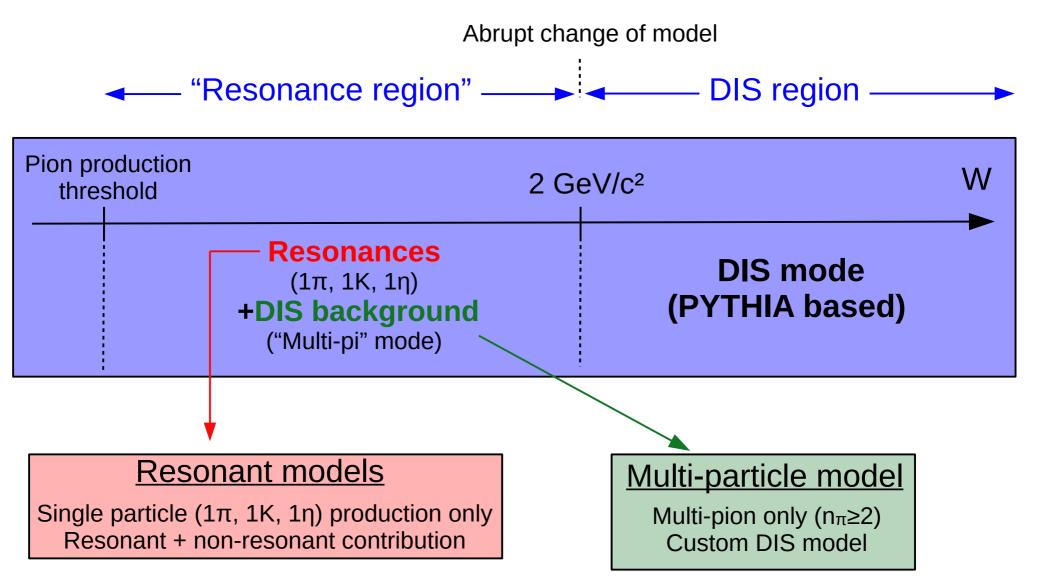

Deep inelastic interactions in NEUT

C. Bronner
Kyoto University
J. Xia
Kavli IPMU, The University of Tokyo

Introduction


- NEUT relies on different models to simulate neutrino interactions
- Will cover here the ones describing DIS interactions
- Main updates since last presented to the community (NEUT 5.4.0, 2018 pre-NuINT SIS/DIS workshop)
- Implementation and effect of the new Bodek-Yang model
- Updated comparisons with other generators

In NEUT:

 $Q^2 \leftrightarrow \text{lepton kinematics}$ $W \leftrightarrow \begin{cases} \text{Choice of model} \\ \text{Hadronic system} \end{cases}$

Inelastic region in NEUT

- > No $2\pi/3\pi$ resonances
- No DIS contribution to single particle production below W<2 GeV</p>
- 2 separate DIS models: low and high W

Low W DIS model

- Multi-pion mode describes the multiparticle (n_{had}≥3) component in the region 1.3 GeV/c² < W < 2GeV/c²
- Custom deep-inelastic model with the component n_{had}=2 removed (both in generated events and total cross-section) to avoid double counting with resonant modes
- Relies on two main inputs:
 - cross-section (d²σ/dxdy) for global kinematics (W/Q²)
 - hadron multiplicity model
- Assumes that all the events have:
 - one outgoing lepton
 - one outgoing baryon
 - n outgoing pions (n>1)
 - no kaons, η (only resonant production for W<2 GeV/c²)

High W DIS model

- Pure DIS mode for W>2 GeV/c² based on PYTHIA generator
- Recent version of PYTHIA do not allow generation of events at the low energies relevant for T2K/Super-Kamiokande
 - → use older version [1] (found in CERNLIB based on JetSet 5.72)
- \triangleright Cross-section calculated by integrating d² σ /dxdy (as for multi-pion mode)
- PYTHIA used only for the actual event generation:
 - \rightarrow input E_V and nucleon four-momentum (from simple RFG model)
 - → Loop over PYTHIA event generation until W>2 GeV and right NC/CC type

d²σ/dxdy

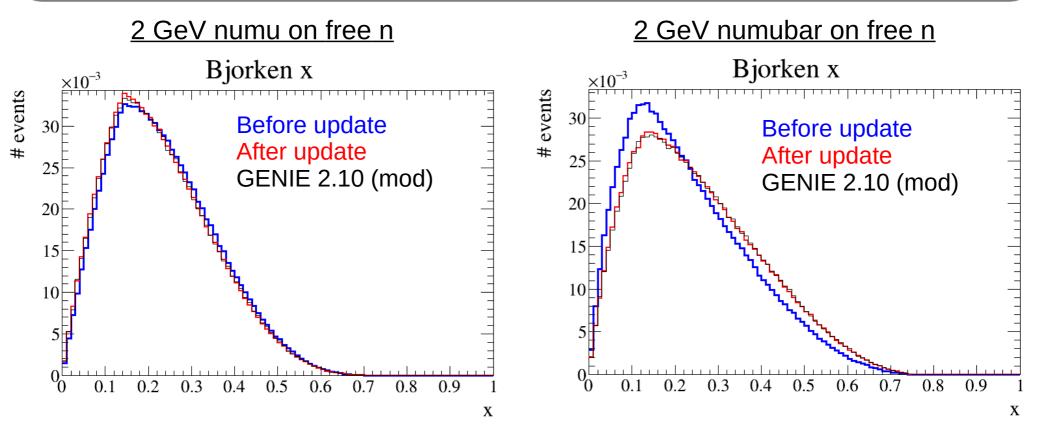
A central part of those models:

- → integrate over x and y to get total cross-section
- → Underlying probability to generate $(x,y) \rightarrow (Q^2,W)$

d²σ/dxdy parametrized in terms of structure functions F₁,..., F₅

$$\frac{d^2\sigma}{dxdy} \propto \sum_{i=1}^5 \alpha_i \times F_i(x, Q^2)$$

Use modified Calland-Gross and Albright-Jarlskog relations to relate F₁,F₄,F₅ to F₂ and xF₃

