
RT prototype preliminary



The model

• Input: screen position/size, up
vector, object/light colors, RT model 
(specular/transparent)
• Shoot rays from each “pixel”
• Traverse geometry model & 

compute pixel color depending on 
the model
• Specular: stop ray when reaching a 

given depth
• Transparent: traverse full geometry
• To do: reflection + refraction: allows 

generating new rays

source

screen

up

px

py

i

r
!

2



The prototype

• Reading geometry from gdml file
• Computing scene parameters to fit the view window
• Pre-allocate px*py Ray objects
• Position, direction, current/next navigation states, number of crossed 

boundaries, “done” flag, final pixel color 
• Propagation kernels
• One step per ray: invoking a shader with all RT algorithms, deciding if the ray 

continues or not
• Block stepping: one step for all rays for which done = false
• Full propagation: repeat block stepping until all rays are done

• Image saved as 24-bit color map as text format (.ppm)

3



Simple shapes

4



TrackML geometry, specular view

5



TrackML geometry, transparent view

6



Next steps

• Moving the model to GPU
• Instrumenting the Raytracer class with host/device macros -> cuda::Raytracer
• Building geometry on host, moving on device
• Initializing rays on device directly

• Handling parallelism on CPU
• Probably using OMP

• Writing the kernel for GPU (reentrant)
• Evolving the RT model to handle reflection + refraction (ray 

generation)
• Investigate conversion using Alpaka on the RT code

7


