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Introduction of JSNS2 experiment

@ 10th JSNS2 Collaboration meeting (7-9 Feb, 2020)

• The J-PARC Sterile Neutrino Search at the J-PARC
Spallation Neutron Source (JSNS2) experiment has
started a study of neutrino oscillations with
∆𝑚!~1 𝑒𝑉! from anti-muon neutrinos to anti-
electron neutrinos detected via inverse beta
decays(IBD) which are tagged via gammas from
neutron captures on Gadolinium.

• JSNS2 is the only experiment that can directly test
the LSND anomaly without having to rely on
theoretical scaling assumptions.

• The J-PARC MLF 3 GeV primary proton energy is
sufficient to produce kaons efficiently. In consideration
of the facility’s beam intensity (eventually 1 MW,
currently 0.7 - 0.8 MW), represents the best facility in
the world to accomplish KDAR analysis.

• We expect to make a more precise measurement of the
Kaon Decay-At-Rest (KDAR) neutrino interaction cross-
section.

• We will be able to measure the visible energy spectrum
of KDAR primary event for the first time.
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Motivation

Hyoungku Jeon, NuINT 2022 

• Neutrino is invisible!    
à We can only detect when they interact.

• Neutrino cross section at low E is poorly known.
1) Knowing neutrino energies is difficult.
2) Hard to model and reconstruct.

• But the case of KDAR Neutrinos,
1) Monoenergetic energy ( 236 MeV )
2) CCQE : Relatively simple interaction process.

• Recently, MiniBooNE measured the KDAR
neutrinos for the first time.

• Shape-only differential KDAR cross sections was
measured in terms of energy.

• JSNS2 is expected make a better shape-only
cross section measurement.

Shape-only differential cross sections in terms of 𝑻𝝁
and 𝝎(𝝂 − 𝒏 𝒆𝒏𝒆𝒓𝒈𝒚 𝒕𝒓𝒂𝒔𝒇𝒆𝒓) with 1𝝈 error bands.

※ MiniBooNE Collab.   
PRL 120, 141802(2018)

2022. 10. 26. 3

à Due to High Decay-In-Flight (DIF) backgrounds rate.



Motivation
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• Electron scattering has been the dominant tool for understanding the nucleus so far.
• We can probe the nucleus through neutrino.

• But the difficulty is,
1) Knowing neutrino energies is difficult.
2) The transition region between neutrino-nucleus and neutrino nucleon scattering are hard to model.

• One golden way: KDAR Neutrinos
1) Known energy (Monoenergetic neutrino)
2) Right at the transition between neutrino-nucleus and neutrino nucleon scattering

KDAR for the various nuclear models MiniBooNE result with a prediction

※ Nikolakopoulos, 
A at al, PRC 103, 
064603 (2021)

※ Nikolakopoulos, 
A at al, PRC 103, 
064603 (2021)
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• When charged kaons decay at rest, they can produce monoenergetic neutrinos 
from the two-body decay.

𝐾! → 𝜇! + 𝜈" 𝐵𝑅 = 63.5 %

• In the case that the kaon is at rest when it decays, the emitted muon neutrino is 
monoenergetic.

𝐸! = 236 𝑀𝑒𝑉, 𝐸"#$ = 𝐸! −𝑚% 106 𝑀𝑒𝑉

KDAR : What are we measuring?
※ JSNS2 TDR arXiv:1705.08629
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Backgrounds [Cosmic ray induced]
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• As JSNS2 is a surface based detector, we expect cosmic induced events to be the dominant
source of backgrounds for this measurement.

• Cosmic muons can be produce a prompt & delayed event signature that is similar to that of
KDAR neutrinos.

• We already measured the muon veto condition with no-beam data which means there is       
almost zero to muon interaction without cosmic induced muon.
à Cosmic muon rejection with 99% efficiency.
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Backgrounds [Accidental]

• Accidental BKG : Randomly paired as
KDAR coincidence from single-particle
events.

• Correlated BKG : Non-KDAR event have
there own subsequence particle whose
structure mimics KDAR event. (e.g. Cosmic
ray induced muon and Michel e-)

Signal

Accidental BKG

ΔVTX vs KDAR Prompt Evis ∗ 𝜟VTX : Reconstructed vertex difference between 
prompt and delayed event of KDAR coincidence.
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• Above showed the delta VTX (𝜟VTX)
template made by MC simulation.