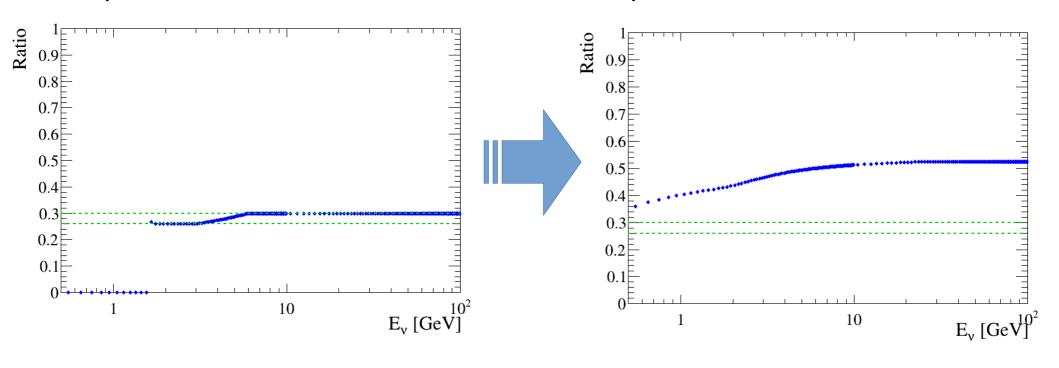

$$F_1(x,Q^2) = \frac{1}{2x} F_2(x,Q^2) \times \left(\frac{1 + 4M^2 x^2 / Q^2}{1 + R(x,Q^2)} \right) \qquad F_4(x,Q^2) = 0 \qquad F_5(x,Q^2) = \frac{F_2(x,Q^2)}{X}$$

> Finally use quark-parton model to compute F₂ and xF₃ from Parton Distribution Functions

PDFs not valid at low $Q^2 =>$ use Bodek-Yang model (see talk by U-K Yang for details)

Neutral current DIS events Structure functions

- NC DIS was very approximate in NEUT 5.4.0 for low W mode and cross-section calculations
- Was essentially the CC model with a different outgoing lepton mass. Fixed this:
 - use Z⁰ propagator instead of W for NC
 - use proper structure functions (eq 16.18 of PDG2011)
- After those updates, difference in scaling variables seen with GENIE disappeared

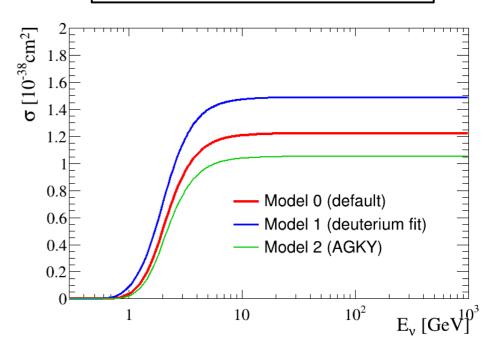


GENIE 2.10 with modifications (cut on number of pions, W,...) to make it comparable to NEUT multi-pi mode

Neutral current DIS events Cross-section

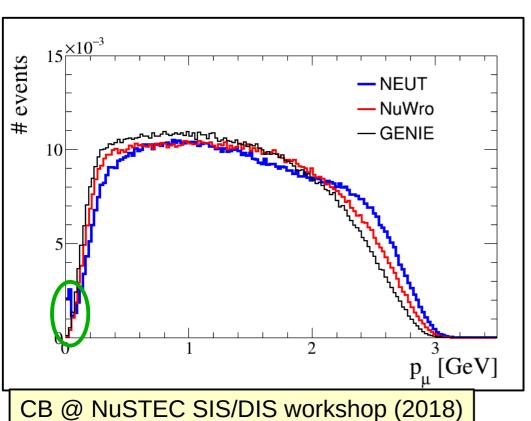
- Similarly NC DIS cross-sections were not explicitly computed in NEUT 5.4.0
- > Applied a factor to CC ones from Rev. Mod. Phys. 53, 211 (1981)
- Now computing them by integrating d²σ/dxdy
- > Significant changes of NC DIS cross-section for certain channels

Example: ratio σ_{NC}/σ_{CC} for interactions of ν_e on protons, low W DIS mode


Hadron multiplicity model

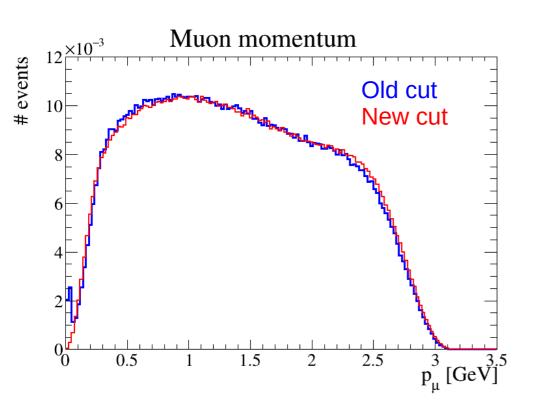
- For low W mode, events with only 2 hadrons produced are rejected to avoid double counting with resonant modes
- As a result, hadron multiplicity model has a significant impact on cross-section and W distribution for this mode
- NEUT 5.4.0 had 3 different multiplicity models for event generation
- Now also implemented effect on low W mode cross-section

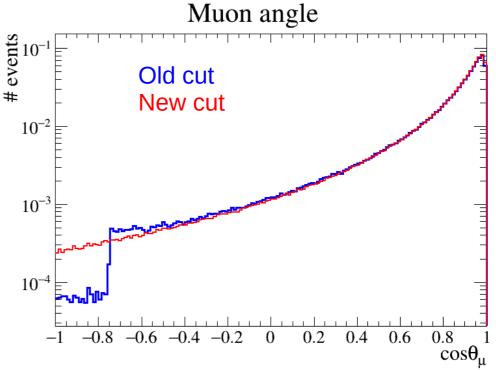
Low W mode cross-section ν_{μ} on neutrons


