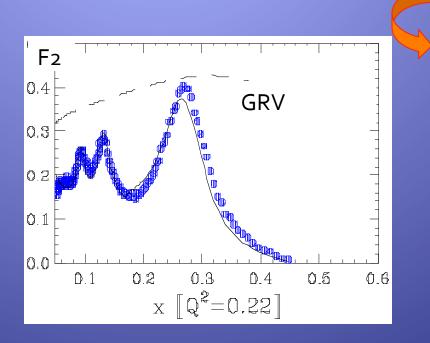
Update


# on Bodek-Yang Model

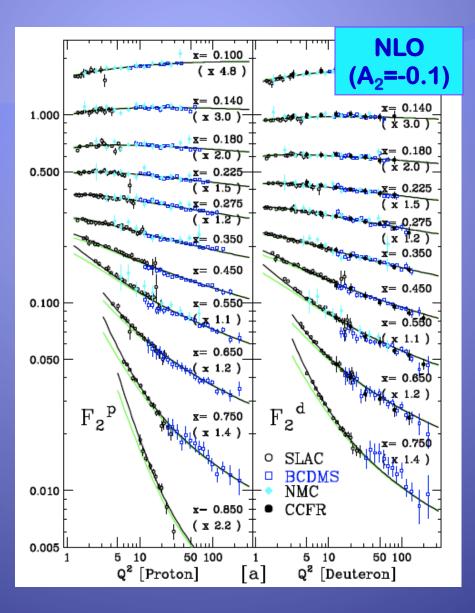
Arie Bodek University of Rochester Un-ki Yang Seoul National University

NuINT 2022 Workshop, October 24-29, 2022

## **Bodek-Yang Model**

- Bodek-Yang model: describe DIS cross section in all Q<sup>2</sup> regions
- > Challenges in  $e/\mu$ -N DIS
  - High x PDFs at low Q<sup>2</sup>
  - Resonance region overlapped with a DIS contribution
  - Hard to extrapolate DIS contribution to low Q<sup>2</sup> region from high Q<sup>2</sup> data due to non-perturbative QCD effects

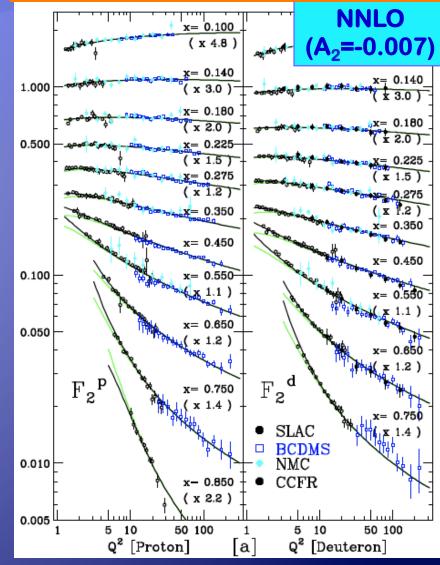



- A model in terms of quark-parton model (easy to convert e/µ scattering to v scattering)
- Understanding of high x PDFs at low Q<sup>2</sup>? wealthy SLAC, JLAB data.
- Understanding of resonance scattering in terms of quark-parton model? (duality works, many studies by JLAB)

