

Modelling of Complex Systems with Data-Driven Models

Christoph Obermair

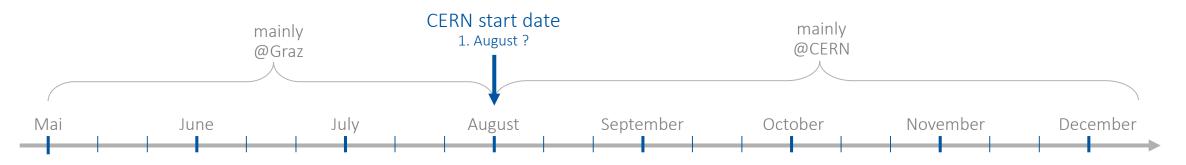
Presentation Outline

- 1. Motivation
- 2. Overview of data-driven models
- 3. Data-driven models in the PE section
- 4. Existing data-driven models
- 5. Conclusion

1. Motivation

Motivation for this presentations: trigger discussions, set expectations, gather ideas, extend scope of view

My preliminary timeline:



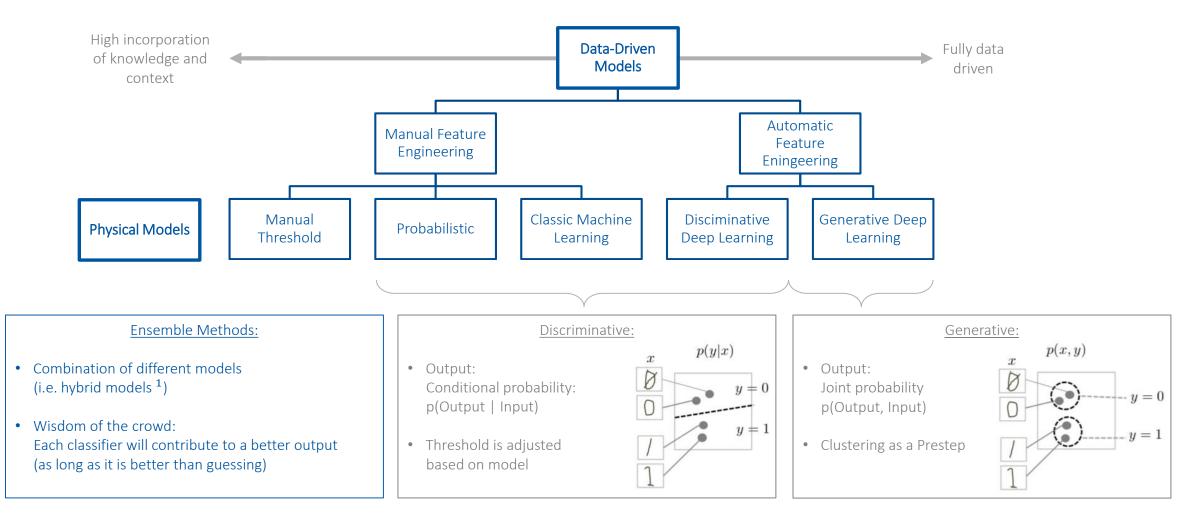
Initial Research Graz:

- General research
- Explore multivariate time series classification algorithms with class imbalance and data limitation on synthetic dataset
- Explore existing data analysis projects in PE section
- Generate catalog of datasets

CERN:

