TE-MPE-PE Section Meeting

CERN, Switzerland 20-08-2020

HTS Screens for Field-Error Cancellation: Preliminary Experimental Results and Lessons Learnt

L. Bortot^{1,2}, M. Mentink¹, C. Petrone¹, F.O. Pincot¹, G. Deferne^{1,} J. Van Nugteren¹,

G. De Rijk¹, G. Kirby¹, T. Koettig¹, A. Verweij¹ and S. Schöps²

Special Thanks S. Russenschuck, A. Ballarino, J.C. Perez, S. Hopkins, M. Liebsch, S. Richter, T. Nes, P. Frichot, M. Timmins

This work is supported by:

(*) The 'Excellence Initiative' of the German Government and by the Graduate School of Computational Engineering at TU Darmstadt; (**) The Gentner program of the German Federal Ministry of Education and Research (grant no. 05E12CHA).

Outline

1. Introduction

- a. Magnetic Field Quality in Accelerator Magnets
- b. Persistent Magnetization in HTS Tapes
- c. HTS-Based Magnetic Screens
- 2. Experimental Setup
- 3. Experimental and Simulation Results
 - a. Measurements
 - b. Analysis
 - c. Numerical Extrapolation
- 4. Lessons Learnt, Conclusions and Next Steps

Introduction

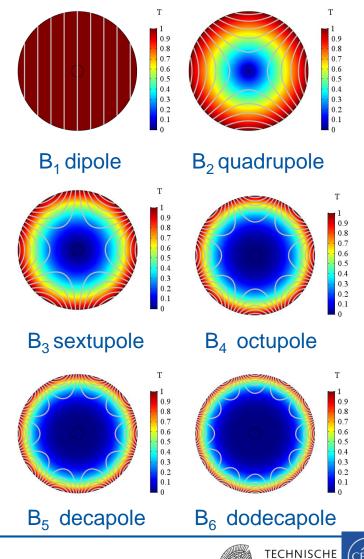
Experimental Setup Experimental and Simulation Results

Magnetic field Quality in Accelerator Magnets

Relevance: Stability of particle beams

Influence factors: Construction tolerances, dynamic effects (e.g., inter-filament coupling currents), iron, persistent magnetization

Quantification: Magnetic field multipole expansion Normal B_i and skew A_i multipoles


Example: dipole magnet

• B₁ dipole field

• $(A_{m\geq 1}, B_{n\geq 2})$ field error

Total Harmonic Distortion Index:

THD₁ = $1e^{-4} \frac{\left[\sum_{m=1}^{+\infty} A_m^2 + \sum_{n=2}^{+\infty} B_n^2\right]^{\frac{1}{2}}}{B_1}$ Good THD₁ < 10

UNIVERSITÄT DARMSTADT

Persistent Magnetization

Example:

HTS tape in a time-dependent magnetic field

Field variation $\partial_t \mathbf{B}$:

- Screening (eddy) currents J_{screen}
- Screening magnetic field B_{screen}

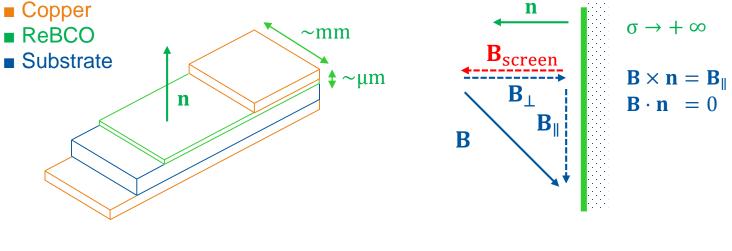

Superconducting material $\rho \rightarrow 0$:

- J_{screen} time constant $\rightarrow \infty$
- B_{screen} due to persistent magnetization

Coils made of HTS tapes:

- \rightarrow wide filaments (4~12 mm)
- \rightarrow Significant **B**_{screen}

→ Magnetic field quality degradation, especially at low current ($J_{screen} \gg J$)


