so relies on flux models to extrapolate
= Detector efficiency needs to be well understood
® ¢g(E,) has an intrinsic dependence on E|,

= ...and we do not know enough about neutrino interactions with matter in general!

= Currently the dominant source of systematic uncertainty of neutrino oscillation
experiments
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NEAR DETECTOR SAMPLES

® The DUNE near detector are an essential part of the oscillation analysis

® Preliminary ideas for samples from each near detector

ND LAr +TMS

ND GAr (as a target)

SAND

CC Inclusive
Split by ™ and no m?
Binned in E, "¢ + u kinematics

Possible v+e sample

Stretch goal: TKI binning?

CC Inclusive
Split by m multiplicity
Binned in 7¥ momentum

Constrain lost t* in E, "¢

Stretch goal: p multiplicity

CC Inclusive
Split by CH, and C targets
Binned in Q2.

Constrain form factors and flux

Stretch goals:
7 multiplicity, E,,"¢ binning

= Each detector technology brings an enhanced sensitivity to a different type of

effect

25.10.2022
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PDF

Ratio

AND AFTER THE ND CONSTRAINT?

= Reweighting in bias space
"  Model predictions for the reconstructed energy bias are very different
= And the predictions disagree in different ways depending on the neutrino energy
" Propose an ad-hoc freedom to explore model differences in neutrino energy bias space directly

= Targets directly sources of bias in the oscillation parameters measurement

61241%(:)e|s (Total) § = | T T | T T T T | Total
G1801a s 015 i'| —— G1810a
—— G1802a - :
G1810a - E CRPA
——— CRPASUSAv2Hybrid 01— i.| —— NEUT_LFG
----- SuSAv2 — B
NEUT_LFG - Nuqu_SF
- NuWro_LFG [ H
NuWro_SF 0.05}— J O S SO TSRN

-0.05

TTTT T TTIT

II‘Il

Ratio

Relative Bias

Plots by Adam Wong
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AND AFTER THE ND CONSTRAINT?

arXiv:2110.14601

-1<cosf, <0 0 <cosb, <0.6

1.4}

v, CCOr C/Ar Ratio
HF-CRPA
-- HF
—— SuSAv2
— LFG-RPA
-- LFG (no RPA)

= C toAr scaling

= Crucial if SAND samples are included (CH

r 0.6 <cosh, <0.75 ! 0.75 < cos6, <0.86
target) 1.4}

= But also many of our existing uncertainties
and model parameters have been tuned to
other nuclear targets

I:{C/Ar

= Model predictions on this scaling differ and
we need to account for this

0.86 <cosd, <0.93 | 0.93 <cosh, <1

1.1}

1.0F [ -

2.9F

_____

Muon momentum (GeV/c)
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v, /v, DIFFERENCES

= v,/V, differences are leading systematic effect for §.p measurement
= Need to be constrained to ~3% for DUNE goals

= But we have almost no v, at the ND

" Lepton flavor universality helps us here — we can constrain the vast majority of v, related
uncertainties using v, data

= But at low energy transfer, mass difference effects start to matter (caution — high stats fluctuations)

x NRRRAEARSAE RRRRSRRNNS =
U\l" ‘_, S e e e R ===
& QE _________________ Ag_r..e__em@m_,_asr9§§_._a_l_l ____________________________ k

energles W|th|n

0.05%! 1

Models (Total)
— G1810b
----- SuSAv2
——— CRPASuSAv2Hybrid
----- G1801a
—— G1802a
----- NEUT_LFG
NuWro_LFG
----- NuWro_SF

25.10.2022

Plot by Adam Wong

El'rue (GeV)

LAURA MUNTEANU - NUINT 2022, SEOUL, SOUTH KOREA

66



v, /v, DIFFERENCES

= v,/V, differences are leading systematic effect for §.p measurement

= Need to be constrained to ~3% for DUNE goals
= But we have almost no v, at the ND

= | epton flavor universality helps us here — we can constrain the vast majority of v, related
uncertainties using v, data

= Larger disagreement between v, and v, predictions — especially at low momentum

o = T T T T 3 b —T T 1 Models (CCOTHERS)
(S| — - (S| : ] G1810b
ULU T _\—A: """""""""""" i ULU .................................................................................... SuSAv2
S5 | T = \} = CRPASUSAv2Hybrid
o = S -e--- G1801a
% [ oA Agreement across all ST S . W R M
0.8 _i ............... ,. .......................................................................................................... ........ p— Fl W R | NEUT LFG
~ H o, ; i i ] NuWro_LFG
- energles wn:hln 0. OSA ] 1 VS D M s
0.6 — e . ........ —
N Models (Total)
: : : —— G1810b
(1 P R Bt SuSAv2
—— CRPASUSAv2Hybrid
----- G1801a
0.2 — G1802a
B e Y S S S TP NEUT_LFG
NuWro_LFG
----- NuWro_SF
o . 9o - H s . N
¢ “] H H H H
\/ EI™® (GeV)
Plot by Adam Wong

Plot by Adam Wong
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Ratio

08

0.6

v, /v, DIFFERENCES

= ND will be crucial in constraining key uncertainties for §.p measurement

= Need continued iterations with theorists concerning v, cross sections in the region where mass

effects become important

= |deally will also include radiative corrections and other nuclear effects into these uncertainties

= T T T T = b T Models (CCOTHERS)
- Ly G1810b
L L LT - G I A e T ) Py SuSAv2
- S T T T — CRPASuSAv2Hybrid
= 3N ----- G1801a
C Agreement across all = T S . N R R g -
_é: ............... T o S I I B G st St | I NEUT LFG
~ E o, ) ] NuWro_LFG
- energles wn:hln 0. OSA = A S N WS NN R foeen
B Models (Total)

— G1810b

----- SuSAv2

= CRPASuUSAv2Hybrid

----- G1801a

—— G1802a

----- NEUT_LFG

NuWro_LFG
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i -I
0.95 -1~
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Plot by Adam Wong
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