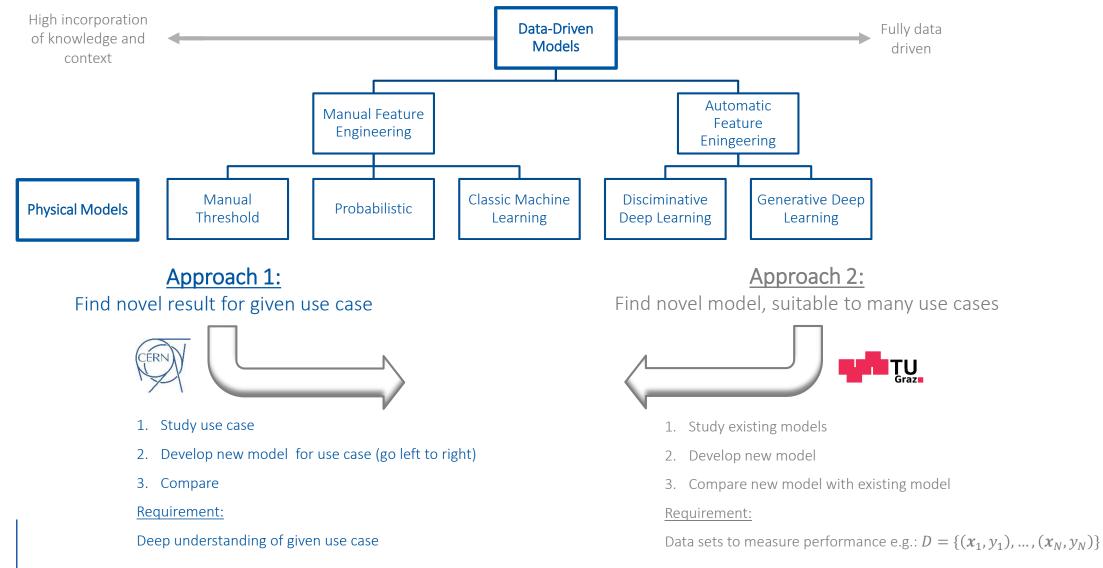
- Explore further data driven models
- Build ensemble of suitable algorithms
- Discuss further approach

2. Overview of Data-Driven Models



¹ Christoph Obermair. "Extension of Signal Monitoring Applications with Machine Learning". TU Graz, 2020 Content from M. Maciejewski and H. Fawaz et al., "Deep learning for time series classification: a review", 2019

2. Overview of Data-Driven Models



Content from M. Maciejewski and H. Fawaz et al., "Deep learning for time series classification: a review", 2019

CERN

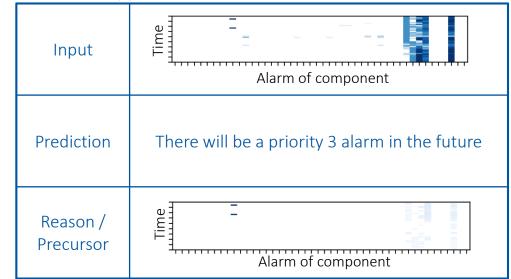
3. Data-driven Models in the PE Section

- a. Failure Mechanism Analysis
- b. Quench Heater Analysis
- c. UFO Dynamic Studies
- d. BLM Data Analysis
- e. EE-Switches
- f. Busbar Modelling
- g. AvailSim4

a. Failure Mechanism Analysis

- Input data: List of alarms
 - Main feature: Alarm priority $\in [0,1,2,3]$ of failing component
 - Priority defined by FAULT_FAMILY/_MEMBER_/CODE
- Current Goal:
 - Predict priority 3, given past priorities
- Used data:
 - 8 Power converter signals, 8 Beam destinations signals, 27 Interlock signals
 - Data size: per component about 5-15 priority 3 events, much more alarms with lower priority
- Current Approach:
 - Use discriminative deep learning (classic machine learning as reference)
- Difficulties:
 - No detection of cascade failures due to logging frequency (all alarms occur at same timestamp)
- Future Goals:
 - Use additional component signals
 - Find architectural dependencies (which component is the root cause?)

Overview approach

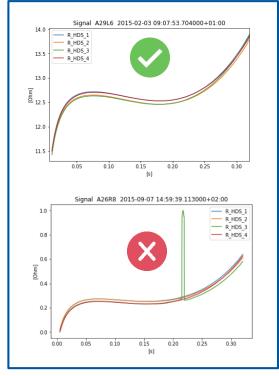


L. Felsberger et al., "Analyzing Failure Mechanism in Complex Infrastructures", 2020

b. Quench Heater analysis

- Input data: Electrical signals
 - Voltage, current discharges of QH
 - Extracted features: resistance, min, max, characteristic time etc.
- Current Goal: Classify discharge, given past discharges
- Used data:
 - 1232 dipole magnets with 4 QH each
 - Data size: 1-10 discharges per QH, ~16000 data points per discharge
- Current Approach:
 - Use classic machine learning (threshold based classification as reference)
- Difficulties:
 - Classification is as good as input features
 - High additional complexity, low additional benefit
- Future Goals:
 - Failure prediction (similar to Failure Mechanism Analysis)

