

The NEUT Neutrino Interaction Simulation Program Library

Luke Pickering, Y. Hayato, +Uncountable others NuInt 2022

Supported by R URF\R1\211661 S

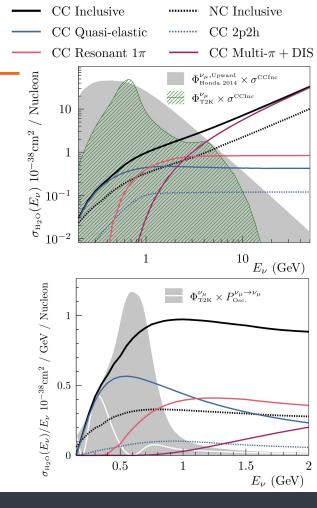
About Me

I'm an experimentalist and not a theorist... Research Interest: PMNS Neutrino Oscillation

- Reducing interaction model dependence
- Neutrino interactions:
 - Nuclear-target effects
 - Global cross-section data fits
- Uncertainty motivation and error propagation

The NEUT Neutrino Interaction Simulation Program Library

What Is NEUT?


- Primarily a Neutrino–Nucleus interaction generator:
 - Simulates important primary processes for ~100 MeV to few-TeV neutrinos
 - Interactions with nuclear targets from Hydrogen to Lead
 - \circ $\,$ Hadron cascade for propagating hadrons out of the nuclear medium

What Is NEUT?

Eur. Phys. J. Spec. Top. 230, 4469-4481 (2021)

- Primarily a Neutrino–Nucleus interaction generator:
 - Simulates important primary processes for ~100 MeV to few-TeV neutrinos
 - \circ $\:$ Interactions with nuclear targets from Hydrogen to Lead
 - \circ $\;$ Hadron cascade for propagating hadrons out of the nuclear medium
- Maintained 'in house' for use on T2K and SK:
 - Development targets the needs of the long baseline oscillation and cross-section programmes
 - Sub-to-few GeV energy region
 - Hydrocarbon and water targets
- For more detail on T₂K's tuning of NEUT predictions see Clarence's <u>talk</u>.

History

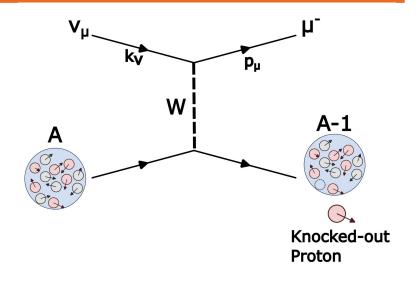
 Originally developed to predict neutrino-induced background rate for Kamiokande nucleon decay measurements.

1	***************************************	
2		
3	SUBROUTINE RNAZI(C,S)	
4		
5		
6	* (Purpose)	
7	 Give cosine and sine of random direction 	
8		
9	* (Input)	
10	* NONE *	
11		
12	* (Output)	
13	* C : COSINE OF RANDOM DIRECTION * S : SINE OF RANDOM DIRECTION *	
14	* S : SINE OF RANDOM DIRECTION	
15		
16	* (Creation Date and Author)	
17	* 1978.09.08 ; S.Yamada, A.Sato	
18	* 1995.02.03 ; K. KANEYUKI FOR S.K.	
19	* RANAZI -> RNAZI	
20		
21	***************************************	*

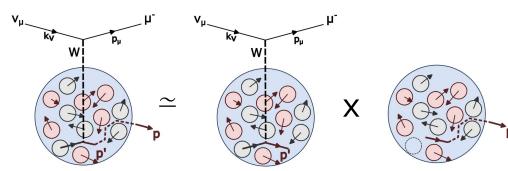
History

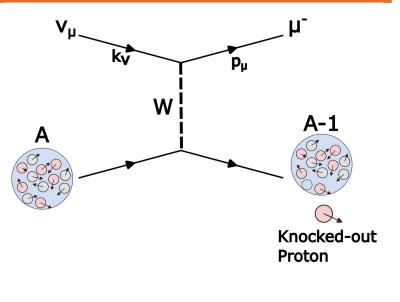
- Originally developed to predict neutrino-induced background rate for Kamiokande nucleon decay measurements.
- Has since been used for all SK and T₂K long baseline oscillation results and the majority of T₂K cross-section measurements.
 - Including Nobel and Breakthrough prize-winning measurements!
- The source code has historically not been public, but is available upon request.

