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1. Motivation
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Mai June July August September October November December

CERN start date
1. August ?

Initial Research Graz:

• General research 

• Explore multivariate time series classification 
algorithms with class imbalance and data 
limitation on synthetic dataset

• Explore existing data analysis projects in PE 
section

• Generate catalog of datasets

mainly 
@Graz

mainly
@CERN

CERN:

• Explore further data driven models

• Build ensemble of suitable algorithms

• Discuss further approach

Finding a strong use case is the essential goal, crucial for future developments

My preliminary timeline:

Motivation for this presentations: trigger discussions, set expectations, gather ideas, extend scope of view



High incorporation 
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2. Overview of Data-Driven Models
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Data-Driven
Models

Manual Feature 
Engineering

Manual  
Threshold

e.g.  QH Analysis

Probabilistic

e.g. Busbar
Resistance

Classic Machine
Learning

SVM, Random 
Forrest, MLP

Automatic
Feature 

Eningeering

Disciminative
Deep Learning

MLP, DCNN, FCN

Generative Deep
Learning

GAN, RNN, 
ProtoNET

1 Christoph Obermair. “ Extension of Signal Monitoring Applications with Machine Learning”. TU Graz, 2020
Content from M. Maciejewski and H. Fawaz et al., „Deep learning for time series classification: a review“, 2019

Discriminative:

• Output: 
Conditional probability:
p(Output | Input)

• Threshold is adjusted 
based on model

Generative:

• Output: 
Joint probability
p(Output, Input) 

• Clustering as a Prestep

Physical Models

Ensemble Methods:

• Combination of different models
(i.e. hybrid models 1)

• Wisdom of the crowd:
Each classifier will contribute to a better output
(as long as it is better than guessing)
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Data-Driven
Models

Manual Feature 
Engineering

Manual  
Threshold

e.g.  QH Analysis

Probabilistic

e.g. Busbar
Resistance

Classic Machine
Learning

SVM, Random 
Forrest, MLP

Automatic
Feature 

Eningeering

Disciminative
Deep Learning

MLP, DCNN, FCN

Generative Deep
Learning

GAN, RNN, 
ProtoNET

1. Study use case

2. Develop new model for use case (go left to right)

3. Compare

Requirement: 

Deep understanding of given use case

Content from M. Maciejewski and H. Fawaz et al., „Deep learning for time series classification: a review“, 2019

Approach 1:
Find novel result for given use case

Approach 2:
Find novel model, suitable to many use cases

1. Study existing models

2. Develop new model 

3. Compare new model with existing model

Requirement: 

Data sets to measure performance e.g.: 𝐷 = { 𝒙1, 𝑦1 , … , 𝒙𝑁, 𝑦𝑁 }

Physical Models



3. Data-driven Models in the PE Section
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a. Failure Mechanism Analysis

b. Quench Heater Analysis

c. UFO Dynamic Studies

d. BLM Data Analysis

e. EE-Switches

f. Busbar Modelling

g. AvailSim4

Approach 1:
Find novel result for given use case



a. Failure Mechanism Analysis

• Input data: List of alarms 
• Main feature: Alarm priority ∈ [0,1,2,3] of failing component

• Priority defined by FAULT_FAMILY/_MEMBER_/CODE

• Current Goal: 
• Predict priority 3, given past priorities  

• Used data: 
• 8 Power converter signals, 8 Beam destinations signals, 27 Interlock signals 

• Data size: per component about 5-15 priority 3 events, much more alarms with 
lower priority

• Current Approach: 
• Use discriminative deep learning (classic machine learning as reference)

• Difficulties:
• No detection of cascade failures due to logging frequency (all alarms occur at same 

timestamp)

• Future Goals: 
• Use additional component signals

• Find architectural dependencies (which component is the root cause?) 

8

L. Felsberger et al., ”Analyzing Failure Mechanism in Complex 
Infrastructures”, 2020

Input

Prediction There will be a priority 3 alarm in the future

Reason / 
Precursor

Ti
m

e

Alarm of component

Ti
m

e

Alarm of component

Overview approach



b. Quench Heater analysis

9

• Input data: Electrical signals
• Voltage, current discharges of QH

• Extracted features: resistance, min, max, characteristic time etc. 

