Status of the $\bar{\nu}_{\mu}CC\pi^{0}$ cross-section measurement in the NOvA ND

Fan Gao, Matt Judah, and Donna Naples *for the NOvA Collaboration* NuInt 2022 Seoul, Korea October 28, 2022

Motivations

- π^0 production measurements provides insight on backgrounds to $\nu_e/\bar{\nu}_e$ appearance
- Measuring $CC\pi^0$ production probes systematic uncertainties for neutrino interaction models
 - Resonant
 - Deep Inelastic Scattering

Deep Inelastic Scattering

NOvA Near Detector

- The near detector (ND) is 1 km from the neutrino beam target and lies 100 m underground at Fermilab.
- 300t tracking calorimeter, constructed from extruded PVC cells filled with liquid scintillator
- + 77% $CH_2\text{, }$ 16% Cl, 6% TiO_2 by mass
- It is located ~14.6 mrad off-axis from the NuMI beam line

High flux purity and about 1 million $\bar{\nu}_{\mu}CC$ in antineutrino mode dataset

NOvA Simulation

EM Showers in the ND

Goal
$$\bar{\nu}_{\mu} + N \rightarrow \mu^{+} + N\pi^{0} + X$$

Measure charged-current differential cross section with respect to π^0 momentum and angle in antineutrino mode NOvA near detector data

Semi-inclusive measurement: $N \ge 1$ Detection threshold: $E_{\pi^0} > 200 \text{ MeV}$

Particle Identification

- Developed CNN algorithms to identify final-state particles associated with reconstructed prongs
- Trained on sample of individually simulated particles (no reliance on Event Generators)
 - $e, \gamma, \pi^{\pm}, \mu, p$
 - Uniform sampling in momentum, angle, position

Binary classification for prongs:

• EM-like vs non-EM-like

EM Shower Selection

Events (12.50 × 10²⁰ POT)

- **Prong 1 & 2:** Two candidate EM-like prongs in $\bar{\nu}_{\mu}$ CC sample
 - Select two candidate EM-like prongs with highest CNN EM scores
 - ~8700 $\bar{\nu}_{\mu} CC \pi^0$ signal events
 - Selection purity 48.5%
 - Largest backgrounds:
 - $\bar{\nu}_{\mu}$ CC with Secondary π^0
 - $\bar{\nu}_{\mu}CC0\pi^0$

Extracting More Physics

- Number of prong cut splits selected sample into two samples
- Corresponds to two different average W values

Analysis uses a data-driven template fit to constrain $\bar{\nu}_{\mu}/\nu_{\mu} CC0\pi^0$ and NC backgrounds

- Utilizes 4 sidebands:
 - nProngs = 3: $\bar{\nu}_{\mu}/\nu_{\mu}CC0\pi^{0}$ -1 Sideband, $\bar{\nu}_{\mu}/\nu_{\mu}CC0\pi^{0}$ -2 Sideband
 - nProngs > 3: $\bar{\nu}_{\mu}/\nu_{\mu}CC0\pi^{0}$ -1 Sideband, NC sideband

Analysis uses a data-driven template fit to constrain $\bar{\nu}_{\mu}/\nu_{\mu} CC0\pi^0$ and NC backgrounds

- Utilizes 4 sidebands:
 - nProngs = 3: $\bar{\nu}_{\mu}/\nu_{\mu}CC0\pi^{0}$ -1 Sideband, $\bar{\nu}_{\mu}/\nu_{\mu}CC0\pi^{0}$ -2 Sideband
 - nProngs > 3: $\bar{\nu}_{\mu}/\nu_{\mu}CC0\pi^{0}$ -1 Sideband, NC sideband

Analysis uses a data-driven template fit to constrain $\bar{\nu}_{\mu}/\nu_{\mu} CC0\pi^0$ and NC backgrounds

- Utilizes 4 sidebands:
 - nProngs = 3: $\bar{\nu}_{\mu}/\nu_{\mu}CC0\pi^{0}$ -1 Sideband, $\bar{\nu}_{\mu}/\nu_{\mu}CC0\pi^{0}$ -2 Sideband
 - nProngs > 3: $\bar{\nu}_{\mu}/\nu_{\mu}CC0\pi^{0}$ -1 Sideband, NC sideband

Analysis uses a data-driven **template fit** to constrain $\bar{\nu}_{\mu}/\nu_{\mu}CC0\pi^{0}$ and **NC** backgrounds

- Project each kinematic bin $(\theta_{\pi^0}, P_{\pi^0})$ down to the template distributions broken down by signal and background components across all """ sidebands
- Construct covariance matrix V, where

 $V = V_{stat} + V_{syst}$

- Systematics include: nu-A modeling, detector calibration and modeling, and flux (nProng=3)
- Fit for background template normalization parameters using all bins simultaneously to minimize:

•
$$\chi^2 = (x - \mu)^T V^{-1} (x - \mu)$$

Pittsburgh M. Judah | NOVA $\bar{\nu}_{\mu}CC\pi^0$ Status

Fit Results - Fake Data

nProngs = 3

Fake Data: Adjust $\bar{\nu}_{\mu}/\nu_{\mu}{
m CC0}\pi^{0}$ and NC shifted up 10% in statistically independent sample

$$\chi^2$$
: 388 (Pre-fit) \rightarrow 264 (Post)