	SUBROUTINE RNAZI(C,S)
	* (Purpose)
	* Give cosine and sine of random direction
	* (Input)
	* NONE
11	
12	* (Output)
13	* C : COSINE OF RANDOM DIRECTION
	* S : SINE OF RANDOM DIRECTION
	<pre>* (Creation Date and Author)</pre>
17	* 1978.09.08 ; S.Yamada, A.Sato
	* 1995.02.03 ; K. KANEYUKI FOR S.K.
	* RANAZI -> RNAZI
21	******

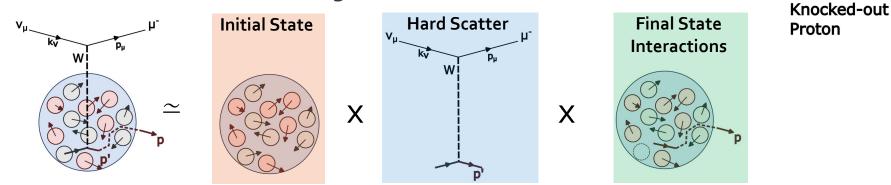

	(Creation Date and Author)
	1983.??.?? ; M.NAKAHATA
	1987.08.?? ; N.SATO FOR TAU
	1988.08.31 ; T.KAJITA DATA UPDATE
	1988.09.06 ; T.KAJITA R1314 IS ADDED
	1988.09.19 ; T.KAJITA DX/DY WAS CHANGED BY THAT OF N.SATO'S
	WHICH INCLUDE LEPTON MASS TERM AND SMALL
	TERMS
	1988.10.05 ; T.KAJITA SIGMA(NC)/SIGMA(CC) RATIOS AT HIGH ENERGIES
	J.E.KIM ET AL., REV.MOD.PHYS.53(1981)211
	1989.07.21 ; K.KANEYUKI NEU-TAU C.C. CROSS SECTION WAS UPDATED SAME
	AS NEU-E,NEU-MU
	NEU-TAU N.C. CROSS SECTION =>
	SAME AS NEU-E,NEU-MU
	1998.03.02 ; M.Shiozawa invariant mass threshold was changed due
	to new improved Rein-Sehgal model.
	1998.09.?? ; J.Kameda New Calculation based on New Structure
	function GRV94 DIS
	Consider Nu_tau cross section
	2006.08.04 ; G.Mitsuka Cross section is culculated after loading
	cross section table
	2007.11.05 ; G.Mitsuka support target nucleus besides 160
	2007.11.10 ; T.Tanaka add upmu mode
	2007.12.05 ; G.Mitsuka Maximum neutrno energy is extended to 100TeV
	even if not upmu mode
	2008.11.17 ; R.Tacik calculate inump and inumpn for each event
	2016.03.08 ; C.Bronner Put back the possibility to use a given input proton fraction
	inump and inumpn are computed from number of nucleons only if
	the input fraction is <0 or >1
	2020.12.02 ; C.Bronner Cross-section for new BY model

L. Pickering 6


The NEUT Neutrino Interaction Simulation Program Library


- In the few GeV region, nuclear effects have a significant impact on cross-section predictions
 - But solving the neutrino–nucleus quantum many-body problem fully is intractable

- In the few GeV region, nuclear effects have a significant impact on cross-section predictions
 - But solving the neutrino–nucleus quantum many-body problem fully is intractable
- Factorisation to the *rescue*!