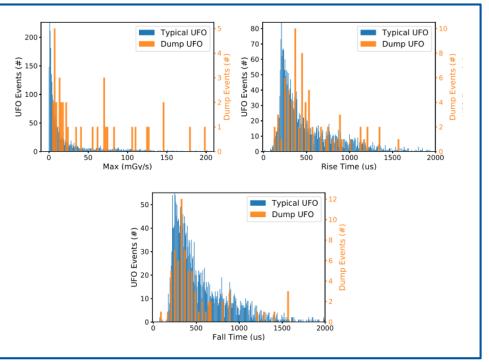
Resistance during QH discharge



c. UFO Dynamic Studies

- Input data: BLM data (triggered by UFO Busters)
- Current Goal:
 - Classify and understand UFOs with physical models
- Used data:
 - 300 000 triggers during Run 2
 - of which 3000 have more than 5 sample points
 - of which 100 are during beam dump (manually analyzed, aborted signal)
- Current Approach:
 - Physical models, Probabilistic
- Difficulties:
 - Further data-driven models could provide additional information
- Future Goals:
 - Cluster UFO signals to detect possible new classes
 - Extract patterns of dump UFOs

UFO histograms



P. Belanger "Update on Ufo dynamics studies", CERN, 2019

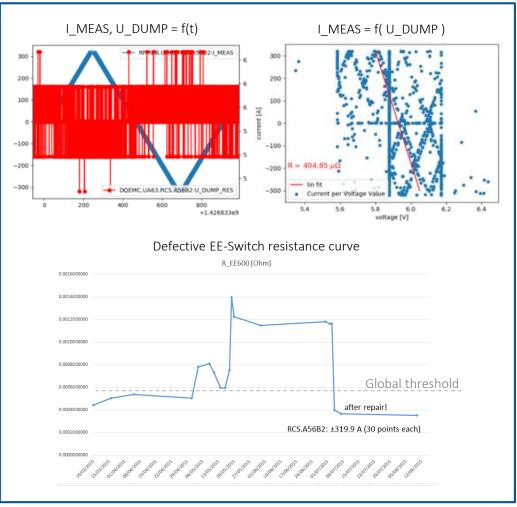
d. BLM Data Analysis

- Input data: BLM data, context data (e.g beam energy, beam intensity)
- Current Goal:
 - Find patterns and correlations with data driven threshold models (physical model as reference)
- Used data:
 - ~ 1500-6000 "high energy" dumps in Run 2
 - ~ 4000 BLMs
 - ~ 96000 Data points per BLM per Dump (different resolutions e.g 1s with 40μs sampling, 501s with 1,3s sampling)
- Current Approach:
 - Calculate simple statistical properties of BLM data (e.g. min, max, std, kurtosis) compare to
- Difficulties:
 - Context data changes frequently
- Future Goals:
 - Find patters and correlations with machine learning (physical and threshold model as reference)

e. EE -Switches

- Input data: Electrical signals
 - Voltage, current discharges of ramp cycle
 - Extracted features: resistance
- Current Goal:
 - Classify ramp cycle, given past ramp cycles
- Used data:
 - 752 ramp-cicles
 - 202 EE-Switches
- Current Approach:
 - threshold based classification (global threshold: healthy < 550 $\mu\Omega$)
- Difficulies:
 - Resistance calculation is prone due to low resolution of voltage measurement
- Future Goals:
 - Improve resistance calculation
 - Cluster ramp cycles to find individual threshold for each EE-Switch

