Investigating Failure Patterns in Particle Accelerator Infrastructures with Explainable Deep Learning

Thomas Cartier-Michaud, Lukas Felsberger, Andrea Apollonio, Andreas Müller, Benjamin Todd, Dieter Kranzlmüller

Introduction

Methodology

Experiments and Results

Outlook

Introduction

- Large infrastructures hard to diagnose
- ML approaches scale to very high dimensionality
- Can they be useful to help operators?

Introduction - Idea

Data	a	Data Driven Model Pred	Explanation			
Input (image of animal) Label (species)		Input	Prediction			
	cock			20		
	hammerhead		Cock	27		
	hare					
Input (past monitoring signals)	Label (leading to alarm in future?)	Input	Prediction			
Time ↑ Signals	No					
Time ↑ Signals	Yes	Time ↑ Signals	Yes	Time 1		
Time ↑Signals	No					

Introduction - Challenges

Image recognition

- Large data sets
- Ground truth usually known
- Explanation easy to interpret

Failure pattern mining

- Small data sets
- Ground truth hard to come by
- Explanation interpretable?

Methodology

Adapting well established machine learning approach:

Data Collection: LASER

- Centralized service capturing/notifying/storing anomalies for the whole accelerator chain + TI
- Alarms are raised for operators → not an interlock system → need for human (slow) intervention
- 30 fields, of which important ones are:

FAULT_FAMILY/_MEMBER_/CODE = pointer to the component and the fault PRIORITY = severity of the fault = 0, 1, 2, 3 → we predict priority 3 alarms, supervised problem SYSTEM_TS = time stamp = events are recorded, no continuous signals

For PSB (same building / components of the machine): bug investigation for 2018

Year	2018	2017	2016	2015	2014	2013	2012	2011
# lines	235 M	305 K	473 K	235 K	1 767 K	12 K	1 054 K	504 K

LASER description

CERN ALARMS DATA MANAGEMENT: STATE AND IMPROVEMENTS

Data Collection: extraction from LASER

• Accessing the TN using a Virtual Machine (~1 month)

- Retrieving data from SQL database (~2 months: 1.7TB)
 - → automation using bash scripts in parallel sessions
 - → process "artisanal" as LASER is not meant for such large requests

• Storing the data using a cernbox account (<50GB once zipped)

Data Collection: extraction from CALS

- Additional signals fetched from CALS based on expert recommendation
- Using pytimber
 - Maximal data size per request limited
 - Requires splitting of requests and subsequent merging

Formulation of a Supervised Machine Learning Problem

Supervised ML needs:

- Data
 - Input
 - Label/Output
- Model linking in- and outputs
 - Model structure
 - Parameter optimization

We have:

٠

- Alarms in time
 - Alarms in the past
 - Priority 3 alarm in the future
 - Model linking past and future alarms
 - Choice of ML models
 - Choice of optimizers

ML Problem Formulation: existence of a model

ML Problem Formulation: Discretization

Filtering and Subsampling

- Focus on EPC of PSB →
 reducing the number inputs
- Failures are rare (< 30) →
 - Filter out signals with too low or without activity
 - balancing class 0 (no failure) and class 1 (failure) elements by subsampling class 0
 - forcing contrast

Algorithm Selection

- Goal was to test explainable deep learning
 - But will be compared against "traditional" ML algorithms

Traditional ML

(based on popular choice for universal learners):

- SVM with linear kernel
- Random Forest
- K Nearest Neighbour

Deep Learning

(based on latest review papers for time series problems):

- Fully Convolutional Network
- Fully Convolutional Networks with Dropout Regularization
- time-Convolutional Neural Network

References in paper

Training: Implementation

- python3 + 2 main libraries:
 - Learning: <u>https://github.com/hfawaz/dl-4-tsc</u>
 - Explaining: https://github.com/albermax/innvestigate
 - Implemented in keras and tensorflow

Training: Computation

- Not computationally intensive but many trainings (~100 000) for different meta parameters
 - → No use of GPU as reading / transforming / writing would have been the bottleneck
- Generation of thousands of jobs using 1 core each and executed in parallel on CERN Cluster → 220 000 cores in the cluster, usage of up to 1000 cores at once
 - Limit of 2GB/core the cluster
 - ➔ Necessity to rewrite the transformation algorithm
 - Limit of 100GB in AFS/work
 - → Easily reached with more than 100 000 combinations of hyper parameters * 1MB

We underestimated the input/output/postprocessing importance for large scans

٠

٠

٠

٠

Model Selection

data

For every choice of training algorithm + parameterization:

Model Selection – (Hyper) Parameters

Experiments and Results

Goal: Use framework to predict and explain accelerator failures.