The NEUT Neutrino Interaction Simulation Program Library

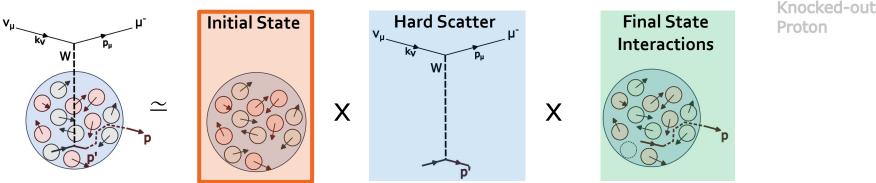
- In the few GeV region, nuclear effects have a significant impact on cross-section predictions
 - But solving the neutrino–nucleus quantum many-body problem fully is intractable
- Factorisation to the *rescue* again!

V.,

kv

W

Pμ


The NEUT Neutrino Interaction Simulation Program Library

L. Pickering 9

A-1

- In the few GeV region, nuclear effects have a significant impact on cross-section predictions
 - But solving the neutrino–nucleus quantum many-body problem fully is intractable

• Factorisation to the *rescue* again!

The NEUT Neutrino Interaction Simulation Program Library

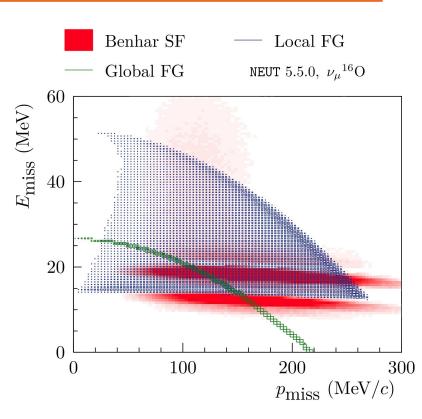
kv

W

P_u

L. Pickering 10

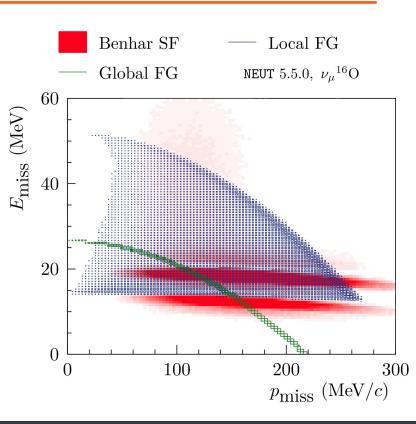
A-1


The Initial State

- The details of the initial state are critical for predicting few-GeV interactions correctly
 - Bound nucleons are in Fermi motion
 - Struck nucleons are off mass shell

The Initial State

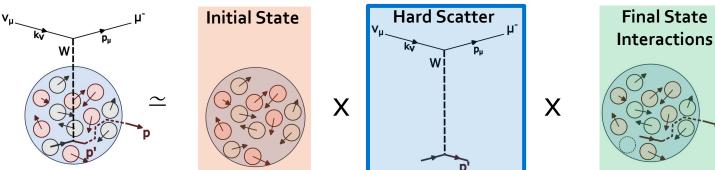
- The details of the initial state are critical for predicting few-GeV interactions correctly
 - Bound nucleons are in Fermi motion
 - Struck nucleons are off mass shell
- Usually characterised by Spectral Functions that are tuned to predict measured 'missing energy' and 'missing momentum' in electron scattering experiments.