3 hadron multiplicity models:

- → NE-MULT=0: NEUT default
- → NE-MULT=1: from deuterium bubble chamber fits (CB, hep-ph:1607.06558)
- → NE-MULT=2: AGKY model (GENIE model, hep-ph:0904.4043)

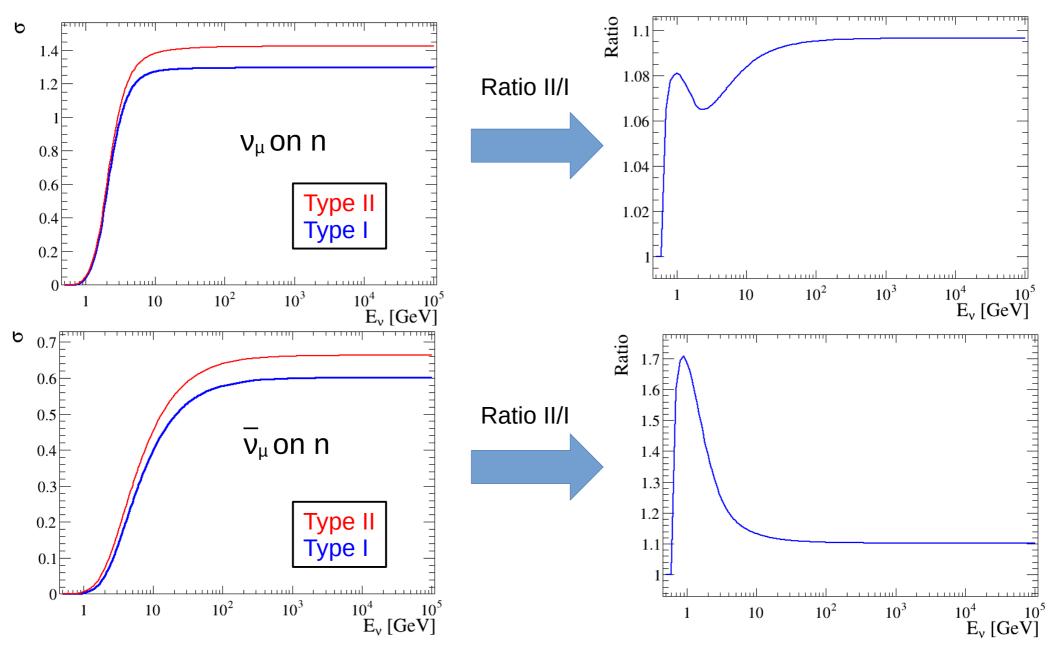
"Feature" in PYTHIA events

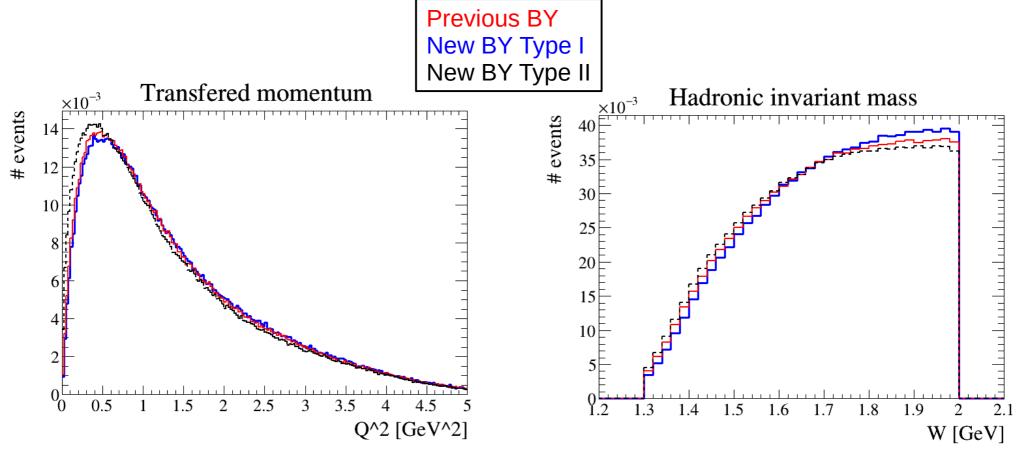

- Previous versions of NEUT were showing a strange peak at low plep
- Particularly visible in the forward region
- > Was found to be from events generated by PYTHIA in high W DIS mode



"Feature" in PYTHIA events

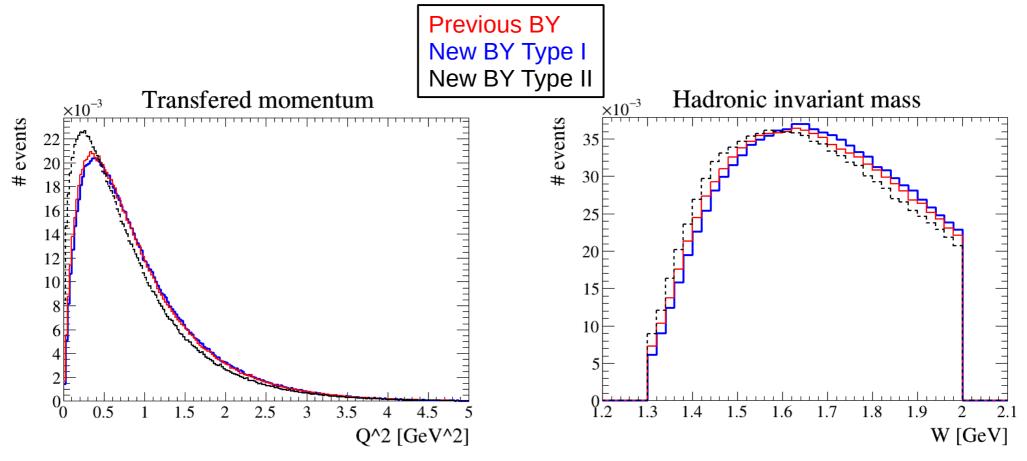
- NEUT is using PYTHIA to generate events entirely, not just fragmentation routines like NuWro and GENIE
- > In PYTHIA, most 2 → 2 processes have divergent cross-section for z=cos(θ_{RF}) → ±1
- In colliders, addressed by requiring pT>pT_min, but we're at too low energy to do this
- A cut $|\cos(\theta_{RF})| > 0.999$ removes problematic features better than previous $\cos(\theta_{lab}) > -0.75$ cut



