
VecGeom navigators for GPU
A. Gheata



Preamble

• We want to make simulation GPU-friendly
ØGeometry navigation is an important simulation component (%)
ØMost geometry components already GPU-aware

ØExcept navigation layer
ØWork on GPU-friendly navigation

ØSimple example/demonstrator, e.g a raytracer utility taking arbitrary
geometry setup



Navigation interface

• VecGeom top navigation layer 

quite different from ROOT and 

Geant4

• Specialized per logical volume 

topology (complexity) or 

optimization type (simple loop, 

SIMD)

• Question:

• Porting existing navigator for GPU 

case vs. implementing a GPU-

friendly specialization

TGeoNavigator

(global, per setup)

Navigation API

Components

(nav. optimizers,

shapes)

G4Navigator

(base class)

Navigation API

Derived navigator

Components

(nav. optimizers,

shapes)

VNavigator

(base class, per 

logical volume)

Navigation API

LogicalVolume

Specialized 

navigator
Specialized 

navigator
Specialized 

navigator
Specialized 

navigator
Specialized 

navigator

Components

(specialized optimizers,

shapes)

ROOT Geant4

VecGeom



CUDA-friendliness of VecGeom classes

• Implemented using custom macros (host/device, forward declarations)
• The portable classes are compiled under different namespaces into 

separate libraries
• cxx for the host compiled with gcc/clang/icc, cuda for the device, compiled iwith nvcc

• The world volume and its content can be streamed over to GPU
• CudaManager::LoadGeometry(GetWorld()) // prepare lists to be streamed
• CudaManager::Synchronize(); // actual allocation and copy to GPU

• For all logical volumes, the navigator getting constructed by default is 
NewSimpleNavigator (stateless)
• Implemented navigation as a loop over daughter volumes



Specialized CUDA navigator

• In the first approximation, NewSimpleNavigator could be used
• Not optimized, just to make a simple demonstrator for global navigation

• Porting existing SIMD-specialized navigators to GPU “as is” pointless
• The internal data structures organized in SIMD lanes, not matching number of GPU 

warps
• Parallelism models: per track (top level) versus per feature (internal)

• Internal parallelism on model features not efficient for long GPU vectors
• (e.g. one daughter to a warp, one ABBox to a warp, …)

• In navigation algorithm pipelines, having just few components massively parallelized 
is not globally efficient

ØWe need optimization structures that work well in scalar mode
ØStateless or read-only



A possible plan

• Make a simple example of a global raytracer (setup, not only single 
volume)
• CUDA kernel, analogue to Benchmarker.cu

• Using NewSimpleNavigator in the first implementation

• Benchmark on GPU vs. CPU

• Implement a bounding box accelerated scalar GPU-friendly navigator
• Number of BBOX levels and volumes per level optimized for a given volume, 

not for the GPU architecture

• Benchmark for complex geometry

• Investigate alternative portability libraries for the example (e.g. 
Alpaka)



Side topic: support for tessellations in ROOT

• Requested by experiments and DD4HEP for 
conversions Geant4<->VecGeom<->ROOT
• No navigation functionality but:
• Validation checks (e.g. compacting common

vertices, checking facets for degeneration, vertex 
order definition/flip)
• Persistence in ROOT/GDML formats
• Visualization

Triacontahedron as 
tessellated shape in ROOT