• Current Goal: Classify discharge, given past discharges  

• Used data: 
• 1232 dipole magnets with 4 QH each

• Data size: 1-10 discharges per QH, ~16000 data points per discharge

• Current Approach: 
• Use classic machine learning (threshold based classification as reference)

• Difficulties:
• Classification is as good as input features

• High additional complexity, low additional benefit

• Future Goals: 
• Failure prediction (similar to Failure Mechanism Analysis)

Resistance during QH discharge



c. UFO Dynamic Studies
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• Input data:  BLM data (triggered by UFO Busters)

• Current Goal: 
• Classify and understand UFOs with physical models

• Used data: 
• 300 000 triggers during Run 2 

• of which 3000 have more than 5 sample points

• of which 100 are during beam dump (manually analyzed, aborted signal)

• Current Approach: 
• Physical models, Probabilistic

• Difficulties:
• Further data-driven models could provide additional information

• Future Goals: 
• Cluster UFO signals to detect possible new classes

• Extract patterns of dump UFOs

P. Belanger “Update on Ufo dynamics studies“, CERN, 2019

UFO histograms



d. BLM Data Analysis
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• Input data: BLM data, context data (e.g beam energy, beam intensity)

• Current Goal: 
• Find patterns and correlations with data driven threshold models (physical model as reference)

• Used data: 
• ~ 1500-6000 “high energy” dumps in Run 2

• ~ 4000 BLMs

• ~ 96000 Data points per BLM per Dump (different resolutions e.g 1s with 40µs sampling, 501s with 1,3s sampling)

• Current Approach: 
• Calculate simple statistical properties of BLM data (e.g. min, max, std, kurtosis) compare to 

• Difficulties:
• Context data changes frequently

• Future Goals:
• Find patters and correlations with machine learning (physical and threshold model as reference)

Y. Nie et al., “Concept of Beam-Related Machine Protection for the Future Circular Collider”, IPAC,2019



e. EE -Switches
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• Input data: Electrical signals
• Voltage, current discharges of ramp cycle 

• Extracted features: resistance 

• Current Goal: 
• Classify ramp cycle, given past ramp cycles  

• Used data: 
• 752 ramp-cicles 

• 202 EE-Switches 

• Current Approach: 
• threshold based classification (global threshold: healthy < 550µ)

• Difficulies:
• Resistance calculation is prone due to low resolution of voltage measurement

• Future Goals: 
• Improve resistance calculation

• Cluster ramp cycles to find individual threshold for each EE-Switch

A. Muller, “Machine Learning on Data of 600A Energy Extraction Switches“

I_MEAS, U_DUMP = f(t)

Defective EE-Switch resistance curve

I_MEAS = f( U_DUMP )

Global threshold

Electrical signals EE-switches



f. Busbar Modelling
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• Input data: Electrical signals
• Voltage, current during ramp ups

• Extracted features: resistance, SNR

• Current Goal: 
• Probabilistic analysis of BB

• Used data: 
• ~2500 ramp ups 

• 8 circuits with 154 dipole busbars

• Current Approach: 
• Probabilistic anomalie detection

• Difficulies: 
• Probabilistic approaches are not capable to detect patterns

• Future Goals: 
• Find patterns in BB resistance growth across different circuits

Z. Charifoulline et al., “Resistance of Splices in the LHC 
Main Superconducting Magnet Circuits at 1.9 K“, 2018

Histogram of splice RB splice resistance



g. AvailSim4

14Niemi A. et al. “Availability modelling approach for future circular colliders based on the 

LHC operation experience”, CERN, 2016

• Input data: List of failure modes, architectural dependencies

• Current Goal: 
• Investigate fault effects 

• Used data: 
• 100 – 10000 Signals

• Fault + component + impact on other components

• Current Approach: 
• Fault tree analysis based on Monte Carlo simulations 

• Difficulies: 
• Model complexity, computational cost

• Future Goals: 
• Furhter explore data-driven models (i.e. surrogate models)



Data-Driven Models in the PE Section
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Project
Failure 

Mechanism 
Analysis

QH Discharges EE Switch UFO BLM AvailSim4 Busbar Modelling

Contact

L. Felsberger
T. Cartier-Michaud

A. Apollonio
A. Muller 
B. Todd

C. Obermair
M. Maciejewski
Z. Charifoulline

A. Muller 
M. Maciejewski

T. Cartier-Michaud 
L. Felsberger

D. Wollman
C. Wiesner 

C. Wiesner
T. Cartier-Michaud 

A. Apollonio

T. Cartier-Michaud 
A. Apollonio

M. Maciejewski 
Z. Charifoulline

Input data List of alarms (TS) Electrical signals (TS) Electrical signals (TS) BLM signals (TS) BLM signals (TS) List of failure modes(TS) Electrical signals (TS)

