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Preamble

• We want to make simulation GPU-friendly
ØGeometry navigation is an important simulation component (%)
ØMost geometry components already GPU-aware

ØExcept navigation layer
ØWork on GPU-friendly navigation

ØSimple example/demonstrator, e.g a raytracer utility taking arbitrary
geometry setup



Navigation interface

• VecGeom top navigation layer 

quite different from ROOT and 

Geant4

• Specialized per logical volume 

topology (complexity) or 

optimization type (simple loop, 

SIMD)

• Question:

• Porting existing navigator for GPU 

case vs. implementing a GPU-

friendly specialization
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CUDA-friendliness of VecGeom classes

• Implemented using custom macros (host/device, forward declarations)
• The portable classes are compiled under different namespaces into 

separate libraries
• cxx for the host compiled with gcc/clang/icc, cuda for the device, compiled iwith nvcc

• The world volume and its content can be streamed over to GPU
• CudaManager::LoadGeometry(GetWorld()) // prepare lists to be streamed
• CudaManager::Synchronize(); // actual allocation and copy to GPU

• For all logical volumes, the navigator getting constructed by default is 
NewSimpleNavigator (stateless)
• Implemented navigation as a loop over daughter volumes



Specialized CUDA navigator

• In the first approximation, NewSimpleNavigator could be used
• Not optimized, just to make a simple demonstrator for global navigation

• Porting existing SIMD-specialized navigators to GPU “as is” pointless
• The internal data structures organized in SIMD lanes, not matching number of GPU 

warps
• Parallelism models: per track (top level) versus per feature (internal)

• Internal parallelism on model features not efficient for long GPU vectors
• (e.g. one daughter to a warp, one ABBox to a warp, …)

• In navigation algorithm pipelines, having just few components massively parallelized 
is not globally efficient

ØWe need optimization structures that work well in scalar mode
ØStateless or read-only



A possible plan

• Make a simple example of a global raytracer (setup, not only single 
volume)
• CUDA kernel, analogue to Benchmarker.cu

• Using NewSimpleNavigator in the first implementation

• Benchmark on GPU vs. CPU

• Implement a bounding box accelerated scalar GPU-friendly navigator
• Number of BBOX levels and volumes per level optimized for a given volume, 

not for the GPU architecture

• Benchmark for complex geometry

• Investigate alternative portability libraries for the example (e.g. 
Alpaka)



Side topic: support for tessellations in ROOT

• Requested by experiments and DD4HEP for 
conversions Geant4<->VecGeom<->ROOT
• No navigation functionality but:
• Validation checks (e.g. compacting common

vertices, checking facets for degeneration, vertex 
order definition/flip)
• Persistence in ROOT/GDML formats
• Visualization

Triacontahedron as 
tessellated shape in ROOT


