New additions to the STEAM LHC circuit model library

Marvin Janitschke, TE-MPE-PE

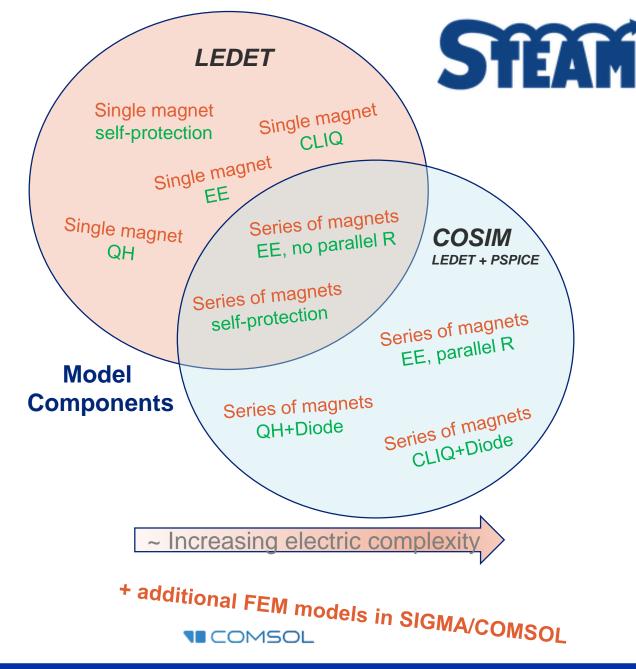
Acknowledgements

Special thanks to: E. Ravaioli, F. Murgia, CERN SIGMON Team, and in particular M. Maciejewski, CERN ELQA Team, and in particular J. Ludwin and M. Bednarek, F. Rodriguez-Mateos (TE-MPE-EE) and J.Muratore (BNL)

Introduction

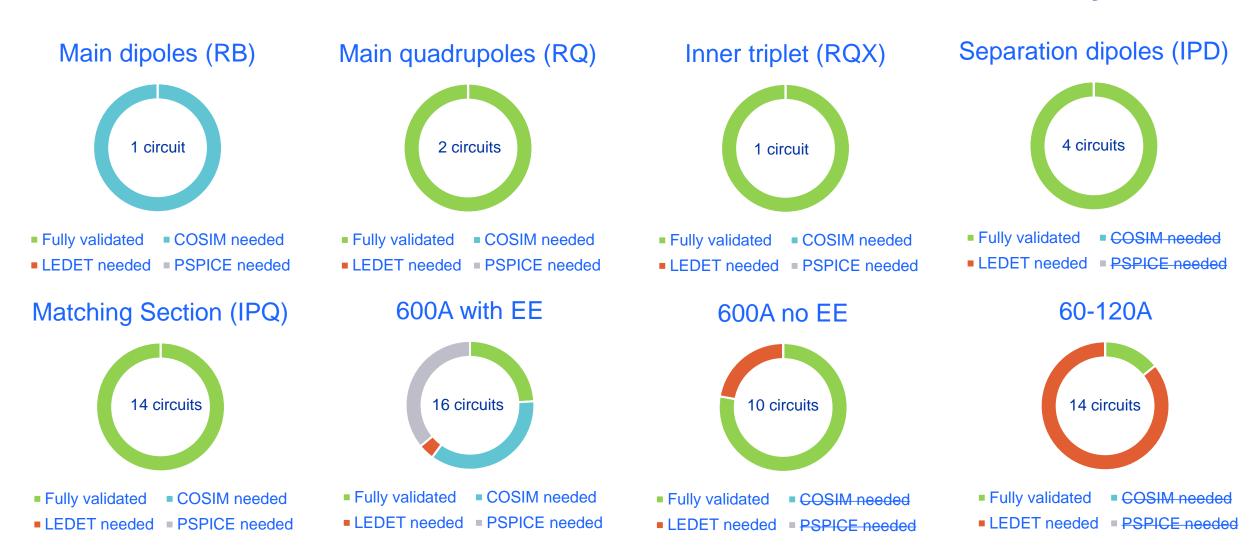
- Simulation of superconducting magnets is a complex challenge
- Need to include many effects, especially when simulating fast transients
- STEAM LHC circuit library shall provide models for all LHC circuits, including all necessary effects/ domains to:
 - Accurately simulate slow discharges/ fast transients
 - Investigate failure cases in the circuits/ magnets
 - Investigate quenches or quench scenarios
- The library therefore includes models for the different domains

Simulation tools

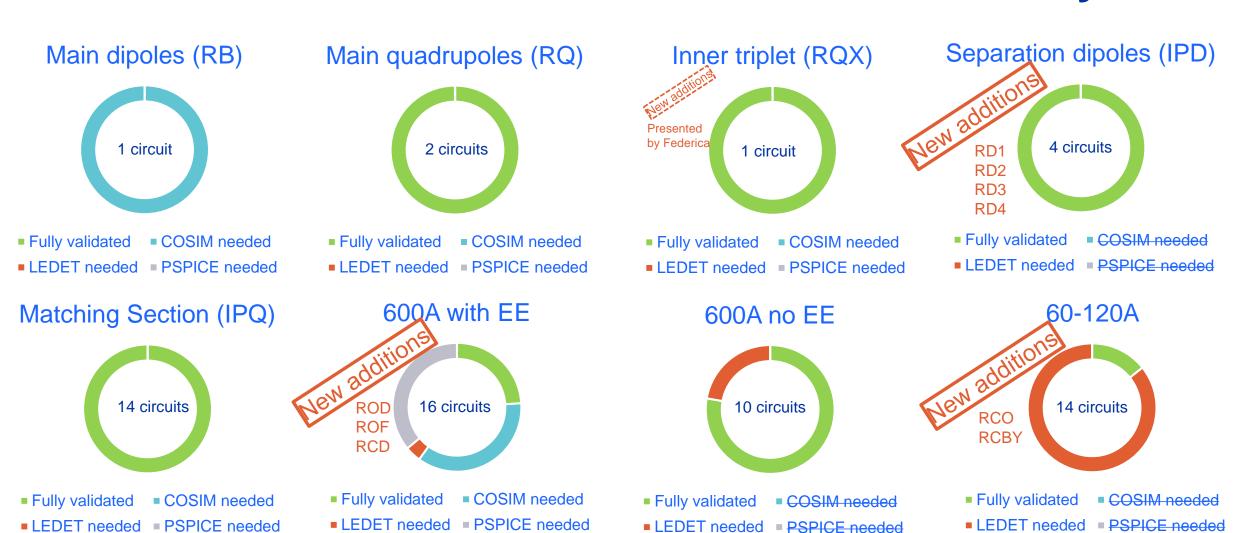

- Selection of necessary tools for transient simulation always depends on circuit/magnet
- Simulation of electrical circuits

PSPICE

- simulates precisely electrical transients and discharge
- can include chain of magnets, crowbar, power supplies, parasitic capacitances and inductances
- 2. Simulation of magneto-thermal model


STEAM LEDET

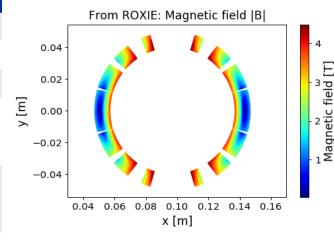
- simulates thermal diffusion, quenches, state transitions and coupling losses in magnet (IFCC, ISCL)
- can also simulate simple electrical circuits/ single magnets
- Simulation of magneto-thermal-electric model
 STEAM COSIM
 - Co-simulation of LEDET and PSPICE to include all effects
- When possible, experimental data is acquired using the LHC-SM api/notebooks