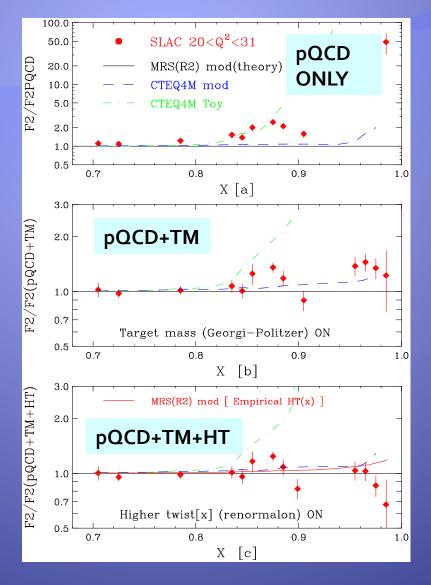
### Lessons from previous QCD studies

- NLO & NNLO analyses with DIS data: PRL 82, 2467 (1999), Eur. Phys. J. C13, 241 (2000) by Bodek and Yang
  - Kinematic higher twist (target mass) effects are large and must be included in the form of Georgi & Politzer x scaling.
  - Resonance region is also well described (duality works).
  - Most of dynamic higher twist corrections (in NLO analysis) are similar to missing NNLO higher order terms.
- NNLO pQCD+TM with NNLO PDFs can describe the nonperturbative QCD effects at low Q<sup>2</sup>
- Thus, we reverse the approach to build the model:
  - Use LO PDFs and "effective target mass and final state masses" to account for initial target mass, final target mass, and even missing higher orders

$$\xi = \frac{2xQ'^2}{Q^2(1 + \sqrt{1 + 4M^2x^2/Q^2})}, \qquad 2Q'^2 = [Q^2 + M_f{}^2 - M_i{}^2] \\ + \sqrt{(Q^2 + M_f{}^2 - M_i{}^2)^2 + 4Q^2(M_i{}^2 + P_T^2)}.$$


## NLO vs NNLO



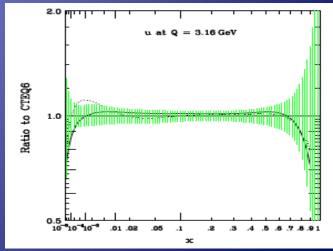

Studies of higher twist and higher order effects in NLO and NNLO QCD analysis of lepton-nucleon scattering data on  $F_2$  and  $R = \sigma_L / \sigma_T$ 

#### U.K. Yang & A. Bodek

The European Physical Journal C - Particles and Fields 13, 241–245 (2000) Cite this article

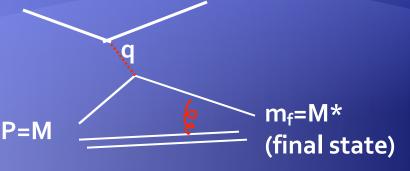


## Very high x and low Q<sup>2</sup> data




Parton Distributions, d/u, and Higher Twist Effects at High x

U. K. Yang and A. Bodek Phys. Rev. Lett. **82**, 2467 – Published 22 March 1999


- Very high x and low Q<sup>2</sup> data is well described by the pQCD+TM+HT
- Extraction of the high x PDF is promising (1999)

still a large uncertainty (2022)



### Modeling neutrino cross sections

NNLO pQCD +TM approach: describes the DIS region and resonance data very well



- Bodek-Yang LO approach: (pseudo NNLO)
- Use effective LO PDFs with a new scaling variable, ξw to absorb target mass, higher twist, missing QCD higher orders

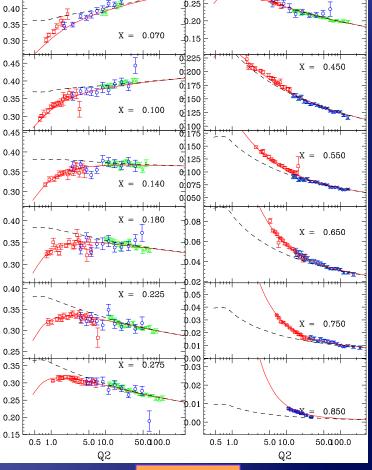
$$x_{Bj} = \frac{Q^2}{2M\nu} \implies \xi_W = \frac{Q^2 + B}{\{M\nu[1 + \sqrt{(1 + Q^2 / \nu^2)}] + A\}}$$