The NEUT Neutrino Interaction Simulation Program Library

The Initial State

- The details of the initial state are critical for predicting few-GeV interactions correctly
 - Bound nucleons are in Fermi motion
 - Struck nucleons are off mass shell
- Usually characterised by Spectral Functions that are tuned to predict measured 'missing energy' and 'missing momentum' in electron scattering experiments.
- NEUT can simulate interactions with FG nuclear models on a wide range of target nuclei
- NEUT can also use the Benhar SF for Quasi Elastic interactions with C12, O16, and Fe56



The NEUT Neutrino Interaction Simulation Program Library

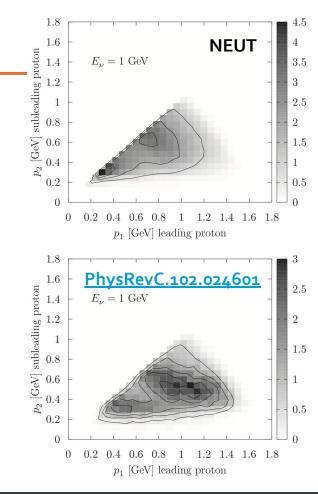
- In the few GeV region, nuclear effects have a significant impact on cross-section predictions
 - But solving the neutrino–nucleus quantum many-body problem fully is intractable

• Factorisation to the *rescue* again!

P_u W A-1 Knocked-out Proton

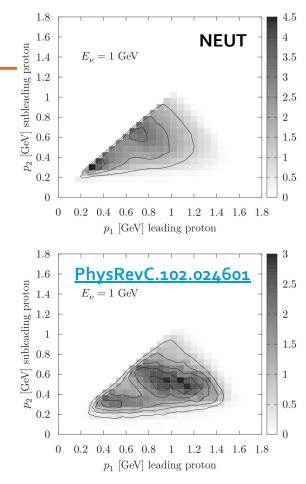
kv

The NEUT Neutrino Interaction Simulation Program Library


oPi

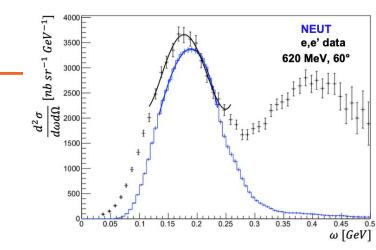
- Inclusive CCQE Models:
 - Smith-Moniz RFG w/Llewellyn Smith cross-section & kinematics
 - Benhar *et al.* SF w/Llewellyn Smith cross-section & kinematics
 - Nieves et al. 1p1h (Valencia) w/Bourguille et al. removal energy
 - Nucleon Form Factors:
 - Vector: Dipole, BBAo5, BBBAo7
 - Axial: Dipole, 3-component, Z-expansion

oPi


- Inclusive CCQE Models:
 - Smith-Moniz RFG w/Llewellyn Smith cross-section & kinematics
 - Benhar et al. SF w/Llewellyn Smith cross-section & kinematics
 - Nieves et al. 1p1h (Valencia) w/Bourguille et al. removal energy
 - Nucleon Form Factors:
 - Vector: Dipole, BBA05, BBBA07
 - Axial: Dipole, 3-component, Z-expansion
- Inclusive 2p2h Model: Nieves et al. 2p2h (Valencia)
- w/egalitarian hadron kinematics model and Bourguille *et al.* removal energy
- \circ $\;$ Breaks second factorisation as interaction is inherently multi-body
- Full HT or Look-up Table implementations

