
LHC Signal Monitoring Project
Development of an Embedded Domain Specific Language

for Signal Query and Analysis

Kasper Andersen, Zinur Charifoulline, Per Hagen, Michał Maciejewski, Christoph Obermair, Arjan Verweij, Sivert Sagmo

TE-MPE-MS: Thibaud Buffet, Jean-Christophe Garnier, Tiago Martins Ribeiro, Markus Zerlauth

IT-DB-SAS: Piotr Mrówczynski, Prasanth Kothuri

IT-ST-FDO: Diogo Castro

Developer’s Story

2

Signal Monitoring

Requirements

Reality

First Design

Limitations

Code Quality Decrease

Second design

Requirements

3

V

 Heterogeneous data sources

 Various signal processing algorithms

Logging Databases - Overview

4

time
PM

(NX)CALS

PM CALS NXCALS

time definition event period of time period of time

signal definition system, source,

className, signal

signal system, (device,

property), signal

return type json dictionary of

arrays

spark

DataFrame

time unit ns us ns

API REST pytimber Apache spark

Logging Databases - API

5

PM – REST API

CALS - pytimber

NXCALS - spark

http://pm-api-

pro/v2/pmdata/signal?system=FGC&className=51_self_pmd&source=RPTE.U

A47.RB.A45×tampInNanos=142622046952000000&signal=STATUS.I_MEAS

http://pm-api-pro/v2/pmdata/signal?system=FGC&className=51_self_pmd&source=RPTE.UA47.RB.A45×tampInNanos=142622046952000000&signal=STATUS.I_MEAS

Logging Databases – Analytics

6

PM PM CALS CALS NXCALS NXCALS

event

query

signal

query

signal

query

feature

query

signal

query

feature

query

timing fast fast can be

slow

rather

fast

slow fast

execution serial serial serial ? serial parallel

use simple simple simple simple simple hard

 Need to extend analysis capabilities natively provided by the databases

Unified Database Access

7

PmDbSignal CalsDbSignal InfluxDbSignal

sparkPM REST API v2&3 pytimber
Influxdb.Data

FrameClient

Dataframe

(data structure composed of rows and columns like an Excel file)

ELQANxcalsDbSignal

DbSignal

+read()

+write()

DbSignal Classes

8

PM

CALS

NXCALS

How to get the signal name and metadata?

Metadata

9

The Metadata module contains methods to access various signal and circuit names.

System

- CIP

- CRYO

- PIC

- PC

- QDS

- QH

- BUSBAR

- DIODE

- VF

- LEADS_EVEN

- LEADS_ODD

- EE

Signal Name Circuit Name Wildcard

- RB.A12

- RB.A23

- RB.A34

- RB.A45

- RB.A56

- RB.A67

- RB.A78

- RB.A81

- Cell

- Magnet

- Crate

- VF

- Busbar

- I_A

- I_B

- I_EARTH

- I_EARTH_PCNT

- I_MEAS

- I_REF

- V_MEAS

- V_REF

Mapping circuit components Circuit topology in one place

Structure for each circuit is the same single analysis for many circuits

Signal names change over time we need to keep track of the changes

Limitation

10

Several design flaws leading to inconsistency and code duplications:

- use of multiple methods, multiple arguments (duplicated across methods)

- multiple local variables (naming consistency across analysis modules)

- order of methods and arguments (with duck typing) not fixed

What if we want to get current for each circuit?

What if we want to get several current signals?

Domain Specific Language

11

Natural languages have certain structure [1]

English: {Subject}.{Verb}.{Object}: John ate cake

Japanese: {Subject}.{Order}.{Verb}: John-ga keiki-o tabeta

John cake ate

One can enforce syntactical order in code:

- Domain Specific Language – new language, requires parser

- Embedded Domain Specific Language – extends existing language

[1] K. Gulordava, Word order variation and dependency length minimisation:

a cross-linguistic computational approach, PhD thesis, UniGe

pyeDSL

12

df = QueryBuilder().with_db().with_circuit_type().with_duration().with_metadata()\

.signal_query().dfs[0]

We propose a python embedded Domain Specific Language (pyeDSL):

{DB}.{CIRCUIT_TYPE}.{DURATION}.{METADATA}.{QUERY}

+ each parameter defined once (validation of input at each stage)

+ single local variable

+ order of operation is fixed

+ support for vector inputs

+ time-dependent metadata

e.g.

M. Audrain, et al. - Using a Java Embedded Domain-Specific Language for LHC Test Analysis,

ICALEPCS2013, San Francisco, CA, USA

Demo 1
Signal query

13

How does it work?

14

 Nested Builder Design Pattern

 Abstract Factory Design Pattern

QueryBuilder

query

+with_db()

dfs = QueryBuilder()

At each stage only a few methods are available, which update hidden container.

How does it work?

15

 Nested Builder Design Pattern

 Abstract Factory Design Pattern

QueryBuilder

query

+with_db()

with_db(‘PM’)

QueryBuilderWithDb

query

+with_circuit_type()

db: ‘PM’

dfs = QueryBuilder().with_db(‘PM’)

At each stage only a few methods are available, which update hidden container.

How does it work?

16

 Nested Builder Design Pattern

 Abstract Factory Design Pattern

QueryBuilder

query

+with_db()

with_db(‘PM’)

QueryBuilderWithDb

query

+with_circuit_type()

db: ‘PM’

QueryBuilderWithDbCircuitType

query

+with_duration()

+with_timestamp()

db: ‘PM’

circuit_type: ‘RB’

with_circuit_type(‘RB’)

dfs = QueryBuilder().with_db(‘PM’).with_circuit_type(‘RB’)

At each stage only a few methods are available, which update hidden container.