 $\bar{\nu}_{\mu}/\nu_{\mu}$ CC $0\pi^0$ - 1 Sideband

1.2

 $12.50 \times 10^{20} \text{ POT}$

Events / 0.4

Data / MC

0.8

0.6

0.2

0.9

0.8

D 600 10^{20}

× 400 12.50

Events / 1 0 0

$\bar{\nu}_{\mu}/\nu_{\mu}$ CC 0 π^0 - 2 Sideband

1.5

After

1.5

University of Pittsburgh M. Judah | NOvA $\bar{\nu}_{\mu}CC\pi^0$ Status

Fit Results - Fake Data

nProngs > 3

Fake Data: Adjust $\bar{\nu}_{\mu}/\nu_{\mu} CC0\pi^{0}$ and **NC** shifted up 10% in statistically independent sample

 χ^2 : 388 (Pre-fit) \rightarrow 264 (Post)

Pittsburgh M. Judah | NOvA $\bar{\nu}_{\mu}CC\pi^0$ Status

University of

 $\bar{\nu}_{\mu}/\nu_{\mu}$ CC 0 π^0 - 1 Sideband

NC Sideband

Fit Results - Fake Data

Fit results applied to signal region to constraint $\bar{\nu}_{\mu}/\nu_{\mu} CC0\pi^{0}$ and NC predictions

University of Pittsburgh M. Judah | NOVA $\bar{\nu}_{\mu}CC\pi^0$ Status

nProngs = 3

nProngs > 3

6

Summary

- High statistics antineutrino mode data in the NOvA near detector can be used to measure the $\bar{\nu}_{\mu}CC\pi^{0}$ differential cross section w.r.t π^{0} momentum and angle
 - Planning measurement to be made in 2 bins of different average W
- CNN has been developed for EM shower selection
- Developed data-driven template fit to estimate $\bar{\nu}_{\mu}/\nu_{\mu}CC0\pi^0$ and NC backgrounds using correlated sidebands
- Currently finalizing unfolding and systematic uncertainty estimation
 - Expecting uncertainties in the 15-20% range

Expect results soon!

Looking Forward

- NOvA's high rate of neutrino interactions in the ND, off-axis narrow-band beam, and excellent tracking capabilities provide a great platform to make precision measurements of nu-A interactions
- High statistics datasets:
 - + $\,\approx\,20\times10^{20}\,{\rm POT}$ in neutrino mode
 - $\approx 12 \times 10^{20}$ POT in antineutrino mode
- Antineutrino inclusive measurements are a high priority in NOvA
- Both $CC\pi$ and $CC0\pi$ measurements are in progress for neutrino and antineutrino mode data

Stay tuned for exciting results from NOvA!

Selecting Candidate Interactions

Pittsburgh M. Judah | NOvA $\bar{\nu}_{\mu}$ CC π^0 Status

 Interaction vertex reconstructed in the fiducial volume

- Tracks/showers contained
- $u_{\mu}CC$ interaction a long muon track
 - Identify muon-like prong: PID based on dE/dx and scattering variables
- π^0 in the final state
 - 2 distinct EM showers

Selecting Candidate Interactions

Pittsburgh M. Judah | NOvA $\bar{\nu}_{\mu}$ CC π^0 Status

- Interaction vertex reconstructed in the fiducial volume
- Tracks/showers contained
- $u_{\mu}CC$ interaction a long muon track
 - Identify muon-like prong: PID based on dE/dx and scattering variables
- π^0 in the final state
 - 2 distinct EM showers

Neutral Pion Selection

Pittsburgh M. Judah | NOvA $\bar{\nu}_{\mu}CC\pi^0$ Status

- **Prong 1 & 2:** Two candidate EM-like prongs in $\bar{\nu}_{\mu}CC$ sample
 - Select two candidate EM-like prongs with highest CNN EM scores

Analysis uses a data-driven template fit to constrain $\bar{\nu}_{\mu}/\nu_{\mu} CC0\pi^0$ and NC backgrounds

- Utilizes 4 sidebands:
 - nProngs = 3: $\bar{\nu}_{\mu}/\nu_{\mu}CC0\pi^{0}$ -1 Sideband, $\bar{\nu}_{\mu}/\nu_{\mu}CC0\pi^{0}$ -2 Sideband, $\nu_{\mu}/\bar{\nu}_{\mu}CC0\pi^{0}$ -2 Sideband
 - nProngs > 3: $\bar{\nu}_{\mu}/\nu_{\mu}CC0\pi^{0}$ -1 Sideband, NC sideband

nProngs = 3 sample sidebands

nProngs > 3 sample sidebands

 $v_{\mu}/\overline{v}_{\mu}CC$ secondary π^{0}

 $- v_{\rm u} / \overline{v}_{\rm u} CC \ 0 \pi^0$

University of Pittsburgh M. Judah | NOVA $\bar{\nu}_{\mu}CC\pi^0$ Status

NC

Other