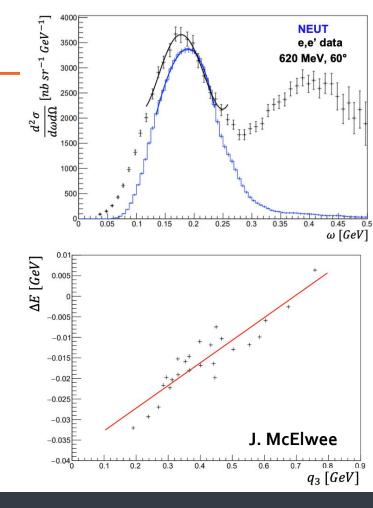
oPi

- Inclusive CCQE Models:
 - \circ Smith-Moniz RFG w/Llewellyn Smith cross-section & kinematics
 - Benhar et al. SF w/Llewellyn Smith cross-section & kinematics
 - Nieves et al. 1p1h (Valencia) w/Bourguille et al. removal energy
 - Nucleon Form Factors:
 - Vector: Dipole, BBA05, BBBA07
 - Axial: Dipole, 3-component, Z-expansion
- Inclusive 2p2h Model: Nieves et al. 2p2h (Valencia)
- w/egalitarian hadron kinematics model and Bourguille *et al.* removal energy
- \circ $\;$ Breaks second factorisation as interaction is inherently multi-body
- Full HT or Look-up Table implementations
- 2010's NEUT development focussed on oPi channels
 - But more sophisticated models exist and still significant improvements needed to meet uncertainty budget of HK/DUNE



The NEUT Neutrino Interaction Simulation Program Library

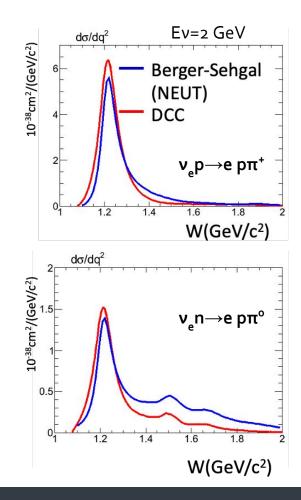
Electron Scattering


- New capability to run an electron-like mode in NEUT
- Based on NCQE cross-section:
 - modified form factors and couplings
 - coulomb corrections to initial and final state energies

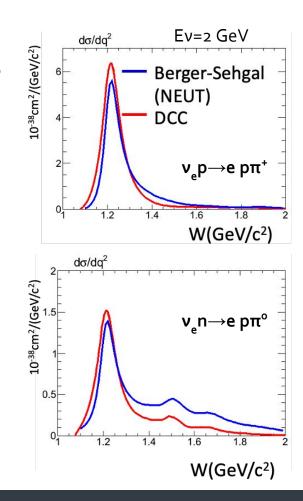
Electron Scattering

- New capability to run an electron-like mode in NEUT
- Based on NCQE cross-section:
 - modified form factors and couplings
 - coulomb corrections to initial and final state energies
- Can be used to benchmark nuclear response implementation:
 - As expected from earlier work, the QE peak position is not correctly predicted by factorized SF implementation.
 - Shift of predicted to measured QE peak position shows clear dependence on interaction kinematics...
 - The second factorisation is wrong again.
 - But, the observed shift matches predictions from RMF!

The NEUT Neutrino Interaction Simulation Program Library


- Rein-Sehgal model: w/Berger-Sehgal lepton mass effects
 - All RS resonances contribute coherently
 - Graczyk–Sobczyk form factors
 - Isospin ¹/₂ non-resonant background included incoherently
 - Single Etas, Omegas, and Gamma production is also implemented

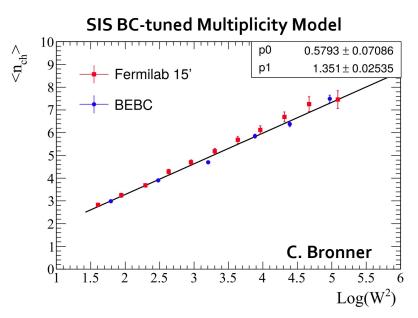
- Rein-Sehgal model: w/Berger-Sehgal lepton mass effects
 - All RS resonances contribute coherently
 - Graczyk–Sobczyk form factors
 - Isospin ¹/₂ non-resonant background included incoherently
 - Single Etas, Omegas, and Gamma production is also implemented
- MK2018 implementation:
 - Key improvement: Non-resonant channels contribute coherently
 - Significantly improved model on the way, watch this space!