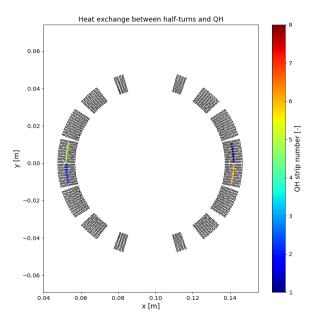


Current status of the STEAM LHC circuit library

Current status of the STEAM LHC circuit library

27/08/2020

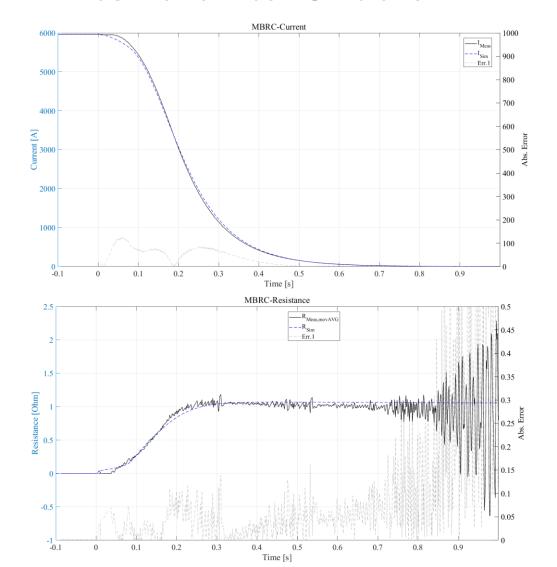

Separation dipoles (IPD)

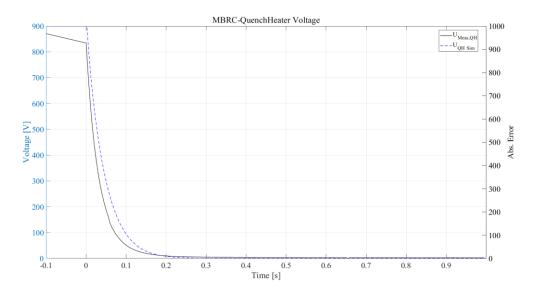

- Separation and Recombination Dipoles
- 4 different magnets and circuits in total (RD1-4 - MBX, MBRC/S/B)
 [difference: Nominal current + No. Of Apertures and distance]
- Peak field of ~4.5T at nominal currents
- Magnets are protected by QH
- Circuits only contain single magnets

→ Given the circuits include only one magnet, the transient following a quench can be simply simulated with STEAM-LEDET

	IPD magnets
Inner diameter	80 mm
Magnetic length	9.45 m
Operating Temp.	4.5 K/ 1.9 K(MBX)
Aperture separation distance	188 mm (MBRC) 194 mm (MBRB) 414 mm (MBRS)
Nominal current	5750 A (MBX, MBRS) 6050 A (MBRB/C)
Inductance [I_nom] per aperture	26 mH

	QH design
No. of QH circuits per aperture	4
No. of strips in series	2
Power Supply	900 V, 7.05 mF
Strip width	14.5 mm
Pattern (SS/Cu)	.127 m/.75 m

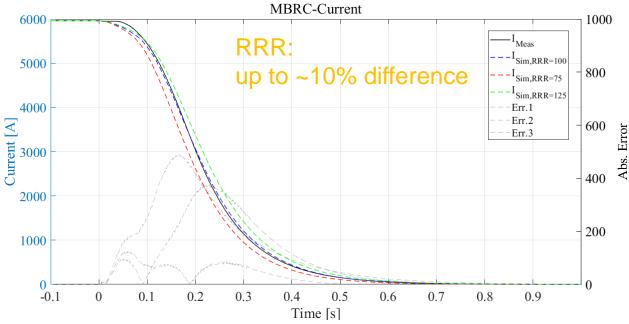




Separation dipoles (IPD) – Validation Results

LEDET Fast Power Abort Simulation

27/08/2020

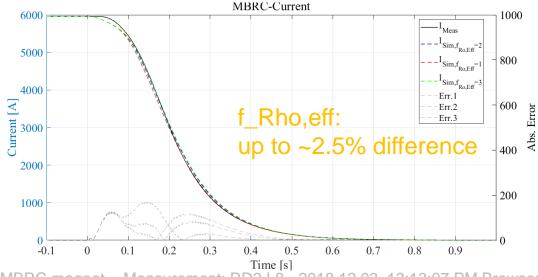

	Absolute Largest Deviation	Largest relative deviation	Mean Square Error	Root mean Square Error
MBRB (RD4.L4)	187.62 A	3.2 %	21.11 A ²	4.59 A
MBRC (RD2.L8)	124.3 A	2.1 %	22.47 A ²	4.74 A
MBRS (RD3.R4)	112.6 A	1.93 %	18.04 A ²	4.25 A

Very good agreement of measurement and simulation!

MBRC magnet - Measurement: RD2.L8 - 2018.12.03 13:13:07 PM Browser

Separation dipoles (IPD) – Parametric Study

- Simulation showed, that RRR = 100, f_rho,eff = 1
 represent the measurements the best
- Changing RRR has significant impact
 - Increasing → Slowing down discharge
 - Decreasing → Speeding up
- Changing f_rho,eff had little effect


Similar behavior and parameters were obtained for all magnets of that group

Sweep of the unknown parameters was conducted with the new framework

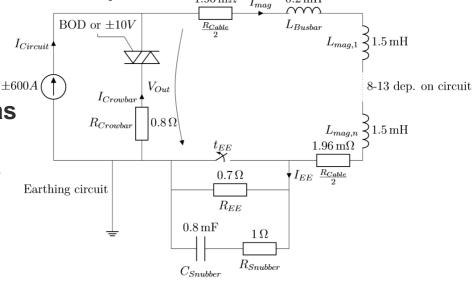
[STEAM Meeting 08.06.2020, https://indico.cern.ch/event/913508/]

Sweeped parameters:

- 1. RRR
- 2. f_rho_eff
- 3. Cross contact resistance [negligible effect]
- 4. Helium fraction [negligible effect, T_op = 4.5K!]

600A EE – ROD/ROF

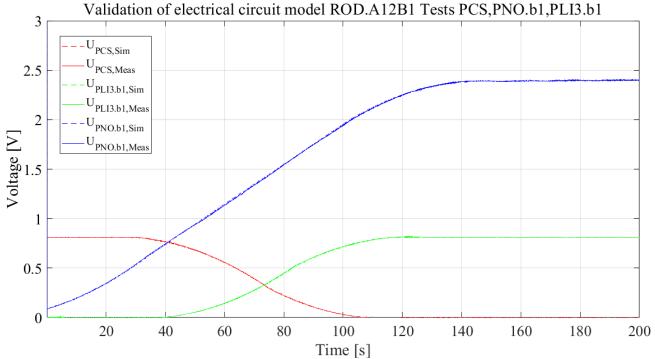
- lattice-correcting octupole magnet, with 2 independent apertures
- Peak field of ~1.9T at nominal current
- Magnets are protected by EE
- Circuits contain either 8 or 13 magnets in series
- 600A circuits have very long busbars [~4km]
 → including them as an additional inductance
- each aperture is modeled separately
 [presence of iron + independently powered]


From ROXIE: Magnetic field |B|

	MO magnet
Inner diameter	56 mm
Magnetic length	0.32 m
Operating Temp.	1.9 K
Nominal current	550 A
Inductance [I_nom]	1.6 mH