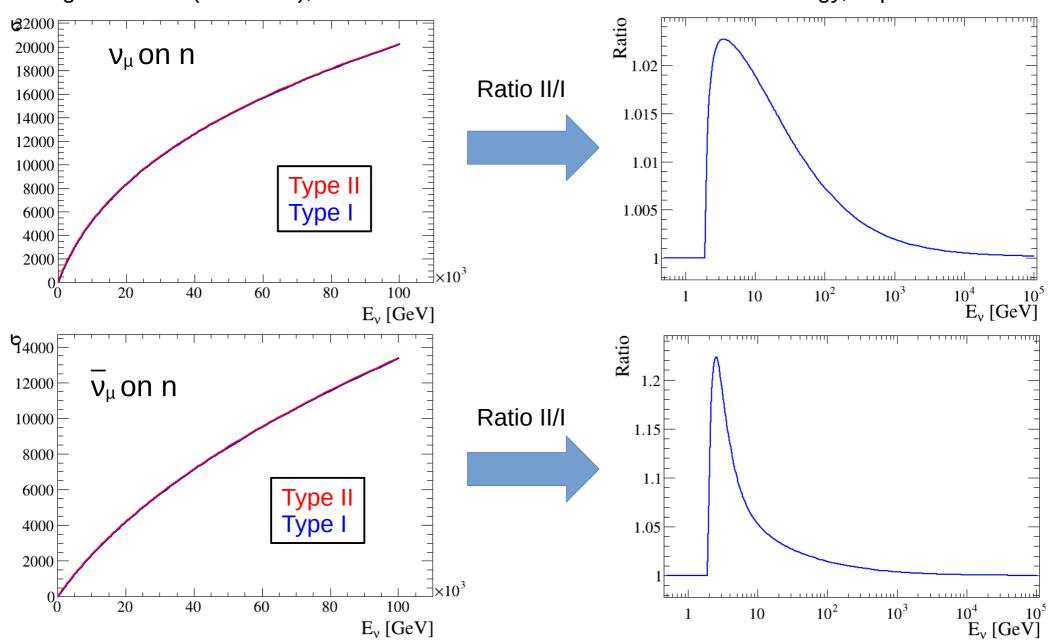

New Bodek-Yang model

- NEUT 5.4.0 was using Bodek-Yang model from hep-ph:0508007 ("Previous model")
- Have been trying for some time to implement new version, with in particular separation between axial and vector part of F₂ (expected to have an effect at low Q2 mainly)
- Started with a preliminary version of the new model provided by authors, and found that:
 - when assuming vector=axial ("Type I"), new model was giving predictions relatively close to previous one
 - separation of axial and vector part of F₂ ("Type II") had limited effect on cross-section
- A new version is now available on arXiv: hep-ph:2108.09240v2 (Changes: value of Kaxial_{val}, introduction of K_{LW}ax, increase sea quark and antiquark contributions)
- Updated implementation to this new version, and saw a very different picture
- Note: could only fully implement new model for low W mode, problems to separate axial and vector part of F2 in PYTHIA

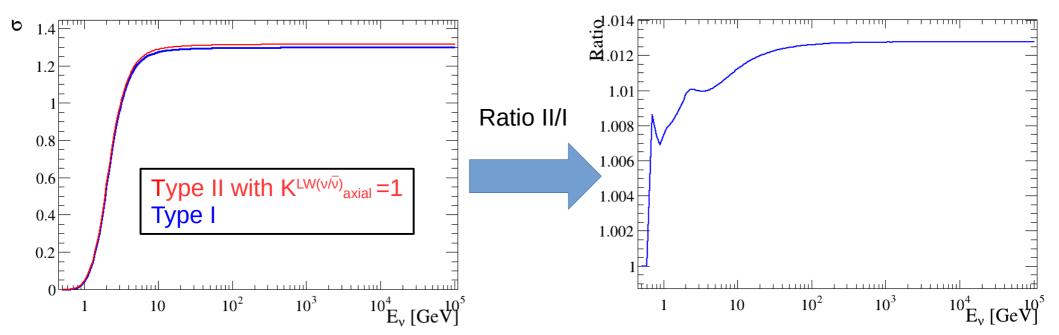
Now see significant effect of axial/vector separation on low W mode cross-section



- > 4 GeV ν_{μ} on water, low W mode (W<2 and n_{had} >2)
- > Type II allows lower Q², and shifts W distribution to lower values (probably explains increase of xsec at low W)


(normalized histograms)