Electrical signals EE-switches

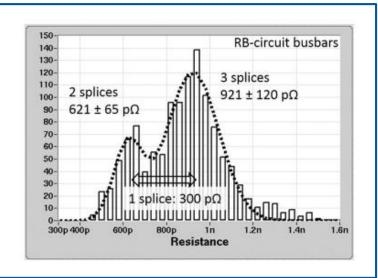


A. Muller, "Machine Learning on Data of 600A Energy Extraction Switches"

f. Busbar Modelling

- Input data: Electrical signals
 - Voltage, current during ramp ups
 - Extracted features: resistance, SNR
- Current Goal:
 - Probabilistic analysis of BB
- Used data:
 - ~2500 ramp ups
 - 8 circuits with 154 dipole busbars
- Current Approach:
 - Probabilistic anomalie detection
- Difficulies:
 - Probabilistic approaches are not capable to detect patterns
- Future Goals:
 - Find patterns in BB resistance growth across different circuits

Histogram of splice RB splice resistance



Z. Charifoulline et al., "Resistance of Splices in the LHC Main Superconducting Magnet Circuits at 1.9 K", 2018

g. AvailSim4

- Input data: List of failure modes, architectural dependencies
- Current Goal:
 - Investigate fault effects
- Used data:
 - 100 10000 Signals
 - Fault + component + impact on other components
- Current Approach:
 - Fault tree analysis based on Monte Carlo simulations
- Difficulies:
 - Model complexity, computational cost
- Future Goals:
 - Furhter explore data-driven models (i.e. surrogate models)

Niemi A. et al. "Availability modelling approach for future circular colliders based on the LHC operation experience", CERN, 2016

Data-Driven Models in the PE Section

\rightarrow repetitive goals, data types (time series (TS)), and difficulties

Project	Failure Mechanism Analysis	QH Discharges	EE Switch	UFO	BLM	AvailSim4	Busbar Modelling
Contact	L. Felsberger T. Cartier-Michaud A. Apollonio A. Muller B. Todd	C. Obermair M. Maciejewski Z. Charifoulline	A. Muller M. Maciejewski T. Cartier-Michaud L. Felsberger	D. Wollman C. Wiesner	C. Wiesner T. Cartier-Michaud A. Apollonio	T. Cartier-Michaud A. Apollonio	M. Maciejewski Z. Charifoulline
Input data	List of alarms (TS)	Electrical signals (TS)	Electrical signals (TS)	BLM signals (TS)	BLM signals (TS)	List of failure modes(TS)	Electrical signals (TS)
Current goal	Prediction with disciminative deep learning	Classification with classic ML	Classification with manual threshold	Find patterns and corelations with physical models	Find patterns and corelations with manual threshold	Fault tree analysis based on Monte Carlo simulations	Probabilistic analysis of BB resistance
Data size	8 PC Signals 8 Beam destinations 27 Interlock	$u, i \in \mathbb{R}^{N \times C \times D}$ $N \dots \text{ samples}$ $(~16000)$ $C \dots \text{ circuits (4)}$ $D \dots \text{ events (3246)}$	$u, i \in \mathbb{R}^{N \times C \times D}$ $N \dots$ samples $C \dots$ circuits (202) $D \dots$ events (752)	$BL \in \mathbb{R}^{N \times C \times D}$ $N \dots$ samples (>5) $C \dots$ BLMs (~4000)? $D \dots$ events (~3000)	$BL \in \mathbb{R}^{N \times C \times D}$ $N \dots$ samples (96k) $C \dots$ BLMs (~4000) $D \dots$ events (~6000)	100 – 10000 Signals: fault + component + impact on other components	$u, i \in \mathbb{R}^{N \times C \times D}$ $N \dots$ samples $C \dots$ RB BB (8*154)? $D \dots$ events (~2500)
Difficulties	Data Inconsistency Data Quality Data Limitation	Data Inconsistency Data Quality Data Limitation	Data Inconsistency Data Quality Data Limitation	Data Inconsistency Data Quality Data Limitation	Data Inconsistency Data Quality	Model Complexity	Data Inconsistency Data Quality
Future goal	Forecasting, find conditional dependencies	Forecasting	Anomalie detection, clustering	Clustering, data augmentation	Find patterns and corelations with ML	Investigate fault effects with ML	Learn sequence of BB resistances with ML