 Multiply all PDFs by K factors for photo production limit and higher twist

$$F_2(x,Q^2) \rightarrow \frac{Q^2}{Q^2 + C} F_2(\xi_w,Q^2)$$

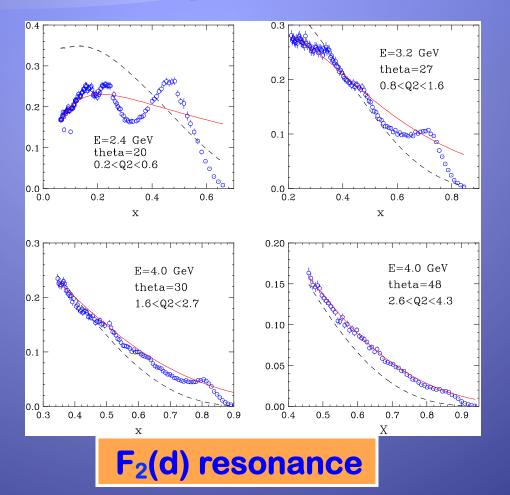
X = 0.350

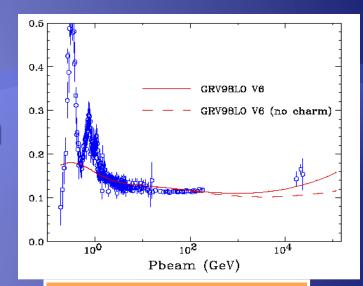
### **Bodek-Yang Effective LO PDFs Model**


0.45

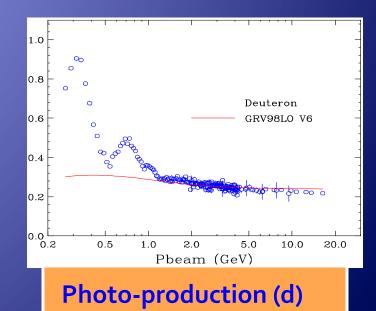
ŝ

₽ E


ŝ


- 1. Start with GRV98 LO (Q<sub>2min</sub>=0.80) 2. Replace  $x_{hi}$  with a new scaling,  $\xi_w$ 3. Multiply all PDFs by K factors for photo prod. limit and higher twist  $[\sigma(\gamma) = 4\pi\alpha/Q^2 * F_2(x, Q^2)]$ Ksea =  $Q^2/[Q^2+Csea]$  $Kval = [1 - G_0^2 (Q^2)]$ \*  $[Q^2+C_{2V}] / [Q^2+C_{1V}]$ motivated by Adler Sum rule where  $G_D^2(Q^2) = 1/[1+Q^2/0.71]^4$ 4. Freeze the evolution at  $Q^2 = Q^2_{min}$ -  $F_2(x, Q^2 < 0.8) = K(Q^2) * F_2(\xi w, Q^2 = 0.8)$ 5. Fit all DIS  $F_2(p/D)$  data: with W>2 GeV SLAC/BCDMS/NMC/HERA data  $\chi^2 / DOF = 1235 / 1200$ 
  - 0.40 N2 ⊡ 0.35 0.06 **D.04** 0.30 0.40 X = 0.225b.05 0.04 0.35 Ч .03 0.30 b.01 0.25 -D.00 -D.03 X = 0.2750.35 0.30 20.0 ₽ E 0.25 b 01 0.20 b.00 0.15 0510 5.0 10.0 50.00.0 0.5 1.0 Q2  $F_2(p)$