Conductor properties
0.689 mm^2
1.6-1.9
>100
0.015

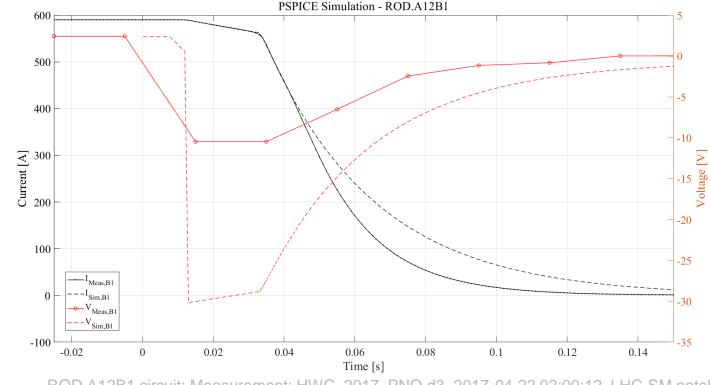
→ The 600A EE ROD/ROF circuits include a chain of magnets as well as a more complex electrical circuit


→ Validation requires LEDET, PSPICE and COSIM models



600A EE – ROD/ROF – Validation Results PSPICE model Validation

- Cable resistance was automatically calculated for all circuits of that family [STEAM meeting 02.04.2020 https://indico.cern.ch/event/904043/]
- Different ramp up/down tests were applied as Stimuli to PSPICE model
- → Agreement of Simulations and Measurements very good [negligible error]

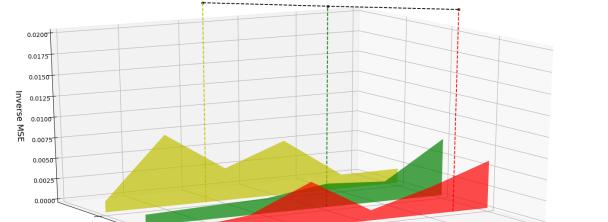


600A EE – ROD/ROF – Validation Results **PSPICE** model Validation

Simulation of the whole transient, with PSPICE stand-alone model shows the discussed weakness of the purely electrical model

Validation of the discharge far too slow, because no coupling losses, state transistions and quenches are considered

→ Shows the necessity of model expansion/ additional model [see Slide 12,13]


600A EE – ROD/ROF – Validation Results

Parametric Study

- Parametric Sweep included:
 - 1. RRR
 - 2. f_Rho,eff
 - 3. Busbar inductance per unit length

- All parameters show to have a huge impact on the discharge and can change various sections of the transients

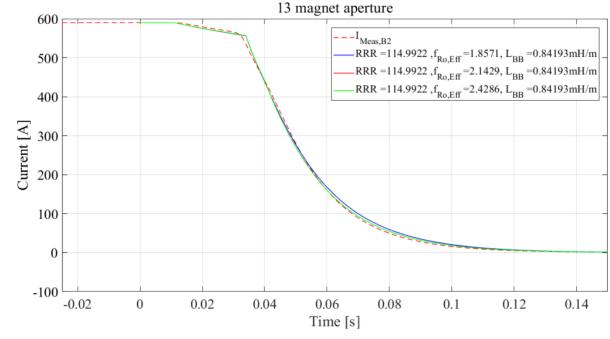
	L_BB per Meter [µH/m]	RRR	f_Rho,Eff
Minimum	0	100	1
Maximum	1.4	300	3
Number of Points	8	8	8

0.2

Values [0=Min, 1=Max Value]

ROD.A12B1 circuit; Measurement: HWC 2017, PNO.d3, 2017-04-22 02:00:12, LHC-SM notebook

- Best fit

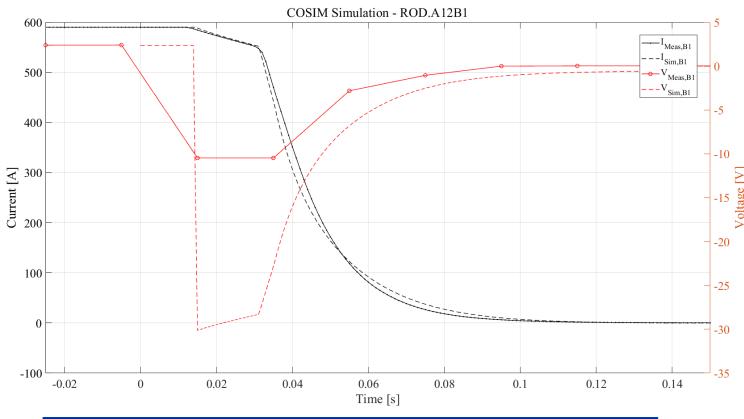

600A EE – ROD/ROF – Validation Results

LEDET model Validation

- Simulation with LEDET includes the chain of magnet as a single magnet [I_magnet * Number of magnets]
- Necessary busbar inductance was added as a small addition to magnetic length, s.t. resulting self-inductance equals the busbar inductance
- → Simulation already show very good result with the LEDET stand-alone model compared to measurement
- Also for this circuit family the Parameter Sweep framework was used to investigate the model behavior, shown are the best parameter combinations

	L_BB	RRR	f_Rho,eff
ROD.A12B1 (13mag)	0.8 µH/m	100	2.7
ROD.A12B2 (8mag)	0.8 μH/m	115	2.4

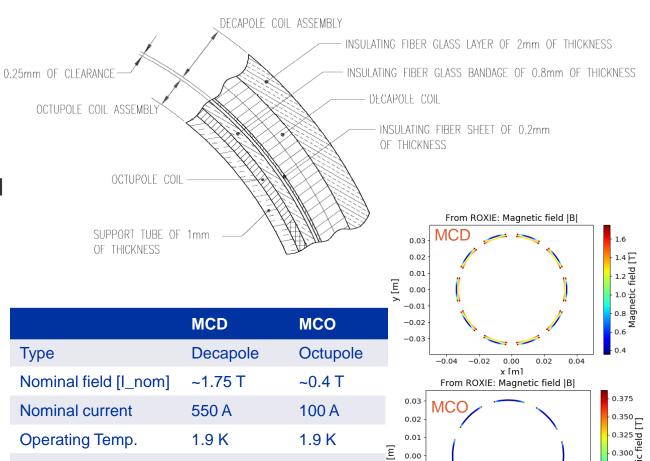
	Absolute Largest Deviation	Largest relative deviation	Mean Square Error	Root mean Square Error
ROD.A12B1 (13mag)	18.5 A	3.1 %	42 A ²	6.49 A
ROD.A12B2 (8mag)	15.97 A	2.7 %	17.8 A ²	4.22 A


ROD.A12B1 circuit; Measurement: HWC 2017, PNO.d3, 2017-04-22 02:00:12,

600A EE - ROD/ROF - Validation Results

COSIM Validation

- Though there were already very good results obtained with the LEDET stand-alone simulations, including the electrical model in PSPICE:
 - Increases complexity, reliability and improves physical interpretation
 - Likely to be more resilient, when studying failure cases etc.
- → COSIM also shows good results!


