

A new Scattering and Neutrino Detector at the LHC

- Status of SND@LHC -

NuINT2022

24–29 Oct 2022 Hoam Faculty House at SNU, Korea C.S. Yoon (GNU, Korea)
On behalf of SND@LHC Collaboration

Neutrino experiments using Nuclear Emulsion

```
1978 - 1983 FNAL E531 ~ 100 kg
               charm (lifetime), v_{\mu} \rightarrow v_{\tau} (by-product)
1990 - 2000 CHORUS (CERN WA95) ~ 1 ton
               v_{\mu} \rightarrow v_{\tau} short baseline (v as DM)
               No v_{\tau} event, ~2000 charm
1994 - 2001 DONUT (FNAL E872) ~ 1 ton
               v_{\tau} direct observation (9 events)
2000 -
              OPERA (CERN CNGS) ~ 1250 ton
               v_{\mu} \rightarrow v_{\tau} long baseline
               Appearance mode (10 events)
Recently
             SHiP, DsTau (CERN NA65),
              SND@LHC, FASERV
```

The results of CHORUS, DONuT and OPERA are consistent with each other.

600 GeV π^- interaction in emulsion (FNAL E653)

All flavors of Neutrinos can be identified by their scatterings in SND.

SND: Scattering and Neutrino Detector (**ECC** + SciFi + Muon detector)

ECC as high precision tracker $\rightarrow \nu_{\tau}$ can be identified by detecting τ track.

- ${
 m v_e}$ ightarrow by detecting electron track via EM cascade shower
- ν_{μ} \rightarrow by detecting μ track with help of Muon detector

bottom layer

 v_{μ} CC event (OPERA)

First observation of Collider neutrinos using LHC forward produced particles

- LHC can create huge numbers of high-energy neutrinos.
 But no neutrinos produced at a particle collider has ever been directly detected.
- LHC is a unique facility for measuring the vN cross sections in the 350 GeV - 10 TeV range.

• Early studies for LHC neutrinos

Klaus Winter, 1990, Observing tau neutrinos at the LHC

- A. De Rùjula et al., 1993, Neutrino fluxes at LHC
- F. Vannucci, 1993, Neutrino physics at the LHC
- G. De Lellis et al., CMS-XSEN: LHC Neutrinos at CMS (ArXiv 1804.04413, 12 Apr 2018)

SND@LHC and **FASER**

Symmetric - 480 m away from ATLAS IP **Complementarity** - different η range

Suitable experimental environment
LHC magnet - deflect charged particles
100 m rock - absorb residual hadrons

Energy vs. Pseudo-rapidity of neutrinos from LHC

LOS (Line of Sight)
Beam collision axis

LHC experiments

Study of very high-energy neutrinos in the unexplored energy range

(350 GeV - 10 TeV)

and unexplored pseudo-rapidity region : $7.2 < \eta < 8.4$ (off-axis)

 $\eta > 8.8$ (on-axis) \rightarrow FASER ν

- → About **2,000 high-energy neutrino interactions** will be able to study.
- Search for FIMPs (feebly interacting particles)
 - → by detecting electron recoils or proton recoils in ECC target

- Data taking is just starting from July 2022
 during 4 years in LHC Run 3 (2022-2025).
 - total integrated luminosity 290 fb⁻¹

SND@LHC detector

- Emulsion-Counter Hybrid detector: optimized for the identification of three neutrino flavours and for the detection of feebly interacting particles
- Veto plane: tag penetrating muons
- Vertex detector + ECAL : ECC (Emulsion Cloud Chamber) for detection of V interactions
 & Scattering and decay of FIMPs, and for momentum measurements
 SciFi for position prediction, timing and E measurement of outgoing particles
- Muon system + HCAL: iron walls interleaved with plastic scintillator planes for fast time resolution and E measurement

ECC target + SciFi

ECC (Emulsion Cloud Chamber) target & detector

- 5 ECC Brick walls
 - 2 x 2 bricks x 5 walls
 - weight 830 kg (\sim 40 X₀)
 - surface 44 m²

Replace every ~25 fb⁻¹ (total ~290 fb⁻¹ in 4 yrs)