Superconducting tape in a magnetic field

Perfect Electric Wall-Like Behaviour

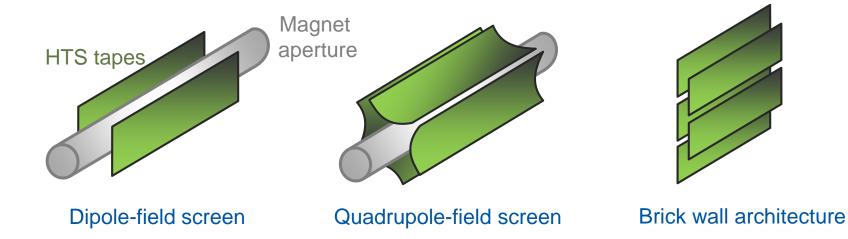
Features of HTS tapes:

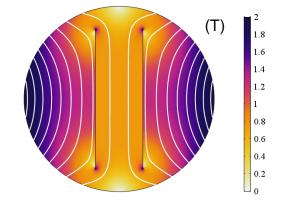
- high conductivity, $\sigma \rightarrow +\infty$
- high aspect ratio, ~ 1000

HTS tape layout

HTS tape seen as perfect electric wall

Persistent magnetization \rightarrow HTS tapes behavior similar to a perfect electric wall




Magnetic Field Error Cancellation (1/2)

Our proposal:

HALO - Harmonics-Absorbing Layered Object

- 1. Magnetic field lines shaped by screening currents
- 2. Orientation with the main field component (e.g. dipole)
- 3. Selective cancellation of undesired field components
- 4. Brick wall architecture \rightarrow wider screening surface
- 5. Passive device

TECHNISCHE UNIVERSITÄT DARMSTADT

Magnetic Field Error Cancellation (2/2)

Field homogeneity sought in many applications (beyond accelerator magnets):

- 1. Solenoids for fusion reactors
- 2. Hollow electron lenses
- 3. MRI and NMR machines
- 4. MHD systems in hypersonic aircraft
- 5. Hadron therapy

Relevant research (known up to date):

- 1. Magnetic cloaks for sensors [1,2]
- 2. Shim coils for MRI [3] and NMR [4] applications
- 3. Selective shields based on HTS tapes for solenoids [5]
- 4. "Magic magnet" concept [6]

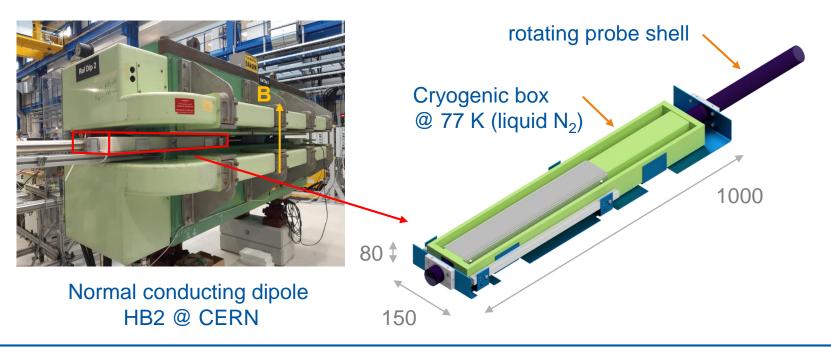
[1] Gömöry, Fedor, et al. "Experimental realization of a magnetic cloak." Science 335.6075 (2012): 1466-1468.

[2] Tomków, Ł., et al. "Combined magnetic screen made of Bi-2223 bulk cylinder and YBCO tape rings—Modeling and experiments." *Journal of Applied Physics* 117.4 (2015): 043901.

[3] Tomków, Ł., et al. "Improvement of the homogeneity of magnetic field by the attenuation of a selected component with an open superconducting shield made of commercial tapes." *Journal of Applied Physics* 126.8 (2019): 083903.

