Production of a 4.4-MeV gamma ray from NC neutrino-oxygen reaction in a water Cherenkov detector for supernova neutrino bursts and the isospin mixing of the 2⁻ states (12.97 MeV and 12.53 MeV) of O

Wednesday 26 October 2022 16:50 (20 minutes)

We first discuss and determine the isospin mixing of the two 2⁻ states (12.53 MeV and 12.97 MeV) of ¹⁶O nucleus using the inelastic electron scattering data. We then evaluate the cross section of 4.4-MeV γ rays produced in the neutrino neutral-current (NC) reaction ¹⁶O(ν , ν')¹⁶O(12.97MeV, 2⁻) with a water Cherenkov detector at the low energy below 100 MeV. We have made the shell-model calculation of this NC neutrino-¹⁶O(12.97MeV, 2⁻) cross section as accurate as possible by calibrating both the vector form factor (or spin g-factor g_s) and the axial coupling constant (g_A), using real data of the (e,e') cross section, muon-capture of ¹⁶O(12.97MeV, 2⁻), and ¹⁶N β -decay from the 2⁻ analogue state to the ¹⁶O ground state. We compare the γ -ray production rate from this process with that from the excited states (E_x >16 MeV), which was discussed previously by many authors. In this talk, we discuss a new NC reaction channel from ¹⁶O(12.97 MeV, 2⁻) producing a 4.4-MeV γ ray, the cross section of which is more robust and even larger at the low energy ($E_{\nu} < 25$ MeV) than the NC cross section from ¹⁶O($E_x > 16$ MeV, T = 1). We also evaluate the number of such events induced by neutrinos from supernova explosion which can be observed by the Super-Kamiokande, a 32 kton water Cherenkov detector in the Earth.

Author: SAKUDA, Makoto (Okayama University)

Co-authors: Prof. SUZUKI, Hideyuki (Tokyo University of Science); Dr NAKAZATO, Ken'ichiro (Kyushu University); Dr REEN, Mandeep (Akal University); Prof. SUZUKI, Toshio (Nihon University)

Presenter: SAKUDA, Makoto (Okayama University)

Session Classification: Low Energy Scattering