~3 times replacements / yr

- ECC Brick
 - 56 Tungsten layers (1 mm-thick each)
 & 57 Emulsion films (310 μm-thick each)
 - Surface 19.2 x 19.2 cm²

5 ECC brick walls & 5 SciFi walls

1 wall (4 bricks inside)

41.5 kg

Nuclear emulsion:

3D image detector & Precision tracker

(Spatial resolution $< 1 \mu m$)

Emulsion as Precision Tracker

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Reconstruction of events using Base tracks

3D image detector

Neutrino event in emulsion

Cross-sectional view of emulsion plate

Physics program in LHC Run 3 (2022-2025)

(E > 600 GeV)

- Measurement of the cross section (pp $\rightarrow \nu$ X) in 7.2 < η < 8.4 range
- Lepton flavor universality test in neutrino interactions: by measuring $v_{\tau}/v_{\rm e}$ and $v_{\mu}/v_{\rm e}$ (all 3 neutrino flavors can be identified)

$$R_{13} = \frac{N_{\nu_e + \overline{\nu_e}}}{N_{\nu_\tau + \overline{\nu_\tau}}} = \frac{\Sigma_i f_{c_i} Br \left(c_i \to \nu_e \, X \right)}{f_{D_s} \, Br \left(D_s \to \tau \, \nu_\tau \right)} \; , \qquad R_{12} = \frac{N_{\nu_e + \overline{\nu_e}}}{N_{\nu_\mu + \overline{\nu_\mu}}} = \frac{1}{1 + \omega_{\pi,K}} \qquad \text{Contamination}$$

• Measurement of the NC/CC ratio

$$P = \frac{\Sigma_i \, \sigma_{NC}^{\nu_i} + \sigma_{NC}^{\overline{\nu}_i}}{\Sigma_i \, \sigma_{CC}^{\nu_i} + \sigma_{CC}^{\overline{\nu}_i}}$$

- Direct search for feebly interacting particles through their scattering and decay
- Unique opportunity to prove physics of heavy flavor production at LHC in the region not accessible to ATLAS, CMS and LHCb
- $\nu_{\rm e}$ as a probe of charm quark production (~ 90% $\nu_{\rm e}$ from charm)

Neutrino expectations in Run 3

Integrated luminosity in Run 3: 290 fb⁻¹

$$\sqrt{s}$$
 = 13 TeV

The energy spectrum of **incoming neutrinos and anti-neutrinos** in the pseudo-rapidity range covered by the SND@LHC detector, $7.2 < \eta < 8.4$, normalised to 290 fb⁻¹.

About 1930 CC and 630 NC Neutrino interactions are expected in the target volume mainly from $v_{\rm u}$ (73%) and $v_{\rm e}$ (25%).

v production with DPMJET3, propagation with FLUKA, interaction with GENIE.

Feebly Interacting Particles

- Search for LDM & Hidden sector

Most of LHC experiments large angle (small η) Small cross section

LDM scattering

A' (V)
$$\rightarrow \chi \chi$$
 LDM pair

$$\begin{array}{ccc} \chi \ e \rightarrow \chi \ e & e\text{-recoil} \\ \chi \ p \rightarrow \chi \ p & p\text{-recoil} \end{array}$$

$$A'(V) \rightarrow \ell \ell$$
 lepton pair

One example: a scalar particle V coupled to the Standard Model via a leptophobic portal.

Production:

Detection: χ elastic/inelastic scattering off **nucleons** of the target

Sensitivity to the leptophobic portal arXiv:2104.09688

Detector installation in TI18 underground tunnel

2021. 9

2021. 12 2022. 3

Current view of TI18 tunnel

Emulsion facility at CERN

Emulsion target replacements in 2022

► RUN #0 Integrated luminosity: 0.52 fb⁻¹ Emulsion films: 57 target mass: 41 kg

► RUN #1 Integrated luminosity: 10.5 fb⁻¹ Emulsion films: 1173 target mass: 830 kg