[4] Frollo, I., et al. "Magnetic field homogeneity adjustment for magnetic resonance imaging equipment." *IEEE Transactions on Magnetics* 54.5 (2018): 1-9.
[5]Wang, T., et al. "A 3.35 T Actively Shielded Superconducting Magnet for Dynamic Nuclear Polarization Device." *IEEE Transactions on Applied Superconductivity* 26.4 (2016): 1-4.

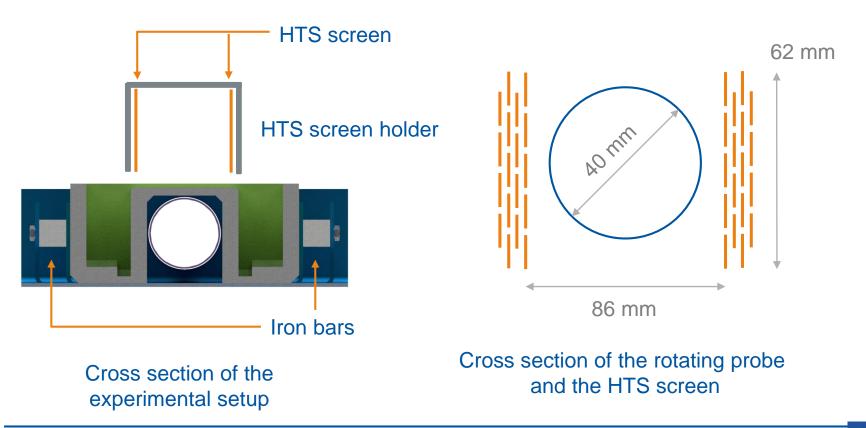
[6] Van Nugteren, Jeroen. High temperature superconductor accelerator magnets. Diss. Twente U., Enschede, Enschede, 2016.

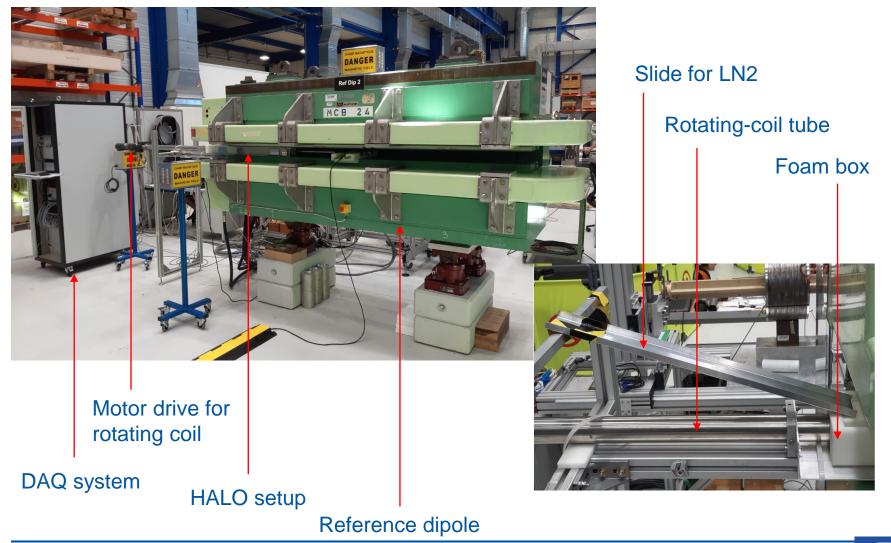

Introduction Experimental Setup Experimental and Simulation Results

Experimental Setup (1/5)

Strategy: Screening effect quantified as differential measurement (rotating coil) **Reference:** known magnetic field \rightarrow dipole HB2 (Magnetic measurement Lab)