	Absolute	Largest	Mean	Root mean
	Largest	relative	Square	Square
	Deviation	deviation	Error	Error
ROD.A12B1 (13mag)	45 A	7.6 %	26.21 A ²	5.12 A

ROD.A12B1 circuit; Measurement: HWC_2017, PNO.d3, 2017-04-22 02:00:12, LHC-SM notebook

600A EE and 80-120A nested magnet (MCDO)

- Two independently powered magnets, nested in each other [outer: MCD(RCD), inner: MCO(RCO)]
- Spool Piece Corrector Magnets of the Main Dipoles
- Though they are nested in each other, the mutual coupling is small/ negligible [-2.63E-10 H/m]
- Both circuits contain 77 magnets in series
- MCD magnet is protected by EE
 MCO magnet is self-protected
- Circuits have additional busbar induct. [~5.5km]
- → Because of the negligible mutual coupling, both circuits are validated in independent LEDET models

LHC Type 2 >

-0.03

0.4 mH

0.066 mm

LHC Type 3

0.4 mH

0.066 mm

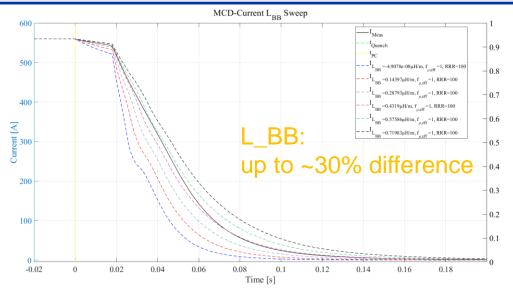
Conductor Type

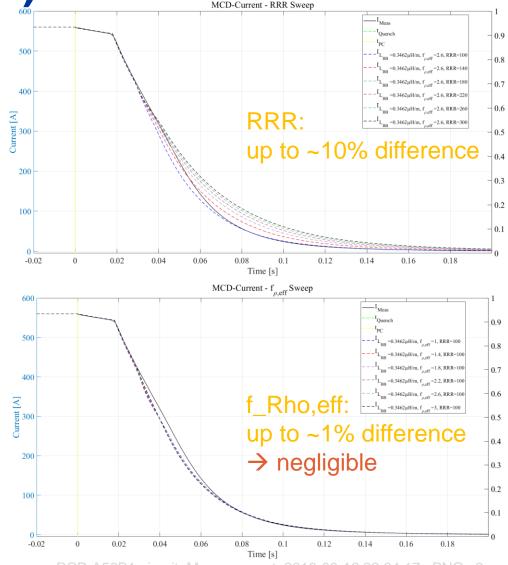
Magnetic length

Inductance [I_nom]

0.02

x [m]

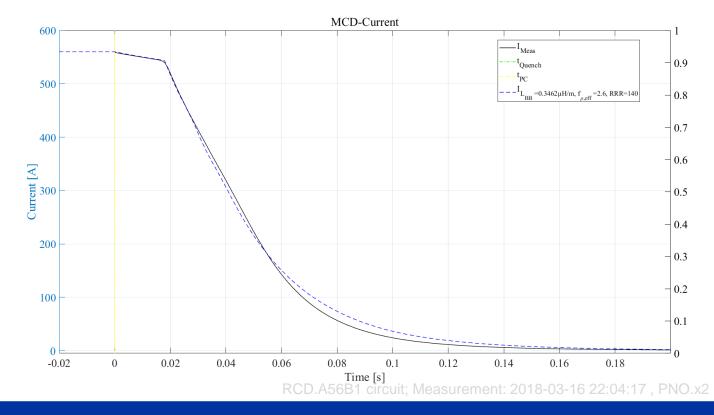

- 0.275 P


д Мад Мад 600A EE and 80-120A (MCDO) - Validation Results

Parametric Study – MCD magnet

 Parametric Sweep included again RRR, f_rho,eff and the additional Busbar inductance

	L_BB per Meter [µH/m]	RRR	f_Rho,Eff
Minimum	0	100	1
Maximum	0.63	300	3
Number of Points	6	6	6

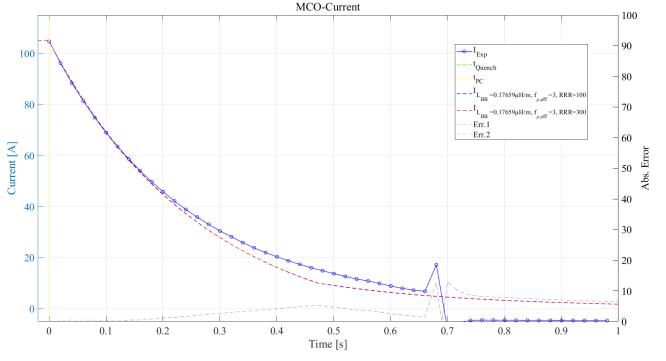


600A EE and 80-120A (MCDO) - Validation Results LEDET Validation – MCD magnet

- LEDET stand-alone simulation of the FPA of the outer decapole magnet shows excellent results
- Found parameter values are in physical reasonable ranges
 [ELQA measurements showed for these circuits a busbar inductance of ~0.5µH/m]

	L_BB	RRR	f_Rho,eff
RCD.A56B1	0.35 μH/m	140	2.6

	Absolute Largest Deviation	Largest relative deviation	Mean Square Error	Root mean Square Error
RCD.A56B1	17.24 A	3.07 %	1.57 A ²	1.25 A

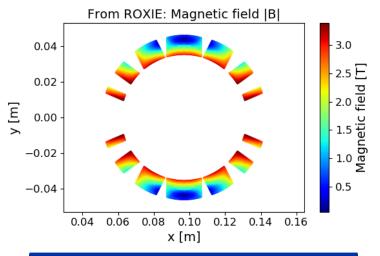

600A EE and 80-120A (MCDO) - Validation Results LEDET Validation – MCO magnet

- LEDET stand-alone simulation of the FPA of the inner octupole magnet shows also very good results
- As a 80-120A magnet, the RCO circuits do not include DCCT during a FPA → Circuit current has to be
 calculated based on Crowbar-Voltage/Resistance and measured Output-Voltage
- Parameter values show similar results to MCD

	L_BB	RRR	f_Rho,eff
RCO.A56B1	0.18 μH/m	100	3

	Absolute Largest Deviation	Largest relative deviation	Mean Square Error	Root mean Square Error
RCO.A56B1	5.27 A	5.02 %	1.48 A ²	1.22 A

Performance calculation only in t=[0,0.65]s

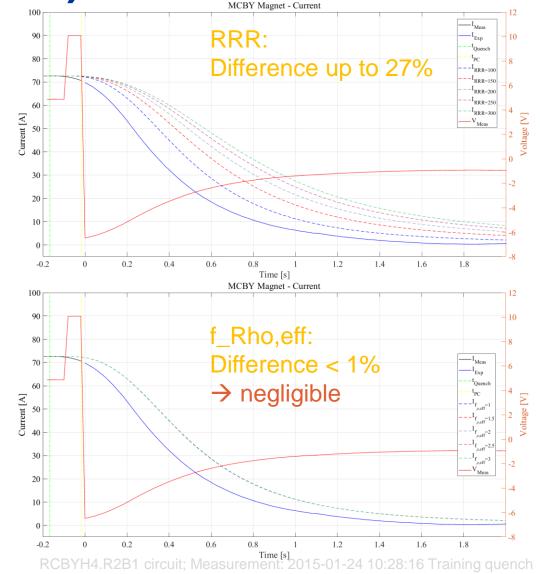


80-120A self-protected (MCBY)

- Orbit correcting dipole magnet with 2 apertures,
 but both are magnetically decoupled because of the presence of iron
- Comes in two 'identical' versions: Vertical and Horizontal orientation
- Self-protected magnet
 - magnets of this type significantly depend on heat-propagation within themselves
 - Copper Wedges connecting the Coil blocks were additionally modelled and implemented in LEDET [will be presented in next STEAM meeting Sept.]
 - → Heat diffusion from the initial Quench hot-spot throughout the whole coil
- Electrical circuit only contains single magnet
- → Given the circuit includes only one magnet, the transient following a quench can be simply simulated with STEAM-LEDET

	MCBY magnet
Inner diameter	70 mm
Magnetic length	0.9 m
Operating Temp.	1.9 K
Nominal current	88 A
Inductance [I_nom]	5.27 H
Nominal field [I_nom]	3.4 T

	Conductor properties
Wire section	0.214 mm^2
Cu/SC ratio	4.0 - 4.8
RRR	>100
Filament Twist Pitch	0.015