Existing Difficulties

 \rightarrow repetitive goals, data types (time series (TS)), and difficulties

→ LHC Signal Monitoring Project offers solution to many difficulties → perfect environment for data analysis

Difficulties	Explanation	Solution	
a.) Data Acquisition	query data	LHC-SM API (for PM, NXCALS)	
b.) Data Inconsistency	e.g. through frequent maintenance actions	explore context data (e.g. from NXCALS)	
c.) Data Quality	e.g. no failure precoursors, data is representation of consequence not root cause	explore additional data from different data bases (e.g. NXCALS in addition to LASER)	
d.) ML Algorithms	find best algorithm to archive goal	build ensemble of suitable algorithms for PE section	
e.) Data Limitation	not enough data available	combination with physical models, transfer learning	

4. Existing Data-Driven Models

- a. Data-Driven Models for Data Limitation
- b. Overview of Existing Meta Learning Algorithms

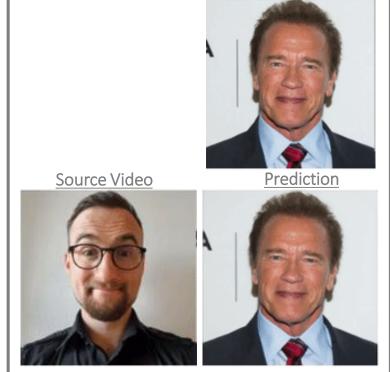
18

a. Data-Driven Models for Data Limitation

- A child can generalize the concept of a giraffe from a single picture in a book
- Machine learning algorithms typically needs a lot of data to learn from
 - \rightarrow Astonishing process in recent years

Approaches:

- Combination of existing models with data-driven models
- Transfer Learning: e.g. meta learning for few-shot classification:
 - \rightarrow gain knowledge while solving a task
 - ightarrow apply knowledge to related task
- Class Imbalance: data limitation in on class (e.g. lack of failure cases)
 → re-sampling
 - \rightarrow re-weighting



Source Picture

A. Siarohin et al., "First Order Motion Model for Image Animation", NIPS, 2019

b. Overview of Existing Meta Learning Algorithms

i. Metric based meta learning

 \rightarrow Learn a metric to distinguishing between different classes

ii. Optimization and initialization based meta learning

 \rightarrow Improve weight optimization or initialization during training.

iii. Model based meta learning

 \rightarrow Improve internal structure of model

iv. Hallucination based meta learning

 \rightarrow Generate additional data

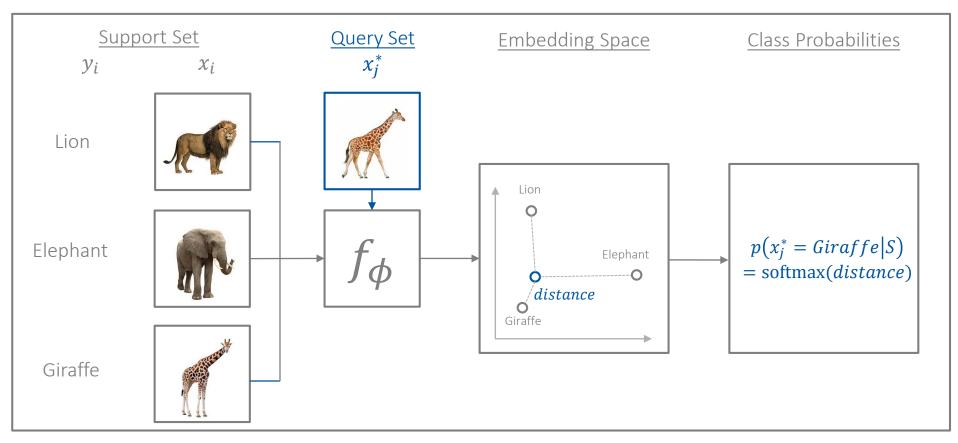
Notation few shot learning:

