
C++11 usage in Pythia 8.3



Objectives

Objectives for this discussion session:
1. Go through new features of C++11 and discuss them to make

sure we are more or less on the same page.
2. Decide if we want to endorse each feature in the coding style

guidelines.
3. Decide how to effect these decisions.



Levels of endorsement

I Encourage means use this feature if at all possible.
Example: use int for all integers, even if char saves space

I Allow means that the feature may be used, and it depends on
the judgment/preference of the developer.
Example: whether to pass by pointer or by reference

I Discourage means the feature should generally be avoided, but
can be allowed in situations where it would be very helpful.
Example: using char* for strings.

I Disallow means we don’t allow developers to use a feature at
all. In many cases, we disallow features because they would
only add a small improvement over alternatives, but are
conceptually difficult for people who are not familiar with
them. Example: typedef



Minor features

I Encourage: Use nullptr for null pointers, not NULL or 0.
I Encourage: Use override whenever applicable.
I Allow: For values that are truly constant, use constexpr

instead of alternatives (such as static const or #define).
Often this has little effect in practice, so it’s a less strict
requirement.

I Allow: Range-based for loops are generally good, but it can
sometimes be a matter of taste.

I Disallow: We haven’t used final anywhere, so it’s
inconsistent with style. It does not bring a lot of value unless
it is used consistently.

I Disallow: static_assert is inconsistent with the Pythia style
and the way we handle testing and errors. Hence, we don’t
believe it makes the code easier to maintain.



auto
The auto keyword is definitely useful. The following examples
illustrates cases in which we Encourage, Allow, Discourage, or
Disallow its usage.
1. map<int,ParticleDataEntry>::iterator iter =

pdt.find(id)

2. function<double(double)> integrand = [=](double x)
{ return f(x, a, b, c); }

3. for (PhysicsBase* physicsPtr : physicsPtrs)

4. for (Particle& p : pythia.event)

5. ParticleDataEntry* pde = particleDataPtr->find(id)

6. pair<Vec4, Vec4> ps = Rndm::phaseSpace2(...)

7. Particle& h = event[i]

Conclusion: Encourage we want to use auto for very long names
(especially iterators), or intermediate length names when the
implied type is completely obvious from context. When in doubt,
avoid using it.



rvalue references

It can be beneficial to have rvalue references as function
parameters. As an example, consider

Hist:: operator =( const Hist& h);
Hist:: operator =(Hist&& h);

Writing something like Hist h = h1 + h2 will use the rvalue
version, which can be faster since it can use move operations
instead of copy operations.

Conclusion: Allow for move constructors and move assignment
operators, which should be implemented when custom copy
constructors/operators are implemented. This can have a positive
effect on performance, and usage in this situation is prevalent in
C++. Disallow otherwise, since their meaning in other contexts is
much less transparent.



Lambda functions
Lambda functions have some applications and can sometimes make
the code a lot cleaner. Example:

bool integrateGauss(double& resultOut ,
function <double(double)> f, double xLo , double xHi);

// Define lundFF as lambda function of only z,
\\ fixing a, b, c, mT2 as parameters.
auto lundFF = [=]( double z) {

return LundFFRaw(z, a, b, c, mT2); };
check = integrateGauss(denominator , lundFF , 0, 1);
if (!check || denominator <= 0.) return -1.;

The biggest issue is that they are conceptually difficult.

Conclusion: Discourage, allow only when the alternative is
significantly messier, such as having a base class with an abstract
operator(). Good comments are required; consider using the
word "lambda" to indicate a relevant search term for maintainers
to find more information.



Smart pointers I - shared_ptr

A shared_ptr should be used when many objects share a resource
and it’s not clear ahead of time which object will release the
resource last. This is especially useful when taking objects created
by the user (e.g. an object derived from UserHooks), because it
guarantees both that the object persists at least as long as the
Pythia object, and that Pythia will release the reference later.

Conclusion: Encourage when the user passes custom objects to
Pythia. Discourage otherwise. We would like to move away from
raw pointers, especially new/delete, but this will require some
effort and a bit of learning curve.



Smart pointers II - unique_ptr

A unique_ptr is a pointer that cannot be shared, but will delete
itself automatically when it goes out of scope. One example is

class SigmaTotal {
virtual ~SigmaTotal () {

if (sigTotElPtr) delete sigTotElPtr; }
SigmaTotAux* sigTotElPtr;

};

If sigTotElPtr was a unique_ptr, the custom destructor would
not be necessary. The problem is that it can be conceptually
difficult to understand for someone who’s not familiar with this use
case.

Conclusion: Disallow. Smart pointers are not yet an established
part of the Pythia style, and unique pointers don’t add enough value
to justify the learning curve. This might be revised in the future.