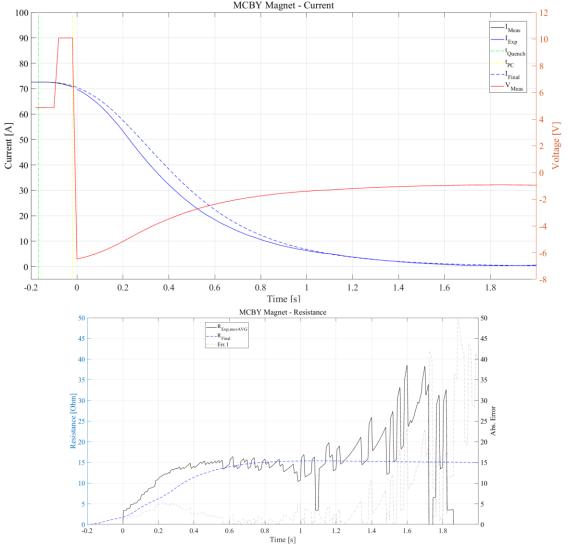

80-120A self-protected (MCBY) – Validation Results

Parametric Study - LEDET

MCBY magnet has ~5300 turns
 → computational expensive Simulations

Only a few parametric simulations

- Clearly changing RRR has a significant impact
 - Increasing RRR → slowing down discharge
 - Decreasing RRR → speeding up discharge
 - RRR=100 showed best agreement with measurements
- Changing f_Rho,eff had negligible effect

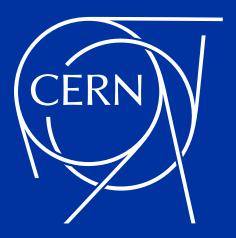


80-120A self-protected (MCBY) – Validation Results

LEDET Validation – Final Results

- Final results include a quench in Midplane Block + additional artificial quench of the electric return line
- RRR = 100, f_Rho,Eff = 1
- Copper Wedges included to allow heat diffusion
- → Agreement with the measurement is good

	Absolute Largest Deviation	Largest relative deviation	Mean Square Error	Root mean Square Error
RCBYH4.R2B1	4.55 A	6.27 %	0.76 A ²	0.87 A


RCBYH4.R2B1 circuit; Measurement: 2015-01-24 10:28:16 Training quench

Conclusion and Outlook

- STEAM LHC circuit library got extended by **9 new circuit families**, with complete models including the most important effects [state transitions, heat diffusion, coupling losses, precise behavior of electric components...]
- New additions are a variety of LHC magnets and circuits
 - Different Quench protections [EE, QH, self-protection, mixed]
 - Magnet configurations [single magnets, chain of magnets, nested magnets]
 - Different current level and electrical circuits [80A 6kA, Busbars, Crowbar...]
- All validations showed very good agreements with the measurements [in general error between 2-8%]
- Additional parametric studies were conducted to better understand the behavior and effects of the unknown parameters in the LEDET models
 - New framework for parametric sweep + automatic calculation of R_cable speeded up validation significantly
 - Fast experimental data acquisition with the LHC-SM api/notebooks
- Ongoing work to add more circuit families to the library
 - E.g. MCBXH/V magnets [nested, self-protection]

Thanks for your attention! Any Questions?

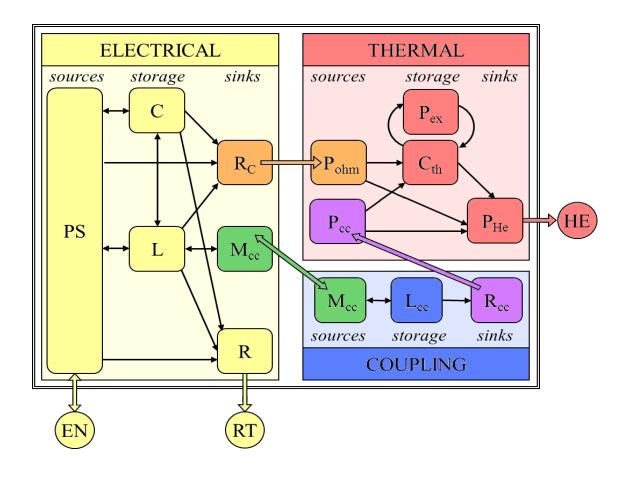
Acknowledgements

I would like to thank my colleagues for their work/ ideas and discussions, which helped me a lot during conducting the work for this presentation! Namely I want to express special gratitude to:

- My supervisor Emmanuele Ravaioli
- · STEAM Team, and in particular F. Murgia
- CERN SIGMON Team, and in particular M. Maciejewski
- CERN ELQA Team, and in particular J. Ludwin and M. Bednarek
- F. Rodriguez-Mateos (TE-MPE-EE) and J.Muratore (BNL)

Annex: Superconductor Types

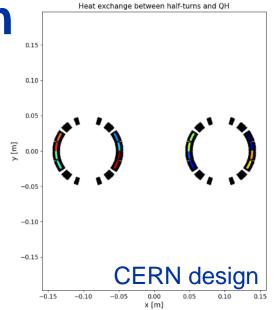
Table 7.18: Main parameters of the corrector magnet superconducting strands

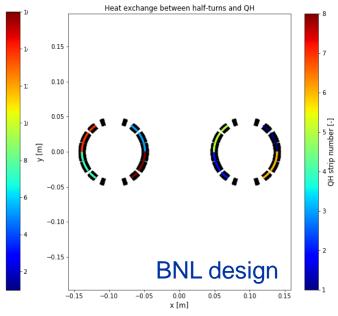

	Type 1	Type 2	Туре 3	Type 4
Overall dimensions (mm) (insulated)	Ø 0.435	0.38×0.73	0.73×1.25	0.97×1.65
Metal dimensions (mm)	Ø 0.375	0.32×0.67	0.61×1.13	0.85×1.53
Nominal Insulation Thickness (mm)	0.03	0.03	0.06	0.06
Critical current at 4.222 K and 5 T (A)				
Perpendicular to wire axis	>55			
Perpendicular to broad face		>100	>630	>1190
Parallel to broad face		>110	>700	>1320
Copper Matrix RRR	> 100			
Cu/Sc volume ratio	≥ 4.0-4.8	≥ 4.0-4.8	≥1.6-1.9	≥1.6-1.9
Superconductor	Nb-Ti with Ti = 47.0 % by weight			
High voltage insulation (V)	1000			
Insulation material	PVA enamel			

O. Bruening, P. Collier et. al. "LHC Design Report - Volume I The LHC Main Ring".In: Geneva, 4 June 2004, ISBN 92–9083-224 0

Chapter 7: MAIN MAGNETS IN THE ARCS

LEDET energy exchanges

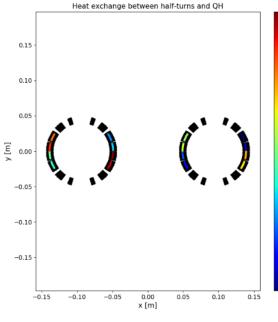


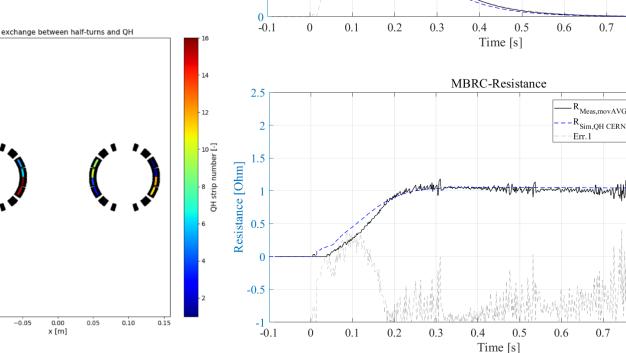

Courtesy E. Ravaioli

IPD Quench Heater Design

- Magnets are actively protected by Quench Heaters
 → Due to the fact they were produced at BNL it is unfortunately not 100% clear, which QH were used
- Both Version were tried and compared to measurements

	CERN QH design	BNL QH design
No. of QH circuits per aperture	2	2
No. of strips in series	4/8	2
Power Supply	CERN QH supply (900V, 7.05mF)	-
Strip width	15mm	44.45mm
Pattern (SS/Cu)	(0.1m/0.4m)	(0.127m/0.75m)
Length (magnet length = 9.45m)	9.646m	10.16m


	CERN QH	BNL QH
Peak current	63.5 A	416.7A
Time constant	~99ms	~15.7ms


→ Huge difference!