…

pyeDSL – Examples (1/2)

17

PM – event query

PM – signal query

CALS – signal query

 One can quickly change a database and circuit type, name

 A sentence created with the language corresponds to database type

pyeDSL – Examples (2/2)

18

NXCALS – signal query

NXCALS – feature query*

*work in progress

pyeDSL – Polymorphism

19

Multiple circuit names

Multiple signal names

Wildcard

Multiple system names

 Internal handling of for loops – reduced amount of code in analysis

Adding Adjectives

20

{DB}.{CIRCUIT_TYPE}.{DURATION}.{METADATA}.{QUERY}.{PRE-PROCESSING}

df = QueryBuilder().with_db().with_circuit_type().with_duration().with_metadata()\

.signal_query().synchronize_time().convert_index_to_sec().dfs[0]

.synchronize_time()

.convert_index_to_sec()

.filter()

.remove_initial_offset()

Once a signal is queried, we can perform some operations on each of them.

In this case, the order of operations does not matter (but can be checked)

e.g.

Demo 2
Signal query and processing

21

Signal Assertions

22

AssertionBuilder class performs signal assertions.

Hardware Commissioning procedures check ranges of certain signals

Demo 3
Signal assertion

23

Feature Engineering
Signal analysis (e.g., quench heater discharges) requires extraction of
certain characteristic features

24

FeatureBuilder performs feature engineering in a generic way.

initial

voltage

final

voltage

characteristic time

Demo 4
Signal feature extraction

25

Architecture

26

Signal Monitoring Workflow
Acquisition Exploration Modelling Monitoring

MetadataDbSignal Reference

Analysis GUI

pyeDSL lhc-sm-api

lhc-sm-apps

 With a solid signal query and processing API we can advance faster with

developing HWC and monitoring notebooks and extend to other circuits.

Analysis - Summary

27

V

Signal Monitoring Workflow
Acquisition Exploration Modelling Monitoring

QH RB RQ RQX IPQ/D

COLDBB RB RQ

PC RB RQ 600A

DIODE RB RQ

GND RB RQ

EE RB RQ 600A

MAGNET RB RQ

DFB RB RQ

HWC and Quench Analysis

R
u
n
 3

 -
M

o
n
ito

rin
g

Analysis - Modelling

28

digital-twin intra-component

1. With historical data we derive expected behavior and trends.

2. With on-line data we compare behavior with others.

cross-populationtrends

R1…4 R1_A2L1...L8

circuit

R

R

#

time

R

time

R

Modelling Methods

29

30

Acquisition Exploration Monitoring

busbar or

current lead
voltage

feelers
earth

current

voltage

feelers

quench

heaters

diode lead

resistance

Automatic execution of monitoring application depends on the operation state:

- triggered by PM events (PC, QH, MAGNET)

- triggered by change in the beam mode (GND, COLDBB)

- in regular intervals, e.g. every hour (DFB)

t

i(t)

Modelling

31

Courtesy: P. Mrówczyński

https://gitlab.cern.ch/db/swan-spark-notebooks

https://gitlab.cern.ch/LHCData/lhc-sm-apps/merge_requests/1

Automatic Execution

Queue of timestamps to process

NXCALS

Beam mode

Automatic execution of long-running historical analyses*

Manual execution of HWC notebooks

 Need for analysis trigger and analysis supervision (Apache AirFlow)

https://gitlab.cern.ch/db/swan-spark-notebooks

Summary

1. Introduction of pyeDSL unifies database query and simplifies code

2. The signal processing and feature engineering is provided but limited

3. The pyeDSL introduces clear structure by enforcing order of operations

4. The directions for extension are clearly identified

5. The development time and maintenance effort havereduced considerably

32

Create an analysis
notebook for each

component

Create an analysis
notebook for each

circuit

Gather historical data
from Run 1&2

Create Spark
monitoring

applications for Run 3

33

Software Stack

34

/

write

git clone

read

Integrated

Development

Environment

Interactive

notebooks

git push
Continuous

Integration

git clone

git push

Persistent

storage

Static code analysis

Test coverage

Backlog

Strong cooperation

with MPE-MS

We rely on industry-standard tools for the development automation

Majority (except for PyCharm IDE and Python Package Index) services are supported by CERN IT

/ NXCALS
package doc

Resources

35

API

In order to use the project the API has to be installed in SWAN

pip install --user lhcsmapi

Check the latest version at https://pypi.org/project/lhcsmapi/

The documentation for the API is stored at http://cern.ch/lhc-sm-api.

The repository of the API is available at a GitLab http://gitlab.cern.ch/lhcdata/lhc-sm-api

Applications

The released use cases are available at the SWAN gallery

The beta versions of the use cases are stored at http://gitlab.cern.ch/lhcdata/lhc-sm-apps

Project website: https://twiki.cern.ch/twiki/bin/view/TEMPEPE/Signal_Monitoring

https://pypi.org/project/lhcsmapi/
http://cern.ch/lhc-sm-api
http://gitlab.cern.ch/lhcdata/lhc-sm-api
http://gitlab.cern.ch/lhcdata/lhc-sm-apps
https://twiki.cern.ch/twiki/bin/view/TEMPEPE/Signal_Monitoring
http://swan.web.cern.ch/content/large-hadron-collider-lhc-monitoring