0.30

### Predictions for Resonance, Photo-production data



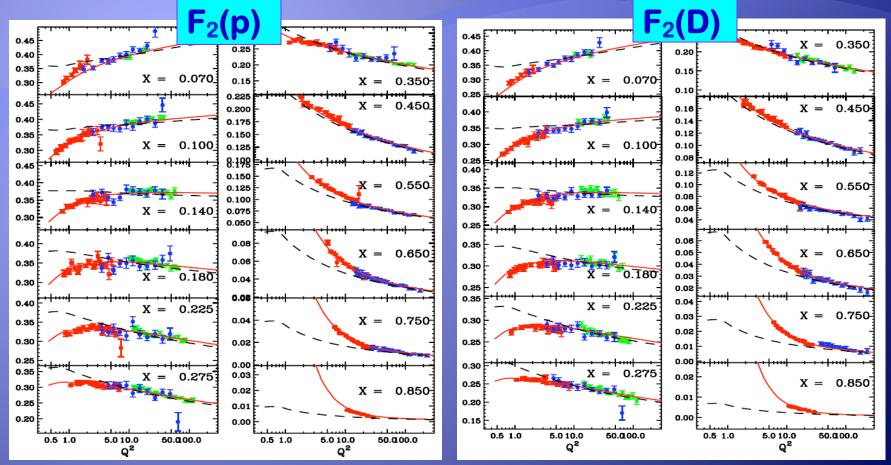


#### **Photo-production (P)**



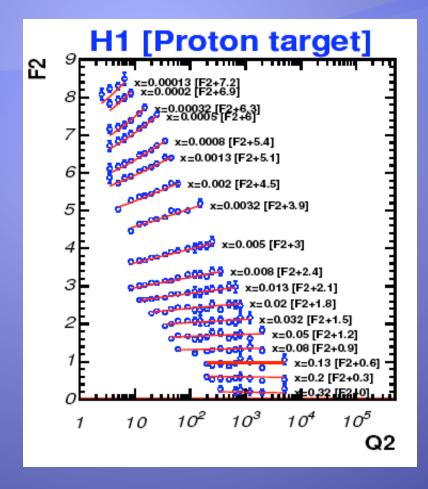
### **Bodek-Yang Effective LO PDFs Model**

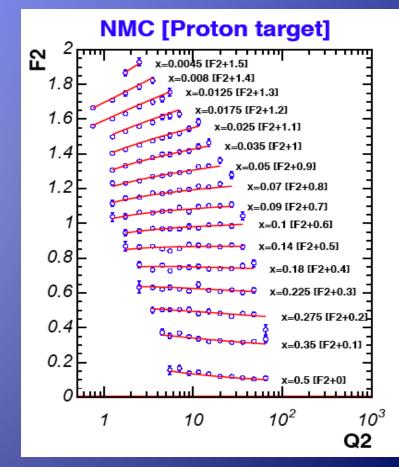
- Include the photo-production data
- > Use different K factors for up and down quark type separately


Kval (u,d) =  $[1-G_D^2(Q^2)] * [Q^2+C_{2V}] / [Q^2+C_{1V}]$ Ksea (u,d,s) =  $Q^2/[Q^2+C_{2V}]$ 

Additional K<sup>LW</sup> factor for valence quarks:

Kval =  $K^{LW} * [1 - G_D^2 (Q^2)] * [Q^2 + C_{2V}] / [Q^2 + C_{1V}]$ where  $K^{LW} = (v^2 + C^v) / v^2$ 


| A<br>0.621                   | B<br>0.380              | $C_{v2d} \\ 0.323$                            | $C_{v2u} \\ 0.264$ |
|------------------------------|-------------------------|-----------------------------------------------|--------------------|
| $C^{down}_{sea}$<br>0.561    | $C^{up}_{sea}$<br>0.369 | $C_{v1d} \\ 0.341$                            | $C_{v1u} \\ 0.417$ |
| $C_{sea}^{strange}$<br>0.561 | $C^{low- u}$ 0.218      | $\mathcal{F}_{valence}$<br>$[1 - G_D^2(Q^2)]$ | N<br>1.026         |


## Fit Results on DIS F<sub>2</sub>(p/D) data



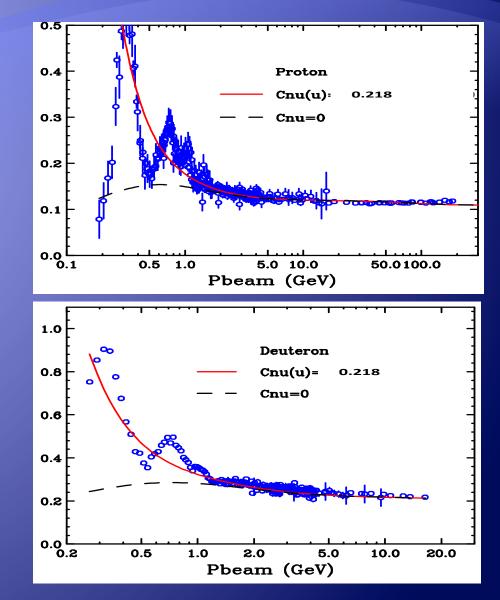
- Excellent Fitting:
  - red solid line: effective LO using  $\xi w$
  - black dashed line: x<sub>bi</sub>

