

Measurement of numu and numu-bar charged-current interactions on iron using a nuclear emulsion detector in the NINJA experiment

Akihiro Minamino (Yokohama National University) for NINJA Collaboration

October 24, 2022 NuINT 2022 @ Seoul National University

NINJA experiment (J-PARC T60/T66/T68/T81 & E71) Neutrino Interaction research with Nuclear emulsion and J-PARC Accelerator

• The NINJA experiment is studying neutrino-nucleus interactions around I GeV using an emulsion-based detector and J-PARC neutrino beam.

NINJA experiment (J-PARC T60/T66/T68/T81 & E71)

<u>Neutrino Interaction research with Nuclear emulsion and J-PARC Accelerator</u>

- The sub-micron resolution allows us to detect short tracks of lowmomentum charged particles.
 - Proton (Pion) tracks can be detected down to 200 (50) MeV/c.
 - Suitable to measure the nuclear effects.
 - Events such as 2p2h interactions can be selected with high purity.

NINJA runs

Today

- Pilot runs
 - 2kg iron @SS (2015, \bar{v} : 1.38×10²⁰ POT)
 - 65kg iron @SS (2016, v: 0.4×10²⁰ POT, \bar{v} : 3.5×10²⁰ POT)
 - 3kg water @SS (2017-2018, ⊽: 7.0×10²⁰ POT)
 - 9kg heavy water @B2 (2021, v: 1.78×10²⁰ POT)
- Physics run
 - 75kg water, I30kg iron, CH I5kg @B2 (2019-2020, ν: 4.8×10²⁰ POT)

Detector setup (65 kg iron target run)

Momentum measurements in ECC

- ① Range-Energy relation
- ② Multiple Coulomb Scattering
 - A) Angular method: angular difference
 - B) Coordinate method: positional difference

Momentum resolution	Muon	Pion	Proton
Angular method	43.0%	29.6%	36.0%
Coordinate method	25.9%	25.2%	30.7%
Range-energy relation	6.4%	-	3.8%

Coordinate method

p

1.2

0.2

0.4

0.6

08

Proton true momentum (GeV/c)

Number of protons [Arb. Norm.]

Neutrino beam simulation

- JNUBEAM 13av6.1
 - FLUKA 2011.2 tuned with the NA61 replica-2009 data

Neutrino Event generator

• NEUT 5.4.0

Interaction models used in the nominal $\ensuremath{\mathsf{MC}}$

Interaction	Model
CCQE	lplh model by Nieves et al.
	LFG with RPA correction $(M_A^{QE}=1.05 \text{ GeV/c}^2)$
2p2h	2p2h model by Nieves et al.
RES	Model described by Rein-Sehgal (M_A^{RES} =0.95 GeV/c ²
$COH\pi$	Model described by Rein-Sehgal
DIS	GRV98 PDF with Bodek and Yang correction
FSI	Semi-classical intra-nuclear cascade model

cross sections on iron

Results (v mode)

H. Oshima et al., Prog. Theor. Exp. Phys. 2021, 033C01 (2021)
H. Oshima et al., Phys. Rev. D 106, 032016 (2022)

Flux-averaged CC inclusive cross section on iron (v mode, \bar{E}_{v} = 1.49 GeV)

• 183 events were selected as ν_{μ} CC interaction candidates.

Muon kinematics of CC inclusive interaction on iron (183 events, v mode, \bar{E}_{ν} = 1.49 GeV)

• The results agree well with the MC prediction.

Pion kinematics of CC inclusive interaction on iron (183 events, v mode, \overline{E}_{ν} = 1.49 GeV)

12

Proton kinematics of CC inclusive interaction on iron (183 events, v mode, \bar{E}_{ν} = 1.49 GeV)

Opening angle between two protons of CCO π 2p on iron (20 events, v mode, \overline{E}_{ν} = 1.49 GeV)

• # of same-direction protons of Data are larger than that of MC prediction.

Results (Anti-v mode)

Flux-averaged CC inclusive cross section on iron (anti-v mode, \bar{E}_{v} = 1.30 GeV)

•770 events were selected as $\overline{\nu_{\mu}}$ CC interaction candidates.

Muon kinematics of CC inclusive interaction on iron (770 events, anti-v mode, \bar{E}_{v} = 1.30 GeV)

• The results agree well with the MC prediction.

Pion kinematics of CC inclusive interaction on iron (770 events, anti-v mode, \bar{E}_{v} = 1.30 GeV)

Pion angle and momentum

of back-scattered and low-momentum pions of Data are larger than that of MC prediction.

Proton kinematics of CC inclusive interaction on iron (770 events, anti-v mode, \overline{E}_{ν} = 1.30 GeV)

Proton angle and momentum

• The results agree well with the MC prediction.

Summary

<u>65 kg iron target + emulsion films</u>

• v mode (\bar{E}_{ν} = 1.49 GeV, 0.4×10²⁰ POT)

- The flux averaged CC-inclusive cross section is consistent with the T2K INGRID measurement and the MC prediction.
- Differences in Data and MC were found below.
 - CC-inclusive: Angle distribution of pions.
 - CC-inclusive: Angle distribution of protons.
 - CCO π 2p: Opening angle between two protons.
- Anti-v mode (\bar{E}_{v} = 1.30 GeV, 3.5×10²⁰ POT)
 - The flux averaged CC-inclusive cross section is larger than the MC prediction.
 - Differences in Data and MC were found below.
 - CC-inclusive: Angle and Momentum distribution of pions.

Backup

Monte Carlo simulations (65 kg iron target run)

- Neutrino beam simulation: JNUBEAM 13av6.1
- Neutrino Event generator: NEUT 5.4.0
- Detector simulation: Geant4 (QGSP BERT)

Event reconstruction and the selection of neutrino interactions

Scanback method :

The muon candidates were traced back from INGRID to the interaction vertices. If no tracks with connection are fond in the three upstream films, the retracing is finished.

Event reconstruction and the selection of neutrino interactions

Scanback method :

The muon candidates were traced back from INGRID to the interaction vertices. If no tracks with connection are fond in the three upstream films, the retracing is finished.

Proton / pion track search

- p/ π tracks were searched using a minimum distance (MD) from the muon track.

1.0 _E

0.9

0.8

0.7

1.0

0.9

0.8

0.7

0

10 20

30

40 50

60

Finding efficiency

0

10 20 30

Finding efficiency

Forward emission

4

50

70

80 90

80 90 100

MD (µm)

MC study

Thin tracks (MIPs)

(Heavily ionizing

particles)

Black tracks

Detection efficiencies of pions and protons

- Thin (Black) tracks are required to have at least three (two) track segments.

 \rightarrow the momentum threshold for pions (protons) is 50 MeV/*c* (200 MeV/*c*).

- Angle acceptance: $\left|\theta_{x(y)}\right|<\sim \!\!60^\circ$

dE/dx measurments in the ECC brick

Particle identification of protons and pions

28

Mis-PID rates of pions and protons

In the region of p β below 0.5 GeV/*c*, the average mis-PID rates were 0.5% and 0.1% for pions and protons, respectively.

The mis-PID rates for p β above 1.0 GeV/*c* are 19.3% and 15.7% for pions and protons, respectively.