Current goal
Prediction with  

disciminative deep 
learning 

Classification with 
classic ML

Classification with 
manual threshold

Find patterns and 
corelations with 
physical models

Find patterns and 
corelations with 

manual threshold

Fault tree analysis 
based on Monte 
Carlo simulations

Probabilistic analysis 
of BB resistance

Data size
8 PC Signals

8 Beam destinations
27 Interlock

𝑢, 𝑖 ∈ ℝ𝑁×𝐶×𝐷

𝑁 … samples 
(~16000)

𝐶 … circuits (4)
𝐷 … events (3246)

𝑢, 𝑖 ∈ ℝ𝑁×𝐶×𝐷

𝑁 … samples 
𝐶 … circuits (202)
𝐷 … events (752)

𝐵𝐿 ∈ ℝ𝑁×𝐶×𝐷

𝑁 … samples (>5)
𝐶 … BLMs (~4000)?
𝐷 … events (~3000)

𝐵𝐿 ∈ ℝ𝑁×𝐶×𝐷

𝑁 … samples (96k)
𝐶 … BLMs (~4000)
𝐷 … events (~6000)

100 – 10000 Signals:
fault + component + 

impact on other
components

𝑢, 𝑖 ∈ ℝ𝑁×𝐶×𝐷

𝑁 … samples 
𝐶 … RB BB (8*154)?
𝐷 … events (~2500)

Difficulties
Data Inconsistency 

Data Quality 
Data Limitation

Data Inconsistency 
Data Quality 

Data Limitation

Data Inconsistency 
Data Quality 

Data Limitation

Data Inconsistency 
Data Quality 

Data Limitation

Data Inconsistency 
Data Quality 

Model Complexity
Data Inconsistency 

Data Quality 

Future goal
Forecasting, find 

conditional
dependencies

Forecasting
Anomalie detection, 

clustering
Clustering, data 
augmentation

Find patterns and 
corelations with ML

Investigate fault 
effects with ML

Learn sequence of 
BB resistances with 

ML 

Table contributed by T. Cartier-Michaud, extentended by C. Obermair

→ repetitive goals, data types (time series (TS)), and difficulties



Existing Difficulties
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Difficulties Explanation Solution

a.) Data Acquisition query data LHC-SM API (for PM, NXCALS)

b.) Data Inconsistency 
e.g. through frequent maintenance 

actions
explore context data (e.g. from NXCALS)

c.) Data Quality 
e.g. no failure precoursors, data is 

representation of consequence not root 
cause

explore additional data from different data 
bases (e.g. NXCALS in addition to LASER)

d.) ML Algorithms find best algorithm to archive goal
build ensemble of suitable algorithms for 

PE section

e.) Data Limitation not enough data available
combination with physical models,

transfer learning

Approach 2:
Find novel model, suitable to many use cases

→ repetitive goals, data types (time series (TS)), and difficulties

→ LHC Signal Monitoring Project offers solution to many difficulties → perfect environment for data analysis



4. Existing Data-Driven Models
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a. Data-Driven Models for Data Limitation

b. Overview of Existing Meta Learning Algorithms

Approach 2:
Find novel model, suitable to many use cases

H. Fawaz et al., „Deep learning for time series classification: a review“, 2019



a. Data-Driven Models for Data Limitation
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• A child can generalize the concept of a giraffe from a single picture in a book

• Machine learning algorithms typically needs a lot of data to learn from

→ Astonishing process in recent years

Approaches:

• Combination of existing models with data-driven models

• Transfer Learning: e.g. meta learning for few-shot classification:

→ gain knowledge while solving a task

→ apply knowledge to related task

• Class Imbalance: data limitation in on class (e.g. lack of failure cases)

→ re-sampling 

→ re-weighting

Source Video

Source Picture

Prediction

A. Siarohin et al., “First Order Motion Model for
Image Animation”, NIPS, 2019



b. Overview of Existing Meta Learning Algorithms
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i. Metric based meta learning

→ Learn a metric to distinguishing between different classes

ii. Optimization and initialization based meta learning

→ Improve weight optimization or initialization during training.

iii. Model based meta learning

→ Improve internal structure of model

iv. Hallucination based meta learning

→ Generate additional data

Notation few shot learning:

𝑆 = { 𝒙𝑖 , 𝑦𝑖 }𝑖=1
𝑁 … Support Set for training

𝑄 = { 𝒙𝑗
∗, 𝑦𝑗

∗ }𝑗=1
𝑇 … Query Set for testing



a. Generate an embedding with a model 𝑓𝜙: ℝ
𝐷 →ℝ𝑀 (i.e. automated feature extraction)

b. Learn a metric to distinguishing between different classes in embedding space

c. Optimize model parameter 𝜙 with gradient decent: L 𝜙 = −log(𝑝 𝑥𝑗
∗ = 𝐺𝑖𝑟𝑎𝑓𝑓𝑒 𝑆 )