 $S = \{(x_i, y_i)\}_{i=1}^N$ $Q = \{(x_j^*, y_j^*)\}_{j=1}^T$

... Support Set for training

... Query Set for testing

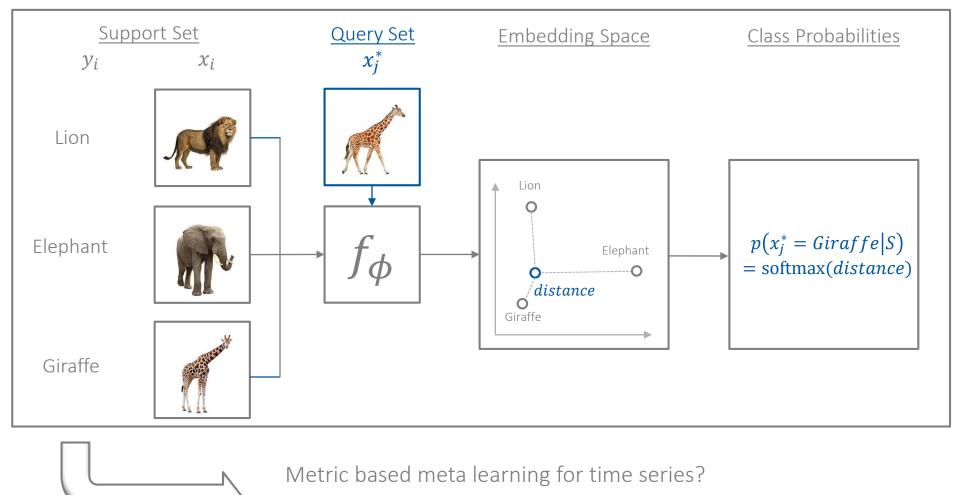
i. Metric Based Meta Learning



- a. Generate an embedding with a model $f_{\phi} \colon \mathbb{R}^{D} \to \mathbb{R}^{M}$ (i.e. automated feature extraction)
- b. Learn a metric to distinguishing between different classes in embedding space
- c. Optimize model parameter ϕ with gradient decent: $L(\phi) = -\log(p(x_j^* = Giraffe|S))$

CERN

i. Metric Based Meta Learning



 \rightarrow Possible field of research

5. Conclusion

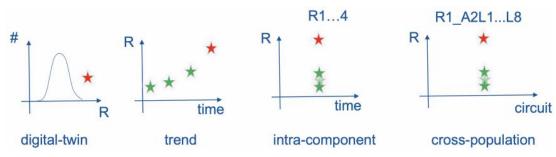
Approach 1: Find novel result for given use case

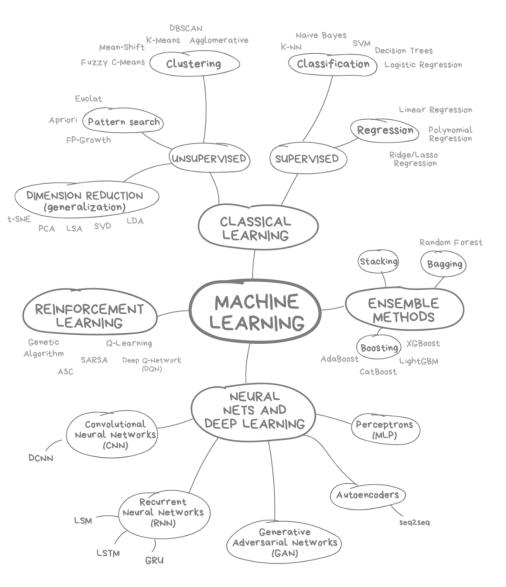
- The goal is to analyze data (not necessarily with machine learning)
- Many existing use cases in PE section
- LHC Signal Monitoring Project offers great data analysis environment

- There already exist many models suitable for difficulties of PE section
- In order to use them: Catalog of data sets necessary
- Possible research direction: Metric based meta learning for time series

Existing ML Algorithms

- Lots of existing open source library's
 - Gather best algorithms suited for PE projects
- Initially with standard datasets (e.g. MNIST –easy to understand), supplemented with CERN datasets
- Structure:
 - 1. Input: e.g. Time series
 - 2. Goal: e.g. Classification
 - 3. Algorithm: e.g. RNN, DCNN, SVM
 - 4. Extension: e.g. Ensemble, Meta learning
 - 5. Testing: e.g. Cross-Validation



