

PVSSProxy
The first piece of the MACS procedure framework (ProShell)

Angela Brett

A framework which can run prodedures that
perform operations on devices and sets of devices
(working sets.)

A procedure is a C# class implementing a certain
interface, which will be loaded dynamically from a
file.

The procedure framework will communicate with devices
using PVSS

PVSS is a SCADA (Supervisory Control and Data
Acquisition) system. It can be used to connect to
hardware devices to control them and acquire data from
them.

PVSS has a scripting language and a graphical user
interface, but a procedure framework implemented using
these would run too slowly.

The PVSS API allows users to write their own programs
in C++ which can access the data and control the
hardware devices via PVSS datapoints.

SWIG (Simplified Wrapper and Interface
Generator) is free software that can create
wrappers that allow C or C++ APIs to be used
from other languages.

I used SWIG to create a wrapper for the PVSS
API. It took about a month to fine tune the
wrapper and write prototype code to ensure that
all the features of the PVSS API could be used.

PVSSProxy is a library which allows easy use of
the SWIG wrapper without knowledge of the
underlying API.

All of the main functionality of PVSS is made
available using common C# patterns:

● Asynchronous calls use C# delegates.
● Datapoints values can be set and retrieved
using native C# data types.

● Errors are raised as exceptions.
● PVSSProxy manages the PVSS event loop,
so client code only needs to call one method
to connect to PVSS.

PVSSProxy should also make some things easier to code than
they would be in a PVSS script.

DatapointName class simplifies the use of datapoints. Instead of
remembering how to make a full datapoint name string such as:

Datapoint.element:_config.Detail._attribute

You create a DatapointName object with only the essential
properties, and the rest can be filled in automatically depending on
what you are doing.

DatapointName will also allow wildcards to get names and values
of many datapoint elements at once.

To do:
●Add more source code documentation
●Add the ability to disconnect from PVSS
●Make timeouts configurable
●Add logging using log4net
●Allow wildcards in datapoint names
●Add more unit testing

●...and implement the procedure framework.

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12