- Rein-Sehgal model: w/Berger-Sehgal lepton mass effects
 - All RS resonances contribute coherently
 - Graczyk–Sobczyk form factors
 - Isospin ¹/₂ non-resonant background included incoherently
 - Single Etas, Omegas, and Gamma production is also implemented
- MK2018 implementation:
 - Key improvement: Non-resonant channels contribute coherently
 - Significantly improved model on the way, watch this space!
- DCC 1Pi [PRD 92, 074024 (2015)]:
 - State-of-the-art 1Pi model
 - Inclusive predictions recently implemented in NEUT

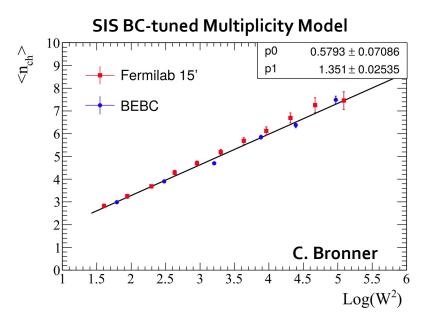
- Rein-Sehgal model: w/Berger-Sehgal lepton mass effects
 - All RS resonances contribute coherently
 - Graczyk–Sobczyk form factors
 - Isospin ¹/₂ non-resonant background included incoherently
 - Single Etas, Omegas, and Gamma production is also implemented
- MK2018 implementation:
 - Key improvement: Non-resonant channels contribute coherently
 - Significantly improved model on the way, watch this space!
- DCC 1Pi [PRD 92, 074024 (2015)]:
 - State-of-the-art 1Pi model
 - Inclusive predictions recently implemented in NEUT
- Coherent 1Pi: Rein-Sehgal and Berger-Sehgal
- Diffractive 1Pi: Rein Model

The NEUT Neutrino Interaction Simulation Program Library


Shallow & Deep Inelastic Scattering

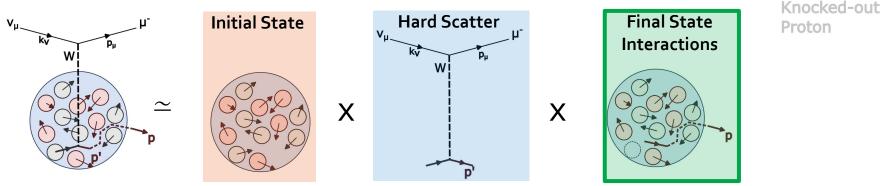
• See Christophe's <u>Talk</u> earlier in the day for details

Shallow & Deep Inelastic Scattering


- See Christophe's <u>Talk</u> earlier in the day for details
- NEUT SIS+DIS Model:
 - GRV98 with Bodek Yang low Q2 modifications
 - Pythia 5.7 fragmentation
 - SIS: W < 2
 - Must produce >= 2 pions to avoid overlap with Single
 Pion Production Processes
 - Custom charged-hadron multiplicity model with multiple options: Legacy, **BC-tuned**, AGKY

Shallow & Deep Inelastic Scattering

- See Christophe's <u>Talk</u> earlier in the day for details
- NEUT SIS+DIS Model:
 - GRV98 with Bodek Yang low Q2 modifications
 - Pythia 5.7 fragmentation
 - SIS: W < 2
 - Must produce >= 2 pions to avoid overlap with Single
 Pion Production Processes
 - Custom charged-hadron multiplicity model with multiple options: Legacy, BC-tuned, AGKY
 - DIS: W > 2
 - Full Pythia event generation



The NEUT Neutrino Interaction Simulation Program Library

- In the few GeV region, nuclear effects have a significant impact on cross-section predictions
 - But solving the neutrino–nucleus quantum many-body problem fully is intractable

• Factorisation to the *rescue* again!