- First Validation approach, the CERN QH design parameters were used

Parameter	Value
Total No. of strips	16
No. of strips in Series	4
No. Of Power supplies	4
Strip Width	15mm
Pattern (SS/Cu)	.1m / .4m

5000

Current [A] 3000

2000

1000

Measurement: RD2.L8 - 2018.12.03 13:13:07 PM Browser

MBRC-Current

Too fast

discharge

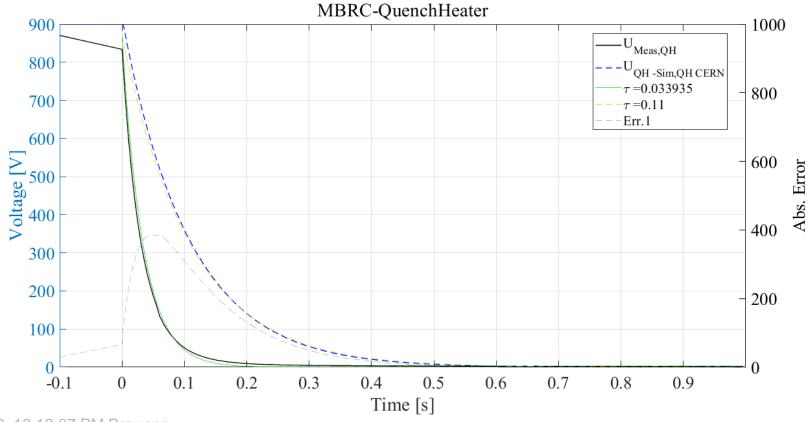
1000

800

600

200

--I_{Sim,QH CERN}

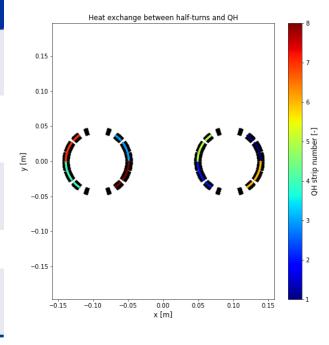

Err.1

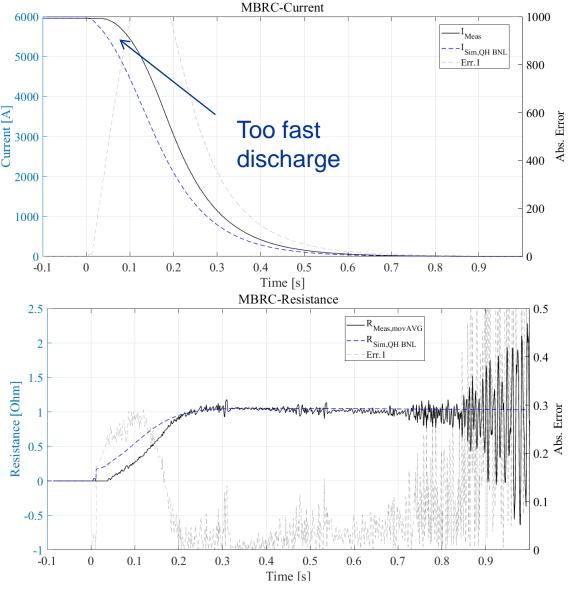
0.8

0.9

0.9

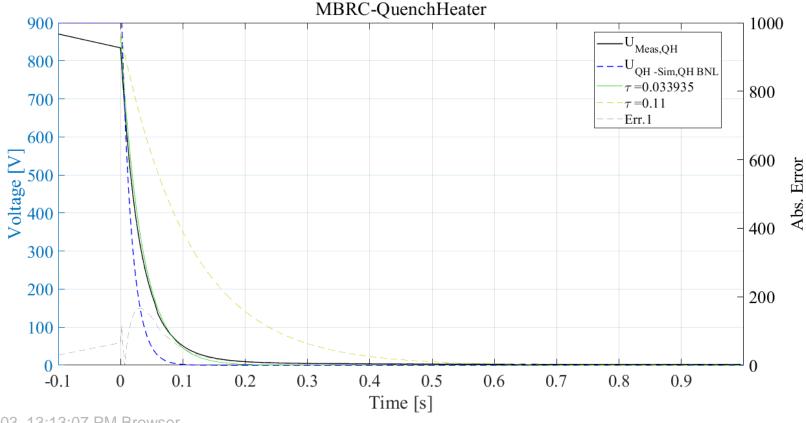
- Additionally Quench Heater Voltages showed clearly no agreement
- → Discharge of the QH Voltages by a factor ~3 faster





- 2nd approach: The parameters from BNL were tried

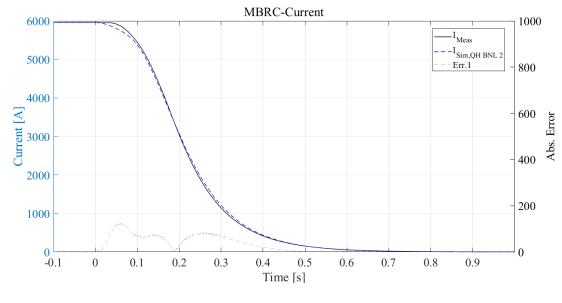
Parameter	Value
Total No. of strips	8
No. of strips in Series	2
No. Of Power supplies	4
Strip Width	44.45mm
Pattern (SS/Cu)	.127m / .75m

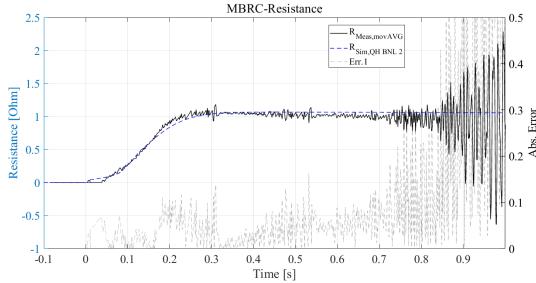


→ Agreement with measurement again not very good +Very large QH strips, which cover almost the whole magnet

Measurement: RD2.L8 - 2018.12.03 13:13:07 PM Browser

- But Quench Heater Voltages are fitting with these Values relatively good to the measurements


Measurement: RD2.L8 - 2018.12.03 13:13:07 PM Browser

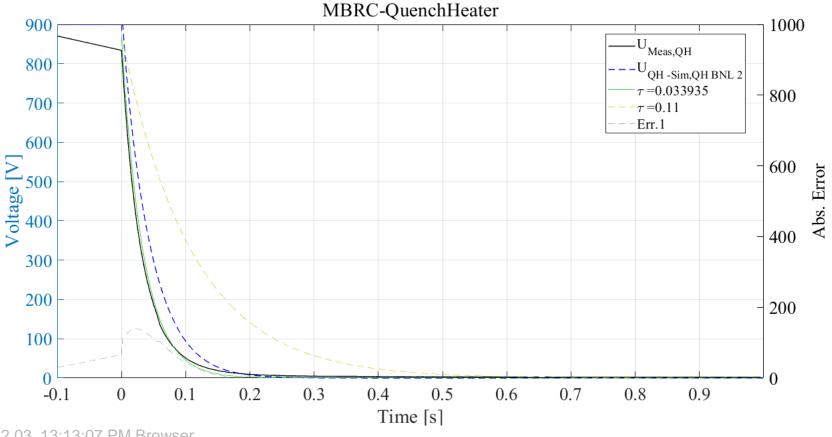


- 3rd approach: BNL parameter, but smaller strip width

Parameter	Value
Total No. of strips	8
No. of strips in Series	2
No. Of Power supplies	4
Strip Width	14.5mm
Pattern	.127m / .75m

→ Agreement with measurement very good!!