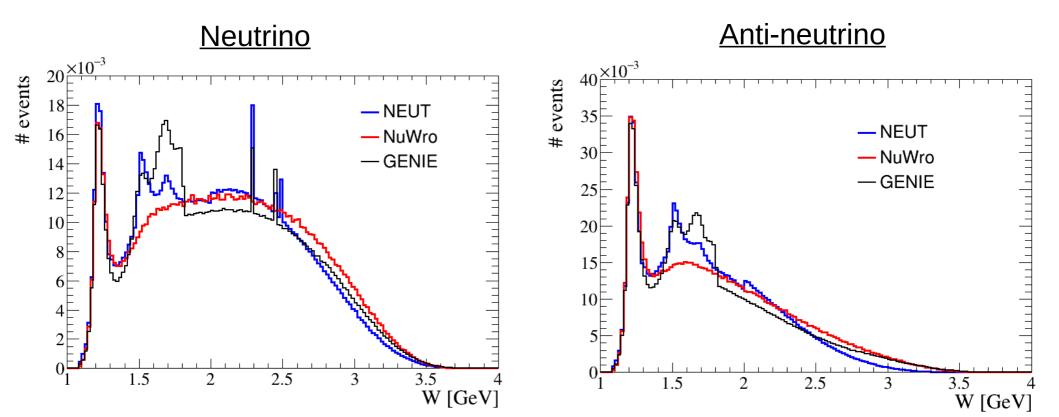
- > 4 GeV $\overline{\nu}_{\mu}$ on water, low W mode (W<2 GeV and $n_{had}>2$)
- Enhancement at low W is really strong for antineutrinos



(normalized histograms)

For high W mode (W>2GeV), effect is more limited but still visible at low energy, in particular for $\overline{\nu}$

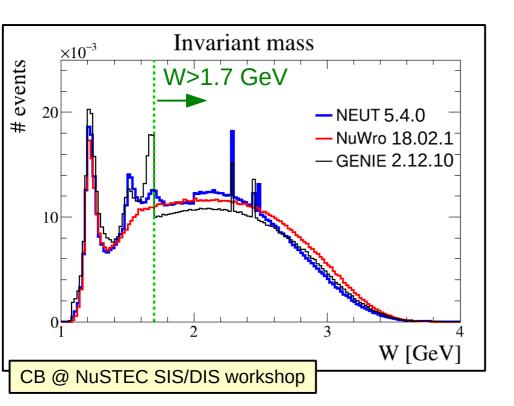
- Most of the effect on the cross-section for low W mode come from new K^{LW(v/v)}axial factors
- Introduced in new update of the model "to better describe the low energy neutrino and antineutrino total cross sections"
- Setting them to 1 reduce significantly difference of cross section
- For muon neutrinos on neutrons, effect decreases from ~10% to ~1%

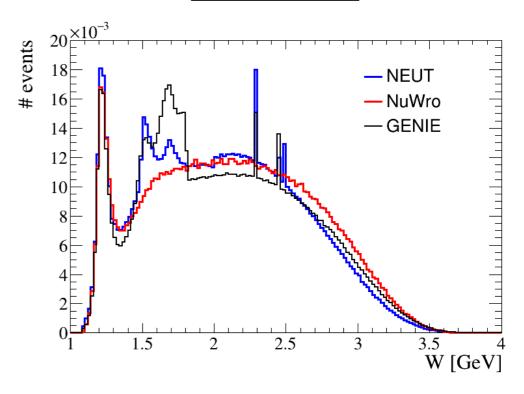


Comparison to other generators

- Compared predictions of updated NEUT to other generators for W and lepton kinematics (update of comparisons shown at NuINT2015 and 2018 NuSTEC SIS/DIS workshop)
- CC DIS and RES modes only (+QE charm for GENIE)
- Additional cut W>1.7 GeV for lepton kinematics plots
- Compared following 3 generators:
 - NEUT: version with updates presented here, in particular new Type II Bodek-Yang model (not released yet)
 - NuWro 21.09.2
 - **GENIE** 3.02.00 with tune G18_02b_02_11b (includes cross-section model re-tune published in Phys. Rev. D 104, 072009 (2021))
- Plots are normalized by area: shape comparison only

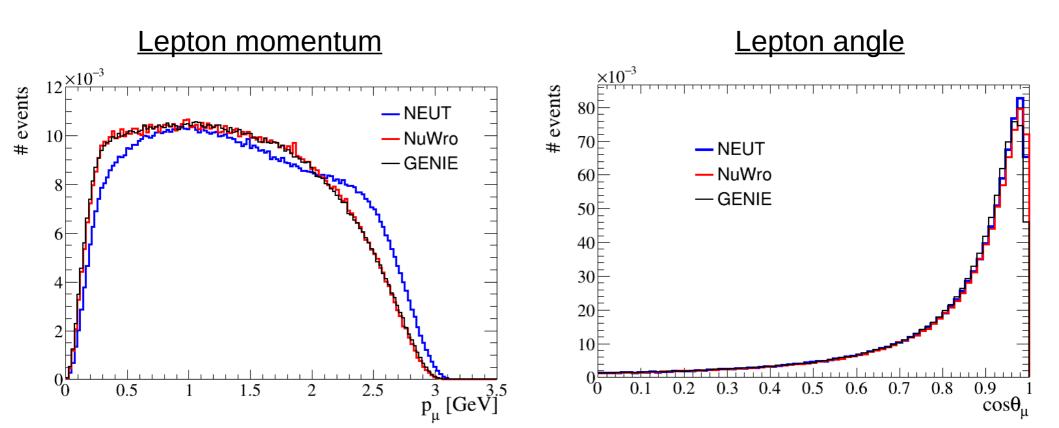
Comparison to other generators Hadronic invariant mass


- > 6 GeV $v_{\mu}/\overline{v_{\mu}}$ on Fe
- Clear differences coming from resonances included and position of the transition RES → DIS
- Additional differences from versions of GRV PDFs and Bodek-Yang models used