Using new framework on new problems requires iterative approach:

- 1. Verify and test new framework using synthetic data with known ground truth
- Attack new problem (predict+explain faults in PSB) with verified framework

Synthetic Data Experiment

3/11/2020

Verify and test new framework using synthetic data with known ground truth:

Synthetic Data Experiment

3/11/2020

CERN

https://towardsdatascience.com/evaluating-machine-learning-classification-problems-in-python-5-1-metrics-that-matter-792c6faddf5

lukas.felsberger@cern.ch

Synthetic Data Experiment - Discussion

- Learned predictive models from less than 10 training examples for up to 64 noise channels
- ✓ Framework works in principle

Real Data Experiments

- Test new problem (predict+explain faults in PSB) with validated framework
- Data
 - LASER alarms for power converters in PSB
 - CALS logging
 - External condition signals
 - PSB beam destination signal

Mixing Synthetic and Real Data

- Preliminary step: Redo previous experiment and replace noise by real data •
- Idea: if there was a well defined pattern in PSB data, would we detect it? ٠

Mixing Synthetic and Real Data

- Learned predictive models from less than 10 training examples and for 43 PSB signals (as noise)
- Discovers correct synthetic pattern:

Mixing Synthetic and Real Data - Discussion

- ✓ Should find patterns in PSB data if there are
 - Learned predictive model from less than 10 training examples for 43 PSB signals (as noise)
 - ✓ Finds correct failure precursors

Real data

- Predict high priority alarms in LASER
- Example
 - Converter: <u>BR3.DVT13L4</u> (ACAPULCO)
 - Fault code: 20
 - PC Permit not present
- Trained on data from 2015-09-01 to 2016-09-01; tested from 2016-09-12 to 2017-05-31
- Question:
 - Does it predict?
 - Does it explain?

Real data

Does it predict?

- Yes, when there are patterns
- But: there don't seem to be many patterns
- And: We are at small data limit of machine learning \rightarrow performance estimations uncertain

score	# alarms Test	# alarms Train	fcn	fcn_3d	fcn_2d	kNN	random_forest	svm
acc_test	3	7	0.96	0.96	1	0.92	0.84	0.88
acc_val	2.4	4.6	0.84	0.90	0.93	0.82	0.68	0.73
F1_test	3	7	0.8	0.8	1	0.5	0	0
F1_val	2.4	4.6	0.27	0.4	0.68	0	0.073	0.29

Real data

Does it explain?

- It gives hints
- Complex to interpret and ambiguous

Input

CERN

FCN based explanation

2017-05-31 02:48:00 2017-05-30 23:36:00

2017-05-30 20:24:00

2017-05-30 17:12:00

2017-05-30 14:00:

2017-05-30 10:48:00

2017-05-30 07:36:00

2017/05/30 04:24:00

2017-05-30 01:12:00

Real data - Discussion

- ✓ Achieves good predictive performance when patterns exist
- ✓ Learned patterns are hard to interpret
- ✓ Interpretation when combined with logbook data easier
- ✓ Too little data to draw conclusions with certainty
 - ✓ Approaching limits for machine learning
 - \checkmark \rightarrow Improve data selection/pre-processing/problem formulation

Conclusions and Outlook

Conclusions - Computation

- Underestimation of
 - Effort required to download the data
 - Execution time apart from training
- Benefitted from
 - Usage of well known libraries
 - Computation using CERN cluster
 - Useful tools
 - Swan notebooks to prototype and share scripts (but terrible for debugging)
 - CERN cluster to do massively parallel computation
 - Mattermost to communicate (2 of us in Meyrin + 1 in Prévessin)
 - cernbox to share data
 - GitLab to share code: <u>https://gitlab.cern.ch/tcartier/mlcern</u>

٠

Conclusions - Results

- Framework predicted and explained failure patterns correctly for generated test cases
 - Detected patterns from fewer than 10 training examples within up to 10² signals
- For PSB data experiments
 - Predictions were accurate if well defined patterns existed
 - Explanations were hard to interpret for studied cases
 - Could be improved by different choice of input/output data
- Deep learning approaches outperformed traditional ML in presented cases
 - Random Forest outperformed everything else in traffic jam prediction problem (check paper)

Outlook

- Will implement a more data effective representation for learning
- Synthetic data: More complex patterns to better study failure mechanism explanation (e.g. Boolean logic between signals)
 - Real data: Reformulate prediction problem and find less complex application scenarios with the goal of
 - Having more examples to learn from
 - Learning models of more controlled systems
 - Framework is modular and re-usable
 - Clone our code and investigate how air traffic explains spread of Corona

٠

٠

Thank you for your attention!

Further details in:

- Publication
 - Felsberger L., Apollonio, A., Cartier-Michaud, T., Mueller, A., Todd B., Kranzlmüller, D. (2020) Analyzing Failure Mechanisms in Complex Infrastructures. Lecture Notes in Computer Science, submitted. <u>Preprint</u>
- Code
 - <u>https://github.com/lfelsber/alarmsMining</u> (public)
 - <u>https://gitlab.cern.ch/tcartier/mlcern</u> (CERN)

Training

- Concept of machine learning: Train on observed data, apply to unseen data
- Have to find best predictive model by systematic search over
 - Input data selection
 - Algorithm selection
 - Problem parameter selection
- \rightarrow requires (more than a bit of) computation