► RUN #2 Taking data

Emulsion films: 1140 target mass: 830 kg

Emulsion Target #0

1/4 of Wall 3 equipped with emulsions Number of emulsion films: 57 (Nagoya)

Installation in the target: 7 Apr 2022 Extraction from the target: 26 July 2022

7 Apr - Wall 3 in TI18

film 1

One brick

26 July – Walls of Emulsion Target#0 extracted

ECC Brick wall replacement (Target #1, 26 July 2022)

Emulsion Target #2

Trolleys ready to be transported

Target replacement

Emulsion Target #1: Development

- Number of emulsion films: 1173
- First use of development facility and tools with full emulsion load
- Three parallel chains > 10h/day to complete development in 10 days

ECC target assembly → Installation → Extraction → Emulsion development → Scanning → Event analysis

Developed Emulsion film 19.2 cm x 19.2 cm

Simulation Event display (sndsw)

Real data in TI18

Cosmic ray (5 Mar 2022)

LHC beam
Muon from pp collision @13.6 TeV
(6 July 2022)

Side view

Emulsion data

Reconstructed tracks Run #0 (April - July 2022) $L = 0.52 \text{ fb}^{-1}$ Area = 1 cm²

Reconstructed tracks in the first run @13.6 TeV. Their directions are compatible with those coming from p-p collisions at IP1, after alignments for plate by plate connections.

Emulsion data

Muon tracks reconstructed in the emulsion target. No neutrino event yet.

15 tracks selected randomly in 1 x 1 cm² \rightarrow 57 emulsion films (1 brick)

RUN#0 emulsion target: 7 April - 26 July 2022

SND@LHC Collaboration

Bulgaria
Denmark
Germany
Italy
Japan
Korea
Russia
Switzerland
Turkey
United Kingdom
Portugal
Chile
Brazil

CERN

180 members, 24 institutes 13 countries & CERN

FPF (Forward Physics Facility)

Future project at HL-LHC era

Phys. Rept. 968 (2022) 1-50

Baseline option: 630 m from ATLAS IP

• The FPF will be 65 m-long and 8.5 m-wide and will house a diverse set of experiments:

AdvSND (Far) FORMOSA: Searching for millicharged particles

FASER2 & FASERv2 FLArE: Dark sector search

Our future plan (idea) - Advanced SND@LHC

- Upgrade of SND@LHC in view of an extended run during Run 4:
 - · Extension of the physics case
 - New technologies and detector layout

(Expectation 3000 fb⁻¹)

AdvSND-Far

	ν in acceptance		CC DIS	
Flavour	hardQCD: $c\bar{c}$	hard QCD: $b\overline{b}$	hardQCD: $c\bar{c}$	hard QCD: $b\overline{b}$
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	6.3×10^{12}	1.5×10^{11}	1.2×10^{4}	200
$ar{ u_e} + ar{ u}_e$	6.7×10^{12}	1.7×10^{11}	1.2×10^{4}	220
$ u_{ au} + \bar{ u}_{ au} $	7.1×10^{11}	4.7×10^{10}	880	40
Tot	1.4×10^{13}		2.5×10^4	

	ν in acceptance		CC DIS	
Flavour	hard QCD: $c\overline{c}$	hard QCD: $b\bar{b}$	hardQCD: $c\overline{c}$	hard QCD: $b\overline{b}$
$\overline{ u_{\mu} + ar{ u}_{\mu}}$	2.1×10^{12}	3.3×10^{11}	980	200
$\bar{ u}_e + \bar{ u}_e$	2.2×10^{12}	3.3×10^{11}	1000	200
$\nu_{ au} + \bar{\nu}_{ au}$	2.7×10^{11}	1.4×10^{11}	80	50
Tot	5.4×10^{12}		2.5×10^{3}	

Summary

- Forward produced particles from LHC Run 3 beam started to come to the SND@LHC Emulsion target (from July 2022).
- So far, two replacements of full Emulsion targets have been done (July and Sept 2022).
- Emulsion film development performed in the new Emulsion Facility (~1200 films in 10 days).
- Scanning is just starting (after plate alignments).
 - → waiting for the first Collider neutrino event with identified flavor!

Thank you for your attention!