The NEUT Neutrino Interaction Simulation Program Library

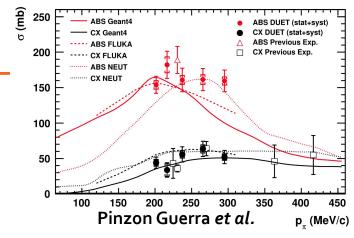
L. Pickering 27

A-1

kv

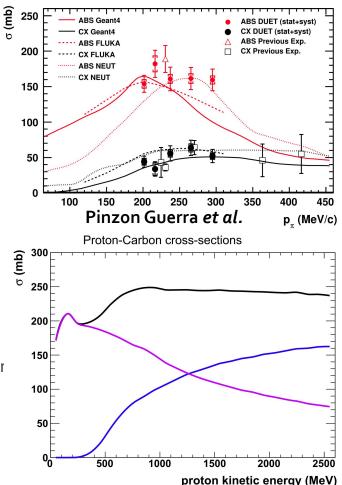
W

P_u

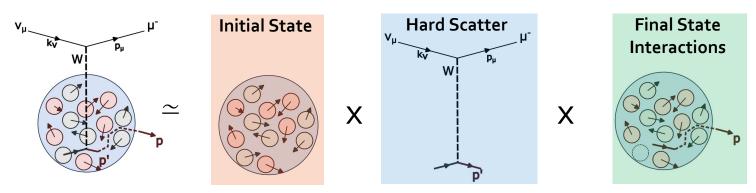

Cascade

- Hadrons produced in the Hard Scatter must be transported out of the nuclear medium before being considered *observable*.
 - Hadron kinematics, particle species, and multiplicity can change through interactions

Cascade

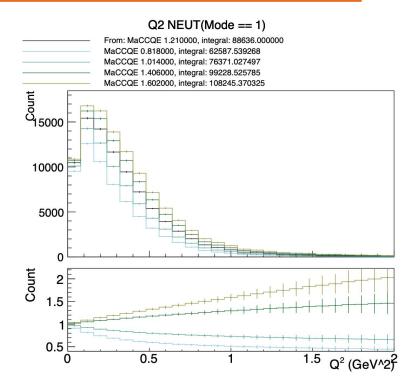

- Hadrons produced in the Hard Scatter must be transported out of the nuclear medium before being considered *observable*.
 - Hadron kinematics, particle species, and multiplicity can change through interactions
- In NEUT, hadrons are stepped out the nucleus via a semi-classical Metropolis cascade which implements interactions of nucleons, pions, kaons, etas, and omegas
 - Pion processes: Quasi-Elastic, Charge-exchange, Absorption, or pion production tuned to a variety of thin-target data

Cascade


- Hadrons produced in the Hard Scatter must be transported out of the nuclear medium before being considered *observable*.
 - Hadron kinematics, particle species, and multiplicity can change through interactions
- In NEUT, hadrons are stepped out the nucleus via a semi-classical Metropolis cascade which implements interactions of nucleons, pions, kaons, etas, and omegas
 - Pion processes: Quasi-Elastic, Charge-exchange, Absorption, or pior production tuned to a variety of thin-target data
 - The nucleon cascade follows Bertini *et al.* for MECC-7
- Woods-Saxon nucleon density with LFG spectral function

Back to the Initial State

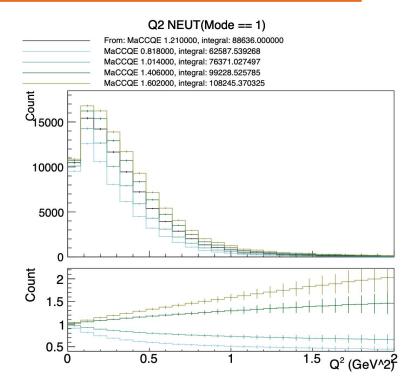
- Factorisation is a necessary evil, but have to be extra careful about consistency:
 - Final state phase space modified by Pauli blocking in the nuclear remnant
 - The cascade steps liberated hadrons through the nuclear remnant
 - Post-interaction nuclear de-excitation or remnant break-up