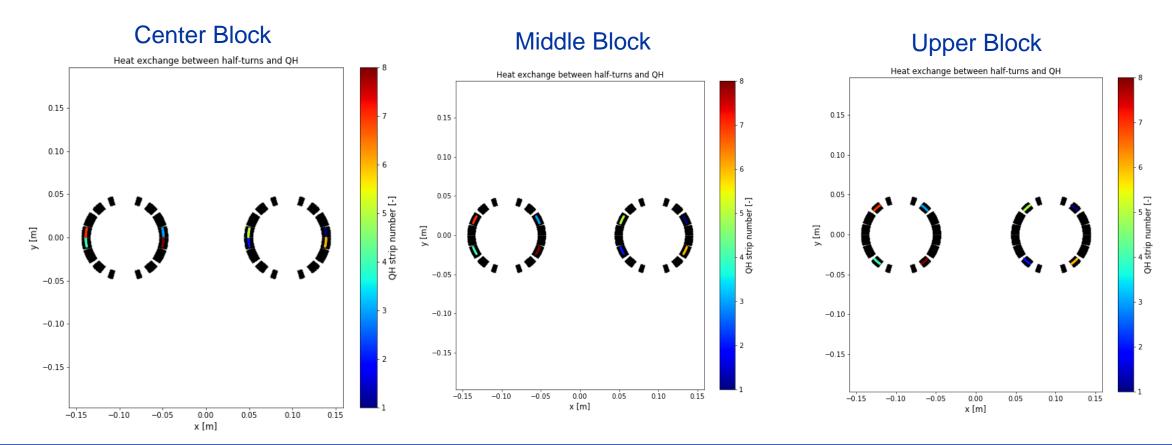
Error during FPA < 3%, Max. abs. Error: 160A


Measurement: RD2.L8 - 2018.12.03 13:13:07 PM Browser

(SS/Cu)

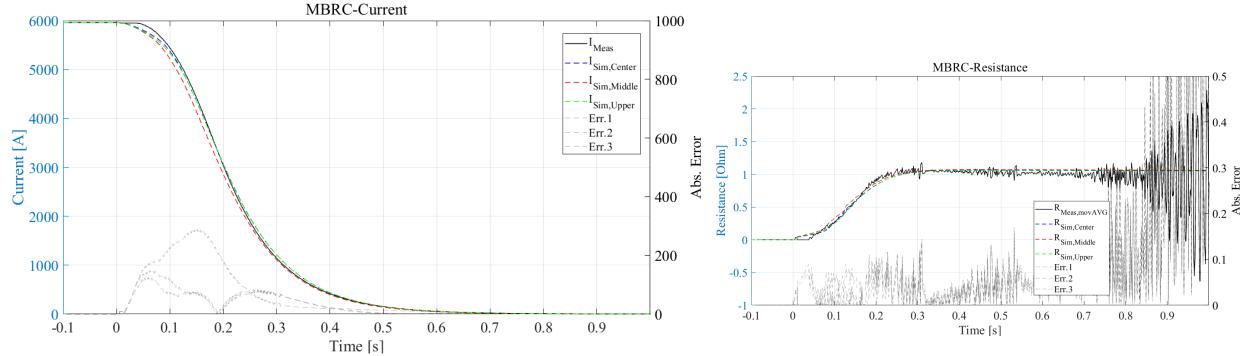
QH strip number [-]

- Agreement of Quench Heater Voltages also very good!

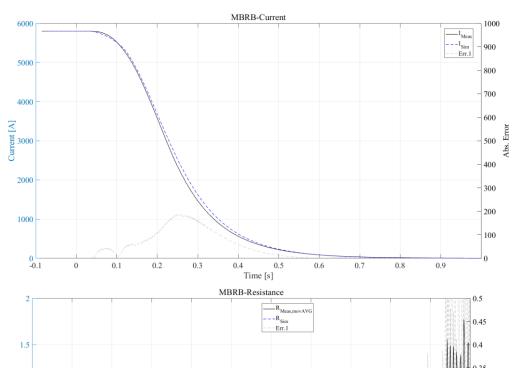


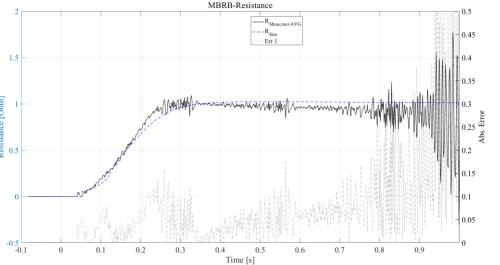
Measurement: RD2.L8 - 2018.12.03 13:13:07 PM Browser

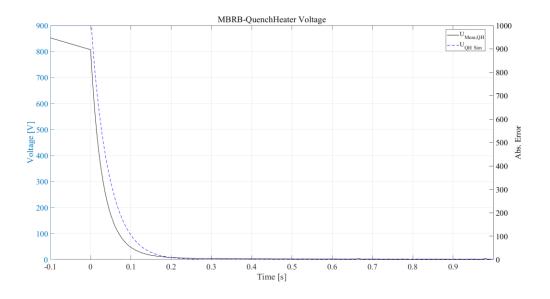
Simulation Results and Validation – QH Version 3 **Trying different QH positions**


- Based on the previous parameters, I tried different QH positions

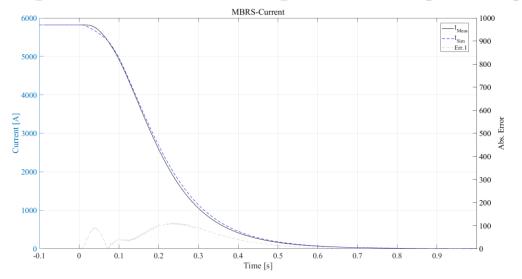
27/08/2020

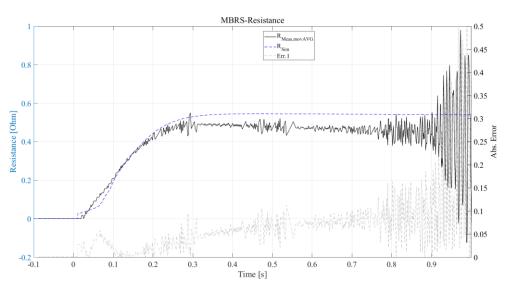


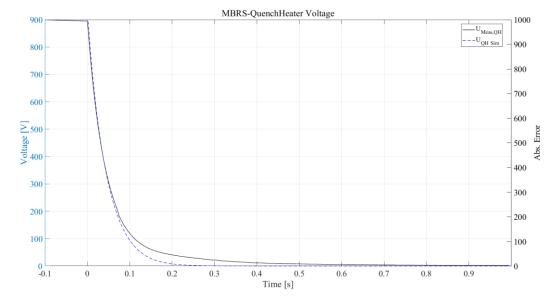

- Varying QH position shows no huge differences (Number of turns touched in all versions the same)
- → Slightly better agreement of the QH Positions on the center Block



Separation dipoles (IPD) Validation Results [MBRB]



