Neutrino cross section at the transition region between shallow- and deep-inelastic scattering

Yu Seon Jeong (Chung-Ang University)

Based on the contribution to the FPF white paper (arXiv: 2203.05090) and work in progress with M. H. Reno (Univ. of Iowa),

NuInt 2022 **October 24-29, 2022**

Forward experiments at the LHC

Detector				Number of CC Interactions		
Name	Mass	Coverage	Luminosity	$\nu_e + \bar{\nu}_e$	$ u_{\mu} + ar{ u}_{\mu} $	$\nu_{ au} + \bar{\nu}_{ au}$
$FASER\nu$	1 ton	$\eta \gtrsim 8.5$	$150 { m fb^{-1}}$	901 / 3.4k	4.7k / 7.1k	15 / 97
SND@LHC	800kg	$7 < \eta < 8.5$	$150 { m ~fb^{-1}}$	137 / 395	790 / 1.0k	7.6 / 18.6
$FASER\nu 2$	20 tons	$\eta \gtrsim 8.5$	3 ab^{-1}	178k / 668k	943k / 1.4M	2.3k / 20k
FLArE	10 tons	$\eta\gtrsim7.5$	3 ab^{-1}	36k / 113k	203k / 268k	1.5k / 4k
AdvSND	2 tons	$7.2 \lesssim \eta \lesssim 9.2$	3 ab^{-1}	6.5k / 20k	41k / 53k	190 / 754

Neutrino energy spectrum at the FPF

GeV to a few TeV.

 \rightarrow unprecedented opportunity to study the neutrino interaction at unexplored energy regime There are also considerable number of neutrinos at 10s GeV energies.

The neutrinos that reach to the FPF are largely distributed from at the energies of hundreds

Neutrino interaction regime at the FPF

Ref: arXiv: 2203.05090

- Neutrino interactions at the FPF are mainly through deep inelastic scattering (DIS).
- Interactions via shallow inelastic scattering (SIS) are also considerable.
- Kinematic region
 - DIS: W > 2 GeV and $Q^2 > 1$ GeV² 0
 - SIS: $m_N + m_{\pi}$ (or 1.4 GeV) $\leq W \leq 2$ GeV, all Q^2

Ref.: M. S. Athar and J. G. Morfín, J.Phys.G 48 (2021) 3, 034001

Neutrino interaction cross sections

- For E > 100 GeV, neutrino cross sections are from the interactions of deep inelastic scattering.
- In intermediate energies of O(10) GeV 100 GeV, there exist different types of interactions, so do the transition regions.
- It is important to understand the cross sections in the transition regions to avoid double counting.

DIS cross section and structure functions at low Q²

Neutrino-nucleon cross section for deep inelastic scattering

$$\frac{d^2 \sigma^{\nu(\bar{\nu})}}{dx dy} = \frac{G_F^2 M E_{\nu}}{\pi (1 + Q^2 / M_W^2)^2} \left(\left(y^2 x + \frac{m_\tau^2 y}{2E_{\nu} M} \right) F_1^{\text{TMC}} + \left[\left(1 - \frac{m_\tau^2}{4E_{\nu}^2} \right) - \left(1 + \frac{M x}{2E_{\nu}} \right) y \right] F_2^{\text{TMC}} \right)$$
$$\pm \left[xy \left(1 - \frac{y}{2} \right) - \frac{m_\tau^2 y}{4E_{\nu} M} \right] F_3^{\text{TMC}} + \frac{m_\tau^2 (m_\tau^2 + Q^2)}{4E_{\nu}^2 M^2 x} F_4^{\text{TMC}} - \frac{m_\tau^2}{E_{\nu} M} F_5^{\text{TMC}} \right)$$

- Structure function $F_i(x, Q^2)$
 - essential component in evaluating the DIS cross section.

 - phenomenologically constructed by fitting to the data. (e.g) Bodek-Yang Model

expressed in terms of the parton distribution function (PDF) \rightarrow Not reliable for $Q^2 < 1$ GeV².