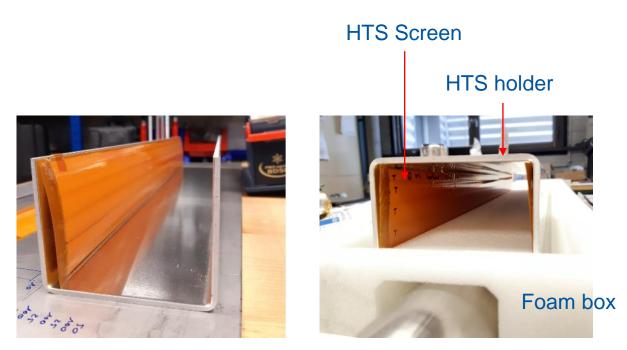
Procedure:


- 1. Introduction of a magnetic field distortion
- 2. Field correction by means of HTS screens


Experimental Setup (2/5)

Magnetic field error \rightarrow iron barsMagnetic field correction \rightarrow HTS screen made of 4 layers of 5 tapes (18 meters)

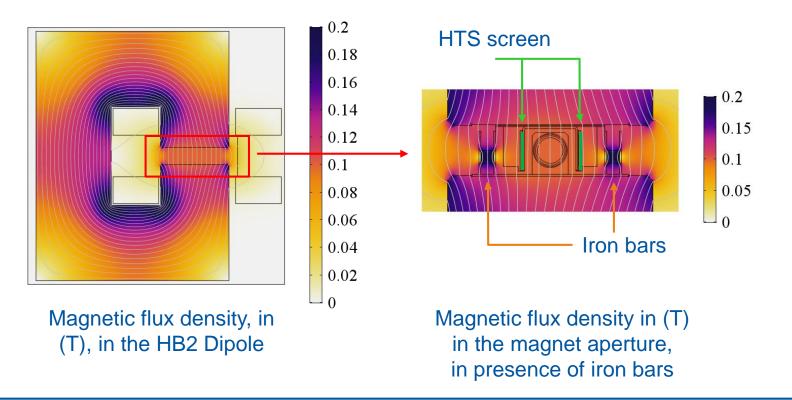
Experimental Setup - Detail (3/5)



Experimental Setup - Detail (4/5)

Initial idea: aluminum counter-plates on the holder sides Counter-plates deformation during cool-down → HTS tapes blocked between holder and foam box

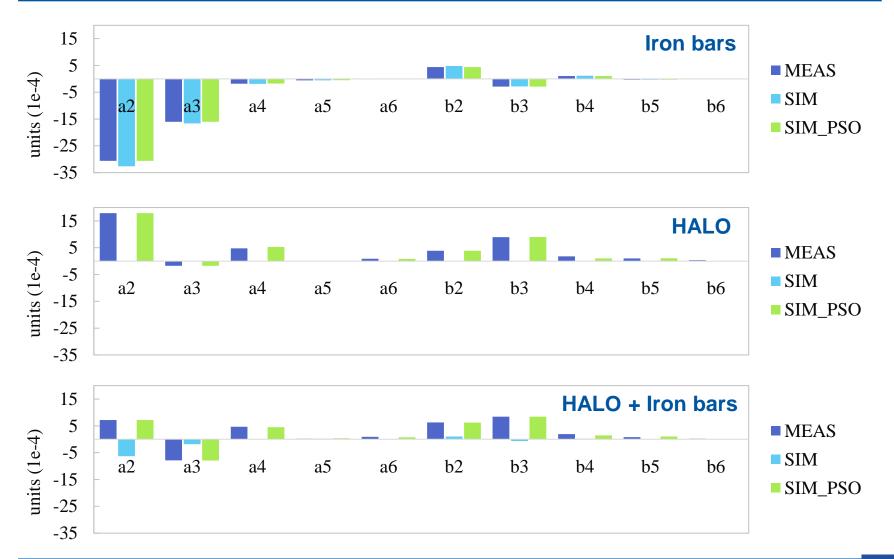
HTS holder and screen (left), and their assembly into the foam box



Experimental Setup (5/5)