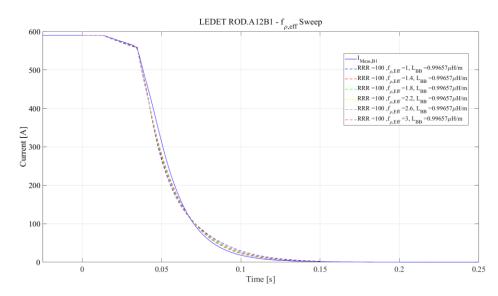

	Absolute Largest Deviation	Relative largest deviation	Mean Square Error	Root mean Square Error
MBRB (RD4.L4)	187.62 A	3.2 %	21.11 A ²	4.59 A
MBRC (RD2.L8)	124.3 A	2.1 %	22.47 A ²	4.74 A
MBRS (RD3.R4)	112.6 A	1.93 %	18.04 A ²	4.25 A

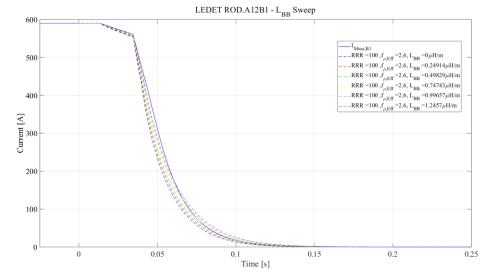

Measurement: RD4.L4 - 2015.28.02 14:22:45 PM Browse

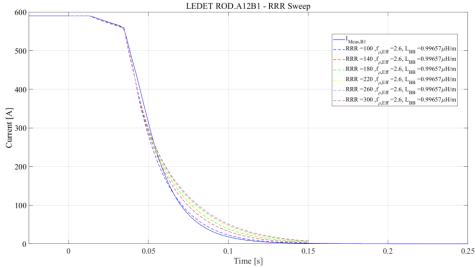
Separation dipoles (IPD) Validation Results [MBRS]

	Absolute Largest Deviation	Relative largest deviation	Mean Square Error	Root mean Square Error
MBRB (RD4.L4)	187.62 A	3.2 %	21.11 A ²	4.59 A
MBRC (RD2.L8)	124.3 A	2.1 %	22.47 A ²	4.74 A
MBRS (RD3.R4)	112.6 A	1.93 %	18.04 A ²	4.25 A

Measurement: RD3.R4 - 2018.03.12 13:59:59 PM Browse

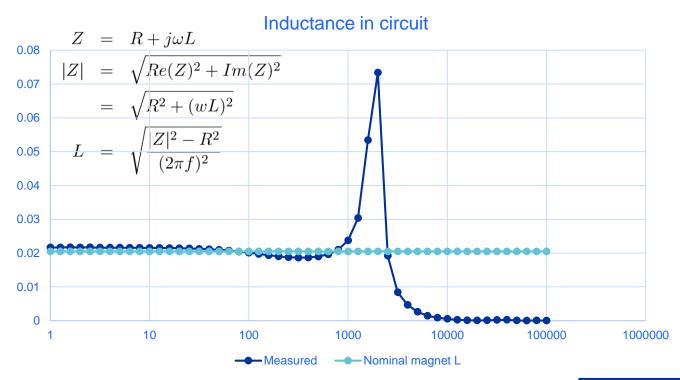


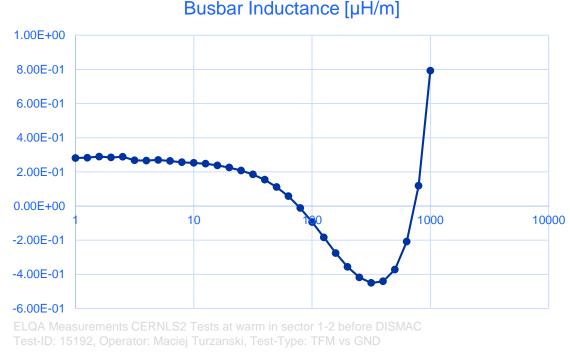

600A EE – ROD/ROF – Validation Results


Parametric Study

Best parameter combinations for the two different groups in the ROD/ROF family:

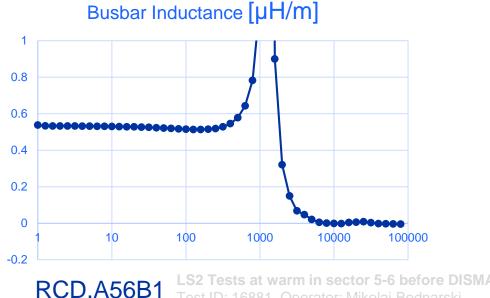
	L_BB	RRR	f_Rho,eff
ROD.A12B1 (13mag)	0.8 μH/m	100	2.7
ROD.A12B2 (8mag)	0.8 μH/m	115	2.4



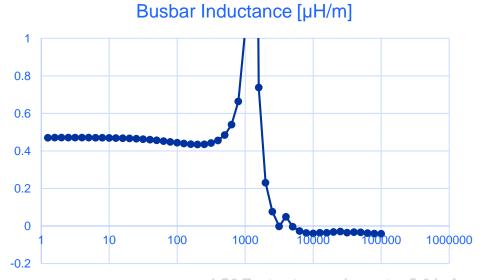

ROD.A12B1 circuit; Measurement: HWC_2017, PNO.d3, 2017-04-22 02:00:12, LHC-SM notebook

Busbar Inductance in real Measurements ROD/ROF

TFM-Measurements, LS2 Tests at cold in sector 1-2


• TFM Measurements show Busbar inductance in the circuit BUT: Value per m is lower than simulations require

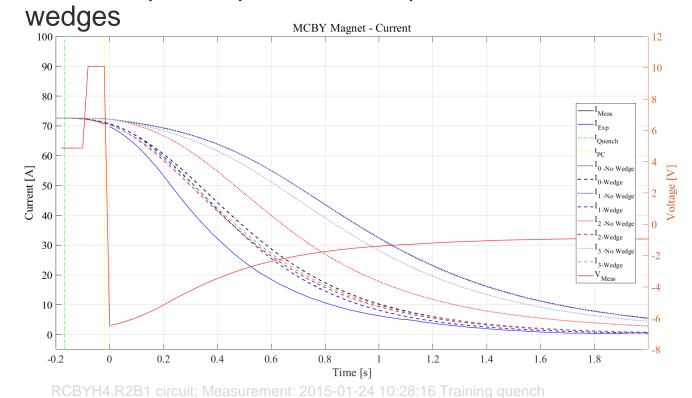
Initial guess	Real measurements	Simulations
0.5 μH/m	0.3 μH/m	0.8 μH/m

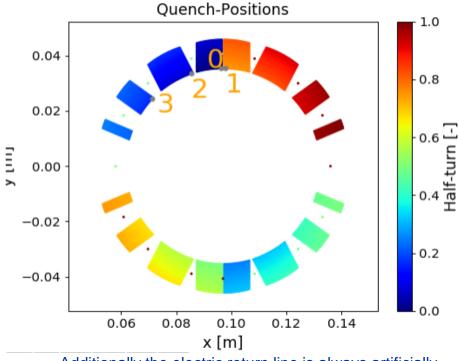


Busbar Inductance in real Measurements MCDO

ELQA measurements of the circuit impedance at different frequencies Cable resistance and nominal inductance used to calculate Busbar inductance [see SI. ROD/ROF Busbars]

LS2 Tests at warm in sector 5-6 before DISMAC




LS2 Tests at warm in sector 5-6 before DISMAC RCO.A56B1

80-120A self-protected (MCBY) — Validation Results LEDET Validation — Comparing Model with/without Copper Wedges

- Including the Copper Wedges into the LEDET model improved the model and its agreement with the measurement a lot [by ~25-40%]
- Different quench positions compared to show the effect of the heat diffusion through the

Additionally the electric return line is always artificially quenched as well with calc. delay