20

i. Metric Based Meta Learning
Support Set 

𝑦𝑖 𝑥𝑖

Lion

Elephant

Giraffe

𝑓𝜙

Query Set 
𝑥𝑗
∗

Lion

Elephant

Giraffe

𝑝 𝑥𝑗
∗ = 𝐺𝑖𝑟𝑎𝑓𝑓𝑒 𝑆

= softmax(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

Embedding Space Class Probabilities

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

J. Snell et al.,''Prototypical Networks for Few-shot Learning'', NIPS, 2017



Metric based meta learning for time series? 

→ Possible field of research
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i. Metric Based Meta Learning
Support Set 

𝑦𝑖 𝑥𝑖

Lion

Elephant

Giraffe

𝑓𝜙

Query Set 
𝑥𝑗
∗

Lion

Elephant

Giraffe

𝑝 𝑥𝑗
∗ = 𝐺𝑖𝑟𝑎𝑓𝑓𝑒 𝑆

= softmax(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

J. Snell et al.,''Prototypical Networks for Few-shot Learning'', NIPS, 2017
J. Y. Franceschi et al., „Unsupervised Scalable Representation Learning for Multivariate Time Series“, NIPS, 2019

Embedding Space Class Probabilities

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒



5. Conclusion

• The goal is to analyze data (not necessarily with machine learning)

• Many existing use cases in PE section

• LHC Signal Monitoring Project offers great data analysis environment

• There already exist many models suitable for difficulties of PE section

• In order to use them: Catalog of data sets necessary

• Possible research direction: Metric based meta learning for time series

22

Approach 2:
Find novel model, suitable to many use cases

Approach 1:
Find novel result for given use case



Notes
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Existing ML Algorithms
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• Lots of existing open source library's
• Gather best algorithms suited for PE projects

• Initially with standard datasets (e.g. MNIST –easy to 
understand), supplemented with CERN datasets

• Structure: 
1. Input: e.g. Time series

2. Goal: e.g. Classification

3. Algorithm: e.g. RNN, DCNN, SVM 

4. Extension: e.g. Ensemble, Meta learning

5. Testing: e.g. Cross-Validation

contributed by M. Maciejewski



a. A model 𝑓𝜃 with the same initial values 𝜃 is trained on different tasks 𝑇𝑖
b. Initial values are optimized with gradient decent: 𝜃𝑖

′ = 𝜃 − 𝛼𝛻𝜃𝐿(𝑓𝜃)

c. Initial values 𝜃 from a.) are adjusted: 𝜃 ← 𝜃𝑖
′ − 𝛽𝛻𝜃 σ𝐿(𝑓𝜃𝑖)

d. Fast convergence of new task

26

ii. Optimization and initialization based meta learning

C. Finn, P. Abbeel, and S. Levine, “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks,” 2017 

𝜃′ 𝜃′

𝜃

𝜃′ 𝜃′

𝜃

𝜃

b: c:a:

Model 𝑓𝜃 trained 
on Lions

Model 𝑓𝜃 trained 
on Elephants

d:

𝜃

𝜃′

Model 𝑓𝜃 trained 
on Giraffes



iii. Model based meta learning

Networks with memory capacity (e.g. RNN with Long Short-Term Memory):

→ Quickly adapts to new information without forgetting main information

→ Memory-Augmented Neural Networks use this behavior for meta learning

→ Adaptation to never bevor seen classes in a few shots. 

27
S. Hochreiter and J. Schmidhuber, Long Short-Term Memory. 1997.

A. Santoro, et al.“One-shot Learning with Memory-Augmented Neural Networks,” May 2016



iv. Hallucination based meta learning

Variational Autoencoders
1. Reduce Dimension

2. Add noise

3. Increase Dimension
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Generative Adversarial Networks (GANs)
1. Generator produces artificial data

2. Discriminator tries to classify between real or fake data

The goal is to train a data generator which is able produce artificial data.

https://thispersondoesnotexist.com/

Géron, Aurélien,"Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow”, 2019

I. Goodfellow, et. al., “Generative Adversarial Nets,” 2014 D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” May 2014

https://thispersondoesnotexist.com/


Solutions to Data Acquisition

29

• LHC Signal Monitoring Project:

• Query Data from PM, NXCALS, (CALS)

• General way to query data (pyeDSL)

• Execution pipeline

• Good documentation

• Library for:

• Preprocessing algorithms

• Feature engineering algorithms

• …