### Low x HERA and NMC data

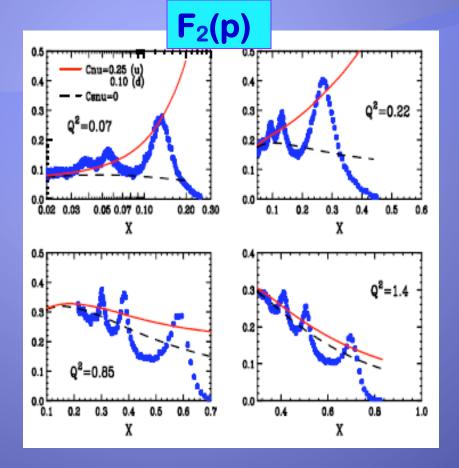




#### Fit works at low x


### **Photo-production data**

- Additional K<sup>LW</sup> factor for valence quarks:
  - Kval =  $K^{LW*}[1-G_D^2(Q^2)]$ \*  $[Q^2+C_{2V}]/[Q^2+C_{1V}]$


#### $K^{LW} = (v^2 + C^v)/v^2$

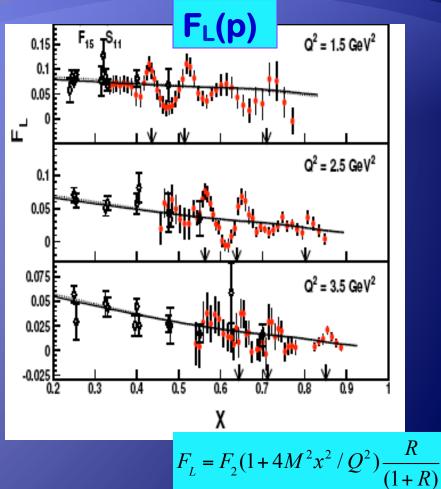

This makes a duality work all the way down to Q2=0 (for charged leptons)

 Photo-production data with v(Pbeam)>1 GeV included in the fitting



### F2 & F<sub>L</sub> Resonance data





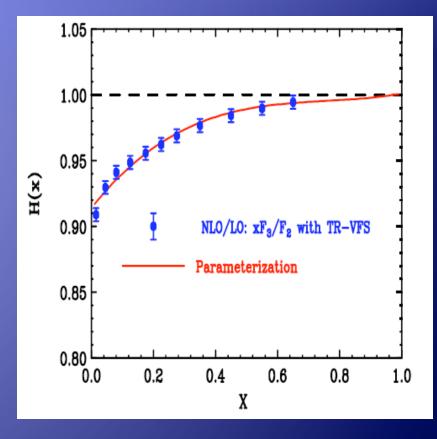
 Predictions are in good agreement (not included in the fit) duality works

F<sub>L</sub> was calculated using F2 and R<sub>1998</sub>

## Neutrino cross sections

- Effective LO model with ξw describe all DIS and resonance
   F<sub>2</sub> data as well as photo-production data (Q<sup>2</sup>=0 limit):
   vector contribution works well
- Neutrino Scattering:
  - Effective LO model works for xF<sub>3</sub>?
  - Nuclear correction using  $e/\mu$  scattering data
  - Axial vector contribution at low Q<sup>2</sup>?
  - Use R=R<sub>1998</sub> to get 2xF<sub>1</sub>
  - Implement charm mass effect through  $\xi$ w slow rescaling algorithm for F<sub>2</sub>, 2xF<sub>1</sub>, and xF<sub>3</sub>