• Clear difference distribution is shown.
à Accidental (Randomly paired) event
shoudn’t have a correlation.
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Backgrounds [Correlated]

• Neutrino from kaon is concentrated at the
proton beam bunch timing.

• Reject events from most non-KDAR sources
by selecting only events within a narrow
timing window following the beam.

• Accidental BKG : Randomly paired as
KDAR coincidence from single-particle
events.

• Correlated BKG : Non-KDAR event have
there own subsequence particle whose
structure mimics KDAR event. (e.g. Cosmic
ray induced muon and Michel e-)

Signal

Correlated BKG

Accidental BKG

ΔVTX vs KDAR Prompt Evis
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Time distribution 
of neutrinos

※ JSNS2 TDR 
arXiv:1705.08629

※ KDAR selection was applied.



KDAR signal measurement in JSNS2
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• KDAR Prompt E : 20 – 140 MeV

• KDAR delayed E : 20 – 60 MeV

• Time coincidence limit : < 10 us

• Beam-timing cut (150 ns each)

• Vertex difference criteria : 0.3 m

• Fiducial volume cut

Above shows the MC simulated KDAR energy
spectrum as predicted by the NuWro simulation
package.

𝐸! = 236 𝑀𝑒𝑉
𝐸"#$ = 𝐸! −𝑚% 106 𝑀𝑒𝑉 − 𝑇&

MC : KDAR Prompt event (𝜇 + 𝑋)
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Backgrounds Estimation
Template of Correlated BKG

• The correlated background energy spectrum was modeled via the sideband beam
timing.

• The accidental background was obtained from random coincidence sample.

• The energy spectrum template was normalized by BKG dominant area, 140 – 250 
MeV.
à Expected no KDAR signal region.
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Template of Accidental BKG
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Analysis Result

• The KDAR neutrino interaction is observed 
691.9 !𝟒𝟔.𝟕

&𝟒𝟔.𝟗 events (From total 730 events).
à 38.1 !().*&().+ backgrounds (5.2%)

• Note that the systematics on the energy 
scale are not included yet.

KDAR Prompt visible spectrum with BKG KDAR Prompt spectrum with BKG subtraction

Clear KDAR Peak!
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BKG 
ID

Correlated/
Accidental

BKG
(# of events)

1 Correlated 36.6 ± 34.8 5.0 "#.%
&#.'%

2 Accidental 1.5 ± 0.1 0.2 ± 0.01%

KDAR Candidate 
730 events 38.1 ()*.,-)*.. 5.2 "#.!

&#.(%
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Analysis Result

• The vertex difference distribution between 
data and MC shows the consistent within 
the error.

• It means that a high purity of KDAR signal is 
obtained in the signal region, 20 – 140 MeV.

Signal
Region

KDAR Prompt spectrum with BKG subtraction∗ 𝜟VTX : Reconstructed vertex difference between 
prompt and delayed event of KDAR coincidence.
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BKG 
ID

Correlated/
Accidental

BKG
(# of events)

1 Correlated 36.6 ± 34.8 5.0 "#.%
&#.'%

2 Accidental 1.5 ± 0.1 0.2 ± 0.01%

KDAR Candidate
730 events 38.1 ()*.,-)*.. 5.2 "#.!
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Conclusion

• JSNS2 has observed the neutrino interaction from KDAR through the visible energy
spectrum using the first long-term physics data.

• This is the world first measurement of the visible energy from monoenergetic
neutrino with a 5.2 % level of the backgrounds.

• The KDAR neutrino interaction is observed 691.9 #𝟒𝟔.𝟕
!𝟒𝟔.𝟗 events with statistical error

only.

• For the future analysis,
à KDAR analysis from JSNS2 is not complete yet. More improvement and detailed 
analysis are actively ongoing.

à Low-energy neutrino cross section measurement & Neutrino-nucleus interaction 
modeling

à KDAR energy spectrum as a function of neutrons produced in the interaction, as 
measured via neutron capture.
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Thank you!
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► The spallation neutron source
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► Expected KDAR signal region & Background

• Even though various KDAR models exist, The observable KDAR prompt events have an end-
point.

• For this analysis, roughly 140 MeV above is treated as a background.
à Because the uncertainty of the energy scale is not fully studied yet.

KDAR for the various nuclear models in JSNS2 detector simulation 