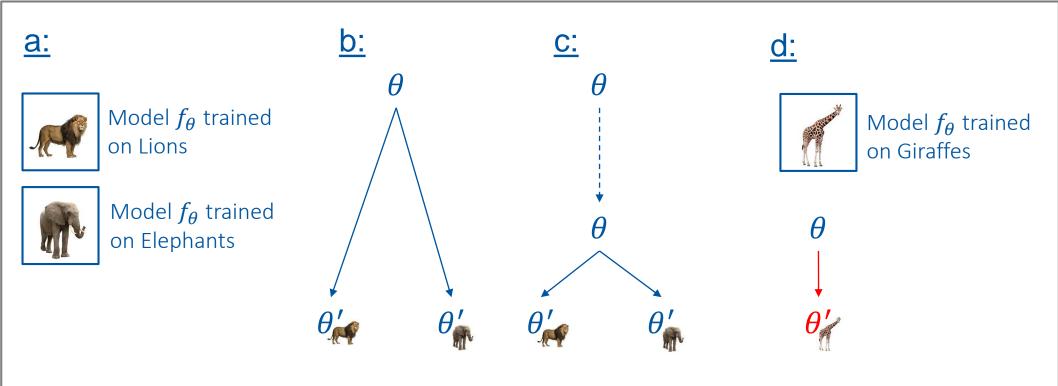


contributed by M. Maciejewski

ii. Optimization and initialization based meta learning

- a. A model f_{θ} with the same initial values θ is trained on different tasks T_i
- b. Initial values are optimized with gradient decent: $\theta'_i = \theta \alpha \nabla_{\theta} L(f_{\theta})$
- c. Initial values θ from a.) are adjusted: $\theta \leftarrow \theta'_i \beta \nabla_{\theta} \sum L(f_{\theta_i})$
- d. Fast convergence of new task

CERN



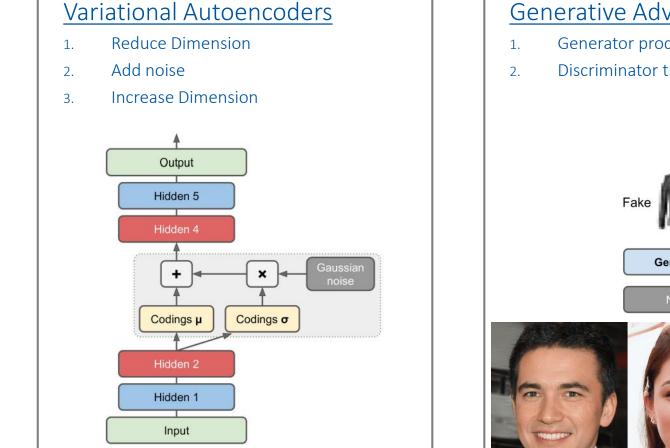
iii. Model based meta learning

Networks with memory capacity (e.g. RNN with Long Short-Term Memory):

- → Quickly adapts to new information without forgetting main information
- → Memory-Augmented Neural Networks use this behavior for meta learning
- \rightarrow Adaptation to never bevor seen classes in a few shots.

iv. Hallucination based meta learning

The goal is to train a data generator which is able produce artificial data.



D. P. Kingma and M. Welling, "Auto-Encoding Variational Bayes," May 2014 Géron, Aurélien,"Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow", 2019

Generative Adversarial Networks (GANs) Generator produces artificial data Discriminator tries to classify between real or fake data Fake/Real Discriminator Goal = tell fake from real Real Goal = trick the discriminator Generator https://thispersondoesnotexist.com/

Solutions to Data Acquisition

- LHC Signal Monitoring Project:
 - Query Data from PM, NXCALS, (CALS)
 - General way to query data (pyeDSL)
 - Execution pipeline
 - Good documentation
 - Library for:
 - Preprocessing algorithms
 - Feature engineering algorithms
 -