Submitted to EPJC (2022), arXiv:2108.09240


## Effective LO model for xF<sub>3</sub>?

- Scaling variable, ξw absorbs higher order effect for F<sub>2</sub>, but the higher order effects for F<sub>2</sub> and xF<sub>3</sub> are not the same
- Use NLO QCD to get double ratio

 $H(x) = \frac{xF_3(\text{NLO})}{xF_3(\text{LO})} / \frac{F_2(\text{NLO})}{F_2(\text{LO})}$ 

not 1 but almost indep. of Q<sup>2</sup>

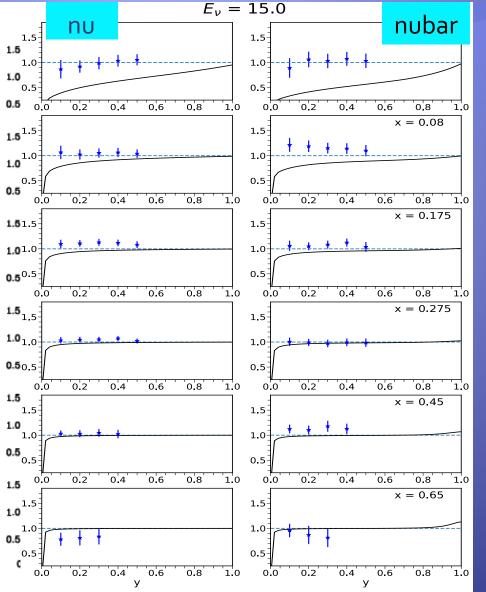
Enhance anti-neutrino cross section by 3%



### **Axial Vector Structure Functions**

At high Q<sup>2</sup>, vector and axial vector contribution are same, but not at low Q2

K factors for axial contributions: type II

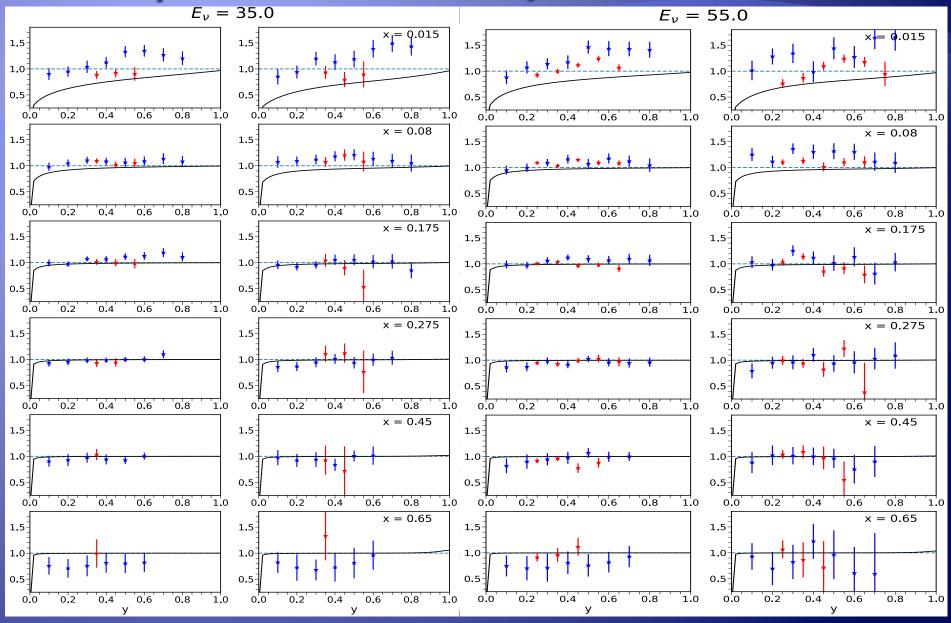

$$K_{sea}^{vector} = \frac{Q^2}{Q^2 + C} \Longrightarrow K_{sea}^{axial} = \frac{Q^2 + 0.55C_{sea}^{axial}}{Q^2 + C_{sea}^{axial}} \qquad K_{val}^{axial} = \frac{Q^2 + 0.1C_{val}^{axial}}{Q^2 + C_{val}^{axial}}$$

where 
$$C_{sea}^{axial} = 0.75$$
,  $C_{val}^{axial} = 0.18$ 

- 0.55 was chosen to satisfy the prediction from PCAC by Kulagin, agrees with CCFR/CHROUS data for  $F_2$  extrapolation to (Q<sup>2</sup>=0)
- But, the non-zero PCAC component of F<sub>2</sub><sup>axial</sup> at low Q<sup>2</sup>: mostly longitudinal