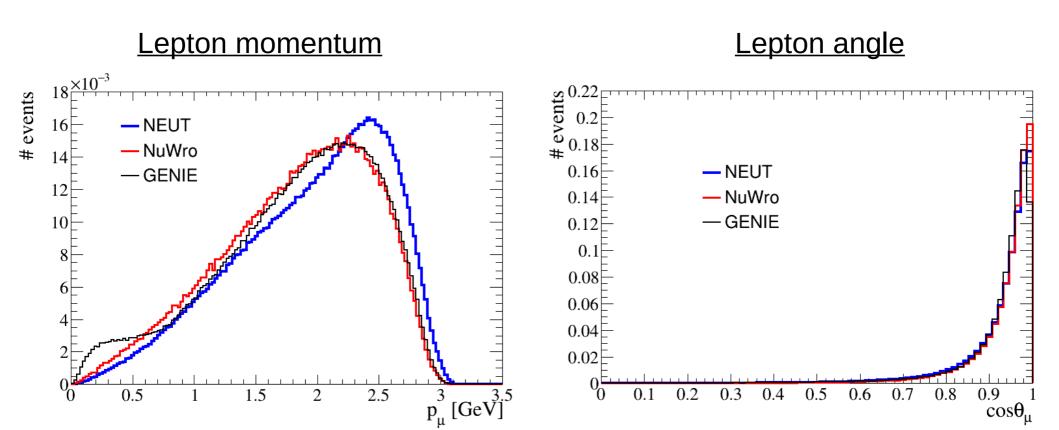

Comparison to other generators Hadronic invariant mass

- Evolution from 2018: significant changes only for GENIE
- NEUT has some small change of the relative normalizations of the different regions

2018 version



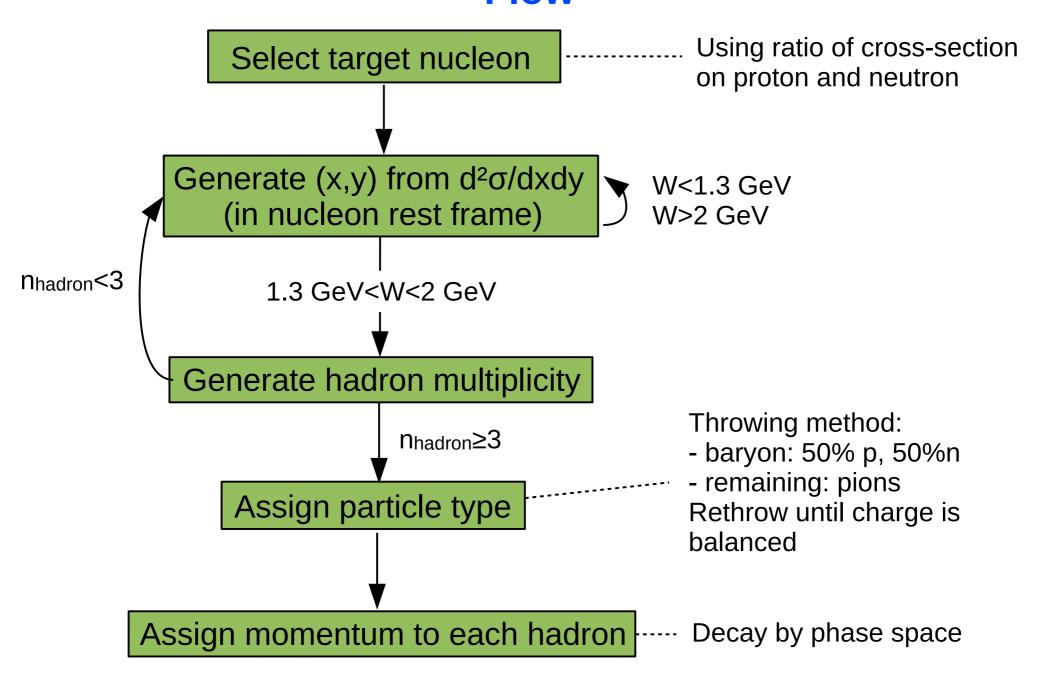
2022 version


Comparison to other generators Lepton kinematics

- > 4 GeV ν_μ on water, W>1.7 GeV
- Good agreement GENIE/NuWro for lepton momentum, NEUT visibly different A result of using PYTHIA for full event generation vs just fragmentation routines?
- Events in GENIE look a bit less forward

Comparison to other generators Lepton kinematics

- > 4 GeV $\overline{\nu}_{\mu}$ on water, W>1.7 GeV
- Good agreement NuWro/GENIE for lepton momentum from 1.7 GeV, strange peak for GENIE at low momentum. Was already there in 2018
- Visible differences in how forward events are



Summary

- 2 deep inelastic models in NEUT:
 - low W mode (W<2GeV): custom model for multi-particle background on top of resonant modes
 - high W mode (W>2GeV): uses PYTHIA for event generation
- Since NEUT 5.4.0:
 - improved simulation of neutral current DIS events
 - fixed a number of problems, including strange feature in lepton kinematics for events generated with PYTHIA
- Implemented new version of Bodek-Yang model: see significant effect of separation axial and vector part of F2 for corrections.
- Updated comparisons to GENIE and NuWro: still significant differences in the way generators treat the transition region
- Planning to continue working on the use of PYTHIA:
 - implementation of separation axial/vector F2 for BY model
 - difference in (x,y) compared to expectations from $d2\sigma/dxdy$
- Another important missing part is nuclear effects

BACKUP

Multi-pion model Flow

DIS region

- Pure DIS mode for W>2 GeV/c² based on PYTHIA/JETSET 5.72
- Cross-section calculated by integrating d²σ/dxdy (as for multi-pion mode)
- PYTHIA used for the actual event generation:

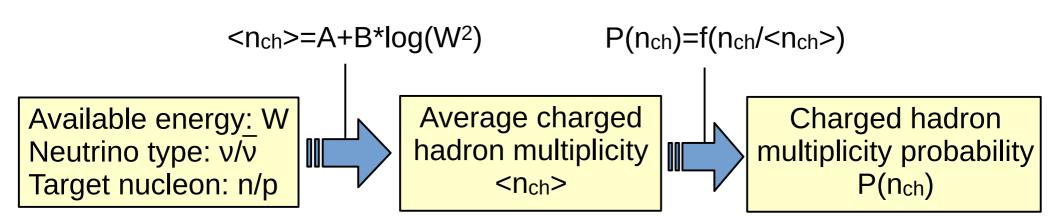
CKIN(1) = 0.001

- \rightarrow input E_v and nucleon four-momentum (from simple RFG model)
- → Loop over PYTHIA event generation until W>2 GeV and right NC/CC type