The Bodek-Yang parameterization

- Parameterizations for effective PDFs at low Q^2
- GRV98 LO PDFs + Fits to ep electromagnetic scattering data.

$$\xi \to \xi_{\omega} = \frac{2x \left[1 + \left(M_f^2 + B\right)/Q^2\right]}{\left[1 + \sqrt{1 + (2Mx)^2/Q^2}\right] + \frac{2Ax}{Q^2}}$$

$$K_{sea}(Q^2) = \frac{Q^2}{Q^2 + C_s}$$

$$K_{valence}(Q^2) = \left[1 - G_D^2(Q^2)\right] \left(\frac{\zeta}{\zeta}\right)$$

$F(x, Q^2 < 0.8 \,\mathrm{GeV}^2)$ $= K(Q^2) \times F(\xi_{\omega}, Q^2 = 0.8 \,\mathrm{GeV}^2)$

 $+C_{v2}$ $Q^2 + C_{v1}$

Ref.: A. Bodek and I. Park and U. K. Yang, Nuclear Physics B (Proc. Suppl.) 139 (2005) 113–118

The CKMT parameterization

- Parameterizations of structure function at lo
- Fits to the electromagnetic structure function data.

$$F_{2}(x,Q^{2}) = Ax^{-\Delta(Q^{2})}(1-x)^{n(Q^{2})+4} \left(\frac{Q^{2}}{Q^{2}+a}\right)^{1+\Delta(Q^{2})} \qquad n(Q^{2}) = \frac{3}{2} \left(1+\frac{Q^{2}}{Q^{2}+c}\right) + Bx^{1-\alpha_{R}}(1-x)^{n(Q^{2})} \left(\frac{Q^{2}}{Q^{2}+b}\right)^{\alpha_{R}} \left(1+f(1-x)\right) \qquad \Delta(Q^{2}) = \Delta_{0} \left(1+\frac{2Q^{2}}{Q^{2}+d}\right)$$

• Further modified with normalization to be adopted to νN charged-current scattering. (M. H. Reno, Phys. Rev. D74 (2006) 033001)

ow
$$Q^2$$

• A. Capella, A. Kaidalov, C. Merino and J. Tran Thanh Van, Phys. Lett. B 337, 358 (1994)

Comparison with the Bodek-Yang

Preliminary

Comparison with the Bodek-Yang

Preliminary

Impact of the W_{min} on $\nu/\bar{\nu}$ -nucleon CC cross section

Tau neutrino cross sections are suppressed for E_ν < 1 TeV
 → tau lepton mass effect.

Lower panels:
$$\frac{\sigma (W_{min})}{\sigma (W_{min} = m_N + m_N)}$$

- Impact of W_{\min}
 - appears at $E_{\nu} \lesssim 100 \text{ GeV}$
 - Iarger at lower energies.
 - Larger for antineutrinos

(e.g.) $E_{\nu} = 100 \text{ GeV}, W_{min} = 2 \text{ GeV}$ cross section is suppressed by 3% for tau neutrinos, and by 7% for antineutrinos.

Impact of the Q_{min}^2 on $\nu/\bar{\nu}$ -nucleon CC cross section

- The impact of cutoff on Q_{\min}^2 appears on a wider energy and it is more significant than that of W_{min} .
- The results with tungsten target are approximately the same.

• For $W_{min} = 1.4$ GeV, the cut on $Q_{min}^2 = 1$ GeV² affect 3% for neutrino and 5% for antineutrinos at 100 GeV.

Impact of the Q_{min}^2 and W_{min}

- The impact of Q_{min}^2 and W_{min} is more evident at low energies. 0
- For $W_{min} = 1.4$ GeV, the contribution from $Q_{min}^2 < 1$ GeV² to the CC cross section:
 - 3% for both muon neutrinos and tau neutrinos at $E_{\nu} = 100 \text{ GeV}$ 0
 - 21% for muon neutrinos and 10% for tau neutrinos $E_{\nu} = 10 \text{ GeV}$

For tau neutrinos results, the kinematic effect for tau production is indicated at lower energies.

Summary

- between the SIS and DIS interactions, using the neutrino-nucleon CC DIS cross sections.
- consistent cross sections.
- and the impact is greater at lower energies.
- cross sections.
 - e.g.) The treatment of the portion of the axial and vector structure functions (ref. Bodek-Yang, arXiv:2108.09240)

• We have investigated and quantified the impact of low Q^2 and low W, relevant for the transition region

Two phenomenological models for the low Q structure functions, the Bodek-Yang and CKMT, yield the

• The cutoff on Q^2 and W bring about difference in the predictions at a few percent level for $E_{\nu} \sim 100$ GeV,

• Further investigation for structure functions/PDFs for $Q_{min}^2 < 1$ GeV² is important to have reliable neutrino