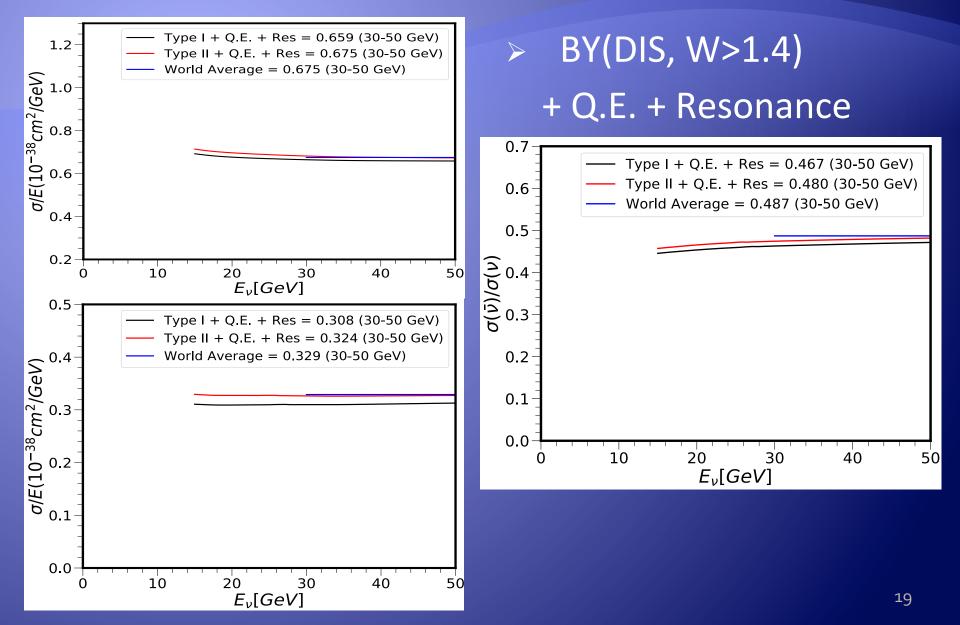
$$2xF_1^{axial} = 2xF_1^{vector}$$

### Comparison with CCFR (Fe), CHORUS (Pb) data




Blue point: CHORUS/theory (type II)
 Solid line:theory (type I)/(type II)
 Type I (Vector = Axial at low Q<sup>2</sup>)
 Type II (Vector < Axial at low Q<sup>2</sup>)