Modified parameters in PYTHIA

```
* Lower cut-off on p_t [GeV/c]
   CKIN(5)
            = 0.0001
  Lower CM energy [GeV]
   PARP(2) = 0.001
   Switch to be allowed to decay or not
   MDCY(LUCOMP(111),1) = 0
   MDCY(LUCOMP(221),1) = 0
   MDCY(LUCOMP(311),1) = 0
   MDCY(LUCOMP(223),1) = 0
   MDCY(LUCOMP(130),1) = 0
   MDCY(LUCOMP(310),1) = 0
   MDCY(LUCOMP(331),1) = 1
**** without tau decay(decay at tauola)
   IF(ITAUFLGCORE.eq.1) THEN
    MDCY(LUCOMP(15),1) = 0
   ENDIF
```

Lower edge of allowed sqrt{s} [GeV]


Don't do decays of π^0 , η , K^0 , ω and τ Decay η'

Other changes since 5.4.0

- Improved calculation of cross-section for low W mode, to make it more stable at high energy
- As a result, now use calculation up to 2.5 TeV instead of 25 GeV
- Add extra normalization of GRV98 PDFs when using Bodek-Yang model
- Rewriting of code used to compute and load DIS cross-sections, to make it easier to include additional models
- Fix bug in kinematics cut for the high W mode: cuts on Q2 due to validity of PDFs were mistakenly passed to PYTHIA as cuts on W

Multiplicity models (Hadronization for low W mode)

- Multiplicity models give the probability to produce a given number of hadrons for a given value of W
- > Based on KNO scaling: the distribution of $P(n_{ch})=f(n_{ch}/< n_{ch}>)$ is independent of W
- Average charged hadron multiplicity observed to be a linear fonction of log(W²) in bubble chamber data
 (K. Kuzmin and V. Naumov argue for a quadratic function at low W in PRC 88, 065501 (2013))

3 or 4 parameters for each couple of neutrino type and target nucleon depending on choice of f

Low W multiplicity models

- Use data from bubble chamber experiments to measure free parameters
- To decorrelate from final state interaction modelisation, use data from hydrogen and deuterium experiments

Author(s), experiment, publ. date	Ref.	Target	W ² range	Kinematic cuts	Intercept a	Slope b
			$\nu_{\mu} p \rightarrow \mu^{-} X^{+}$	+		
Coffin et al., FNAL E45, 1975	[21]	Н	4-200		1.0 ± 0.3	1.1 ± 0.1
Chapman <i>et al.</i> , FNAL E45, 1976	[22]	Н	4–200		1.09 ± 0.38	1.09 ± 0.03
Bell et al., FNAL E45, 1979	[23]	Н	4-100	$Q^2 = 2 - 64 \text{GeV}^2$		1.35 ± 0.15
Kitagaki et al., FNAL E545, 1980	[26]	^{2}H	1-100		0.80 ± 0.10	1.25 ± 0.04
Zieminska et al., FNAL E545, 1983	[27]	^{2}H	4-225		0.50 ± 0.08	1.42 ± 0.03
Saarikko et al., CERN WA21, 1979	[28]	Н	3-200		0.68 ± 0.04	1.29 ± 0.02
Schmitz, CERN WA21, 1979	[29]	H	4-140		0.38 ± 0.07	1.38 ± 0.03
Allen et al., CERN WA21, 1981	[30]	Н	4-200		0.37 ± 0.02	1.33 ± 0.02
Grässler et al., CERN WA21, 1983	[32]	H	11-121		-0.05 ± 0.11	1.43 ± 0.04
Jones et al., CERN WA21, 1990	[33]	H	16-196		0.911 ± 0.224	1.131 ± 0.08
Jones et al., CERN WA21, 1992	[34]	H	9-200		0.40 ± 0.13	1.25 ± 0.04
Allasia et al., CERN WA25, 1980	[35]	^{2}H	2-60		1.07 ± 0.27	1.31 ± 0.11
Allasia et al., CERN WA25, 1984	[38]	^{2}H	8-144	$Q^2 > 1 \mathrm{GeV^2}$	0.13 ± 0.18	1.44 ± 0.06
			$\overline{\nu}_{\mu}p \rightarrow \mu^{+}X$	0		
Derrick et al., FNAL E31, 1976	[14]	Н	4-100	y > 0.1	0.04 ± 0.37	1.27 ± 0.17
Singer, FNAL E31, 1977	[15]	Н	4-100	y > 0.1	0.78 ± 0.15	1.03 ± 0.08
Derrick et al., FNAL E31, 1978	[16]	H	1-50		0.06 ± 0.06	1.22 ± 0.03
Derrick et al., FNAL E31, 1982	[20]	H	4-100	0.1 < y < 0.8	-0.44 ± 0.13	1.48 ± 0.06
Grässler et al., CERN WA21, 1983	[32]	Н	11-121		-0.56 ± 0.25	1.42 ± 0.08
Jones et al., CERN WA21, 1990	[33]	Н	16-144		0.222 ± 0.362	1.117 ± 0.14
Jones et al., CERN WA21, 1992	[34]	Н	9-200		-0.44 ± 0.20	1.30 ± 0.06
Allasia et al., CERN WA25, 1980	[35]	^{2}H	7–50		0.55 ± 0.29	1.15 ± 0.10
Barlag et al., CERN WA25, 1981	[36]	^{2}H	6-140		0.18 ± 0.20	1.23 ± 0.07
Barlag et al., CERN WA25, 1982	[37]	^{2}H	6-140		0.02 ± 0.20	1.28 ± 0.08
Allasia et al., CERN WA25, 1984	[38]	^{2}H	8-144	$Q^2 > 1 \mathrm{GeV^2}$	-0.29 ± 0.16	1.37 ± 0.06
			$\nu_{\mu}n \rightarrow \mu^{-}X^{-}$	+		
Kitagaki et al., FNAL E545, 1980	[26]	^{2}H	1-100		0.21 ± 0.10	1.21 ± 0.04
Zieminska et al., FNAL E545, 1983	[27]	^{2}H	4-225		-0.20 ± 0.07	1.42 ± 0.03
Allasia et al., CERN WA25, 1980	[35]	^{2}H	2-60		0.28 ± 0.16	1.29 ± 0.07
Allasia et al., CERN WA25, 1984	[38]	^{2}H	8-144	$Q^2 > 1 \mathrm{GeV^2}$	1.75 ± 0.12	1.31 ± 0.04
			$\overline{\nu}_{\mu}n \rightarrow \mu^{+}X$	-		
Allasia et al., CERN WA25, 1980	[35]	^{2}H	7–50		0.10 ± 0.28	1.16 ± 0.10
Barlag et al., CERN WA25, 1981	[36]	^{2}H	4-140		0.79 ± 0.09	0.93 ± 0.04
Barlag et al., CERN WA25, 1982	[37]	^{2}H	2-140		0.80 ± 0.09	0.95 ± 0.04
Allasia et al., CERN WA25, 1984	[38]	^{2}H	8-144	$Q^2 > 1 \text{GeV}^2$	0.22 ± 0.21	1.08 ± 0.06