The NEUT Neutrino Interaction Simulation Program Library

Tools Worth Mentioning

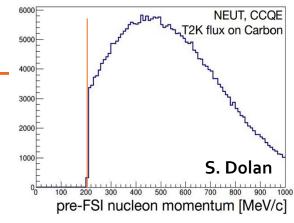
- NEUT ReWeight:
 - Calculate the relative probability of an already-generated event under some model variation
 - A critical tool for uncertainty propagation, but doesn't work for all model variations – complement with approximate techniques
 - Implemented for QE and Res1Pi form factors
 - Implemented for Pion and Nucleon cascade for modest variations of in-medium scattering probabilities



The NEUT Neutrino Interaction Simulation Program Library

Tools Worth Mentioning

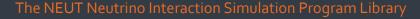
- NEUT ReWeight:
 - Calculate the relative probability of an already-generated event under some model variation
 - A critical tool for uncertainty propagation, but doesn't work for all model variations – complement with approximate techniques
 - Implemented for QE and Res1Pi form factors
 - Implemented for Pion and Nucleon cascade for modest variations of in-medium scattering probabilities
- GEANT interface:
 - Can use the NEUT hadron transport model as an inelastic model in GEANT₄
 - Enables correlation of Final State Interaction (intra-nuclear) and Secondary Interaction (in-detector) models



Known Limitations

- Nuclear models are inconsistent between models or steps in the factorisation:
 - Benhar *et al.* SF can be used for CCQE but no other modes
 - LFG used for FSI nuclear description
- Benhar et al. SF Pauli blocking uses simple, RFG-like approach
- Nuclear effects in single pion production are largely ignored
- Nuclear transparency has no effect on inclusive cross-section
- Between us... there are others

based on the density and momentum predictions from an LFG model. Such an inconsistent model is sometimes affectionately referred to as a Franken-model, after the fictional scientist and his Gothic horror implementation. For single meson production, nuclear effects



Future

OLLOWAY

- Development has begun on NEUT6 Targeted at HK and final T₂K analyses:
 - Significant reorganization of code-base
 - Improved build system
 - Removed dependence on CERNLIB2005
 - New TOML-based configuration file
 - (More) Modern C/Fortran interop
- Implementing HepMC₃-based event format proposed as a common neutrino generator format: <u>NuHepMC</u>
 - Hope to widen the phase-space for cross-tool interoperability
 - Formats are only one piece of the puzzle: Common APIs, community flux and geometry tooling
 - See whitepaper here: <u>https://arxiv.org/abs/2008.06566</u>
- Aim is to release NEUT6 as open source under the GPL in 2023
- Hope to produce comprehensive data-model comparisons alongside NEUT6 release

Summary

- Development targets needs of J-PARC-based neutrino scattering experiments
 Focus on few GeV electron, muon, and tau neutrino interactions with H1, C12, O16 targets
- NEUT provides a complete model for interpreting neutrino-scattering data
 - But significantly improved predictions are needed for the precision generation of experiments
- Factorisations are mathematically and computationally necessary, but we know their usages misses important physical effects:
 - Ongoing effort to understand, quantify, and implement effective corrections.

Summary

- Development targets needs of J-PARC-based neutrino scattering experiments
 o Focus on few GeV electron, muon, and tau neutrino interactions with H1, C12, O16 targets
- NEUT provides a complete model for interpreting neutrino-scattering data
 - But significantly improved predictions are needed for the precision generation of experiments
- Factorisations are mathematically and computationally necessary, but we know their usages misses important physical effects:
 - Ongoing effort to understand, quantify, and implement effective corrections.
- NEUT has a long, rich history and we want to make sure that it not only survives, but becomes a more useful community tool into the next generation.
 - Effort on opening up the source code
 - Implementing community interfaces and formats
 - Updating dependencies and procedures to modern standards (where possible)

ROYAL HOLLOWAY UNIVERSITY OF LONDON

Supported by RO URF\R1\211661 SO(