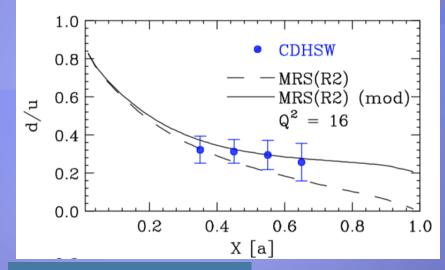
#### Red point: CCFR/type II

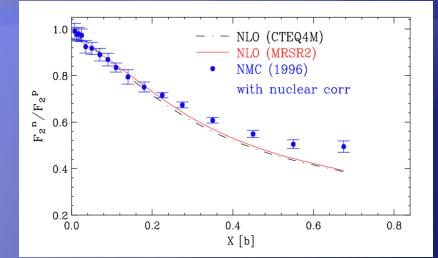

Blue point: CHORUS/type II

### Comparison with CCFR(Fe) , CHORUS (Pb) data

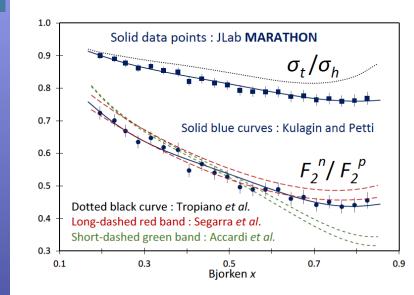


20


## **Total cross sections**




## Summary & Discussions


- BY Effective LO model with ξw describe all e/µ DIS and resonance data as well as photo-production data (down to Q<sup>2</sup>=0): provide a good reference for vector SF for neutrino cross section
- >  $d\sigma/dxdy data favor updated BY(DIS) type II model$
- BY(DIS) type II model (low Q<sup>2</sup>: axial>vector) provide a good reference for neutrino cross sections. Low energy neutrino experiments can normalize their data to our model to extract their flux
- Model also works well down to W=1.4 GeV, thus providing overlap with resonance models
- Future improvement: use very high-x data (nCTEQ effort)

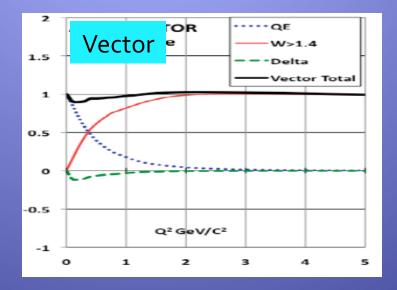
## High-x PDF

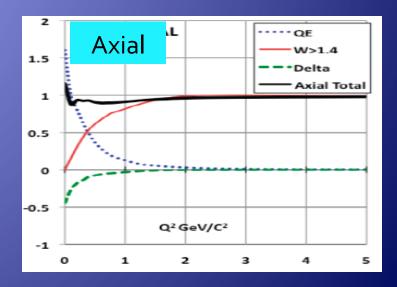




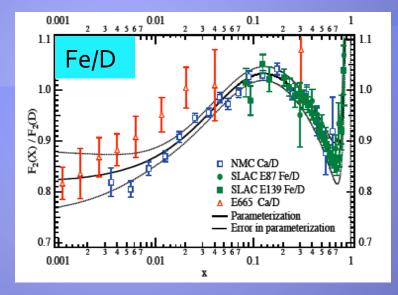
PRL 82, 2467 (1999)




PRL 128, 132003 (2021)

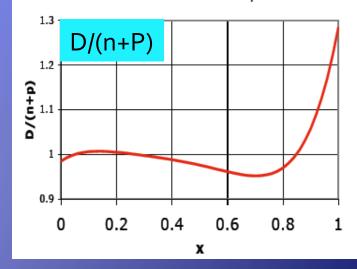

## Test of the Adler Sum Rule

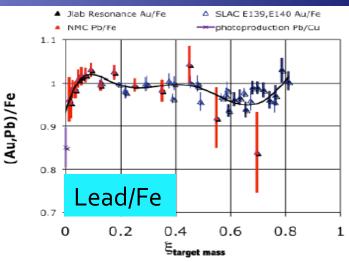
#### This sum rule should be valid at all values of Q<sup>2</sup>


$$\begin{split} |F_V(Q^2)|^2 + \int_{\nu_0}^{\infty} \mathcal{W}_{2n-sc}^{\nu-vector}(\nu,Q^2) d\nu \\ - \int_{\nu_0}^{\infty} \mathcal{W}_{2p-sc}^{\nu-vector}(\nu,Q^2) d\nu = 1 \end{split}$$

$$\begin{split} |\mathcal{F}_A(Q^2)|^2 + \int_{\nu_0}^{\infty} \mathcal{W}_{2n-sc}^{\nu-a\pi ial}(\nu,Q^2) d\nu \\ - \int_{\nu_0}^{\infty} \mathcal{W}_{2p-sc}^{\nu-a\pi ial}(\nu,Q^2) d\nu = 1 \end{split}$$







## Nuclear Effects: use e/µ data





SLAC nuclear density Fit