Many problems:

- inconsistent resultsbetween datasets
- actual data hard to find
- no systematic uncertainties most of the time

- NEUT model 0 uses [16] $(\overline{\nu}$ -p) for all types
- Fig. GENIE uses [27] for ν and [37] for ν, and symmetry νρ ↔ νη for some parameters

Phys. Rev. C 88, 065501 (2013)

CB, M. Hartz arXiv:1607.06558 [hep-ph]

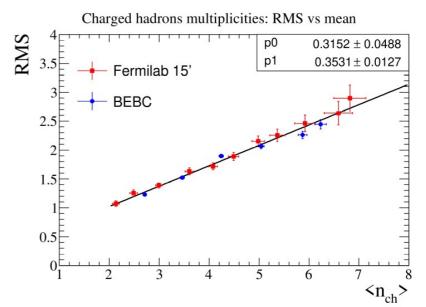
Deuterium fits

Tried to make an improved multiplicity model using bubble chamber data on deuterium, assumed to be free neutrons and protons:

- Use all deuterium datasets considered valid in Phys. Rev. C 88, 065501 (2013)
- Fit all parameters for all combinations of v/v on p/n

Average multiplicity <n_{ch}> at this W

$$< n_{ch} > (W) = A + B \times ln(W^2)$$

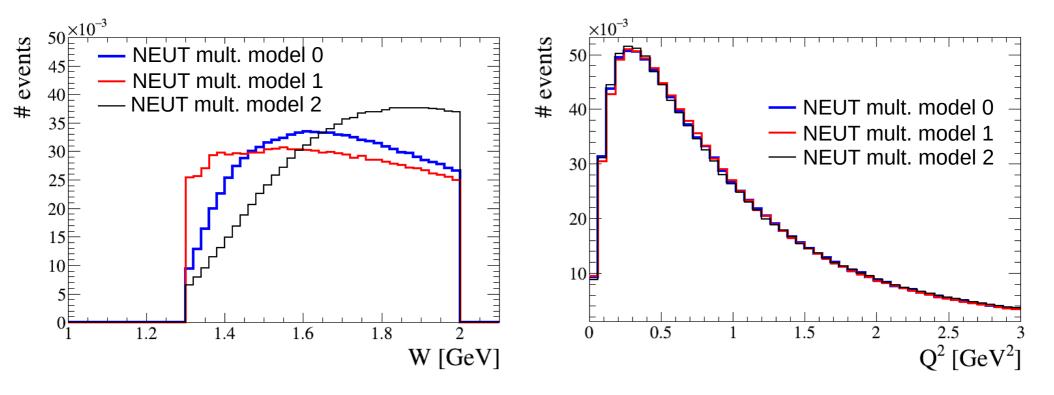

Average charged hadrons multiplicities

2 parameters **A** and **B** obtained by fitting $\langle n_{ch} \rangle = f(W)$ in bubble chambers data

Deduce the probability of n_{ch} at this W

$$P(n_{ch}, W) = \frac{1}{\langle n_{ch} \rangle - \alpha} \times f\left(\frac{n_{ch} - \alpha}{\langle n_{ch} \rangle - \alpha}, C\right)$$

2 parameters ${\bf C}$ and ${\bf \alpha}$, obtained by fitting the RMS versus the mean of the multiplicity distributions for the different W bins.


- → Use for f the 'Levy function' used in the AGKY model (Eur. Phys. J. C 63, 1-10 (2009))
- Compared to standard KNO scaling, use an additional parameter α as defined in Z. Phys. C 21, 189 (1984)

Multi-pion mode Uncertainty on W distribution

- ▶ Generate (x,y) based on throwing method, keeping only events with $n_{had} \ge 3$
- In multiplicity models, multiplicity probability depends of W

$$< n_{ch}> = a + b \times log(W^2)$$

Shape of W distribution of the multi-pion component is uncertain as a result of uncertainty on a and b

(T2K near detector flux, area normalized, low W mode W<2 GeV, $n_{\pi} \ge 2$. NEUT 5.4.0)

- Limited changes for NEUT
- Main feature is the slightly lower contribution of delta peak. Could be because the low W DIS background in the region after it has increased as a result of the increase of xsec for multi-pion mode