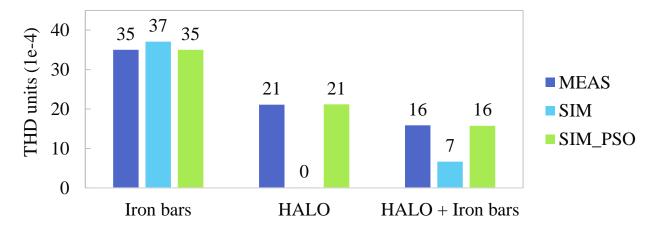
Magnetoquasistatic 2D simulations:

14


- Numerical model based on the FEM method
- Field problem described by a coupled A-H field formulation for HTS applications [1]
- Implementation in COMSOL as weak formulation (no tool dependencies)

Introduction Experimental Setup Experimental and Simulation Results

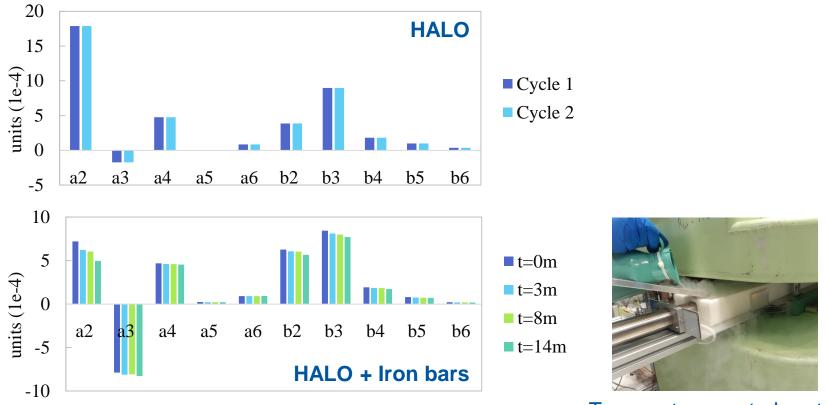
Measurements (1/3)



Measurements (2/3)

THD index from the multipole series in the previous slide

 $Q_{THD} = \frac{THD_{Iron}}{THD_{HALO+Iron}}$

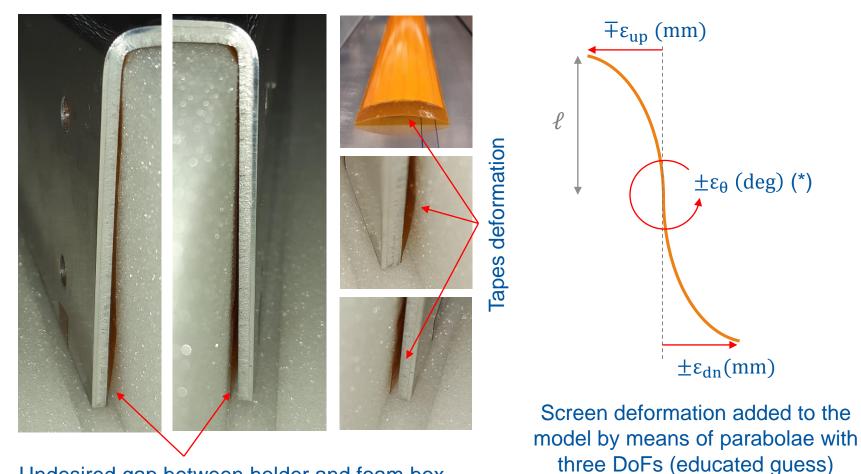

Total Harmonic Distortion Index (THD)

Observations:

- Screen error \approx Iron bars \rightarrow figure of merit $Q_{THD} = 2.2$, expected 5.6
- Random compensation of a_2 leading to apparent field improvement
- \rightarrow Difficult to draw conclusions on field error cancellation

Measurements (3/3)

Temperature control system


Observations:

- Measurements reproducibility
- Screening currents persistency (up to temperature uncertainty)

Analysis (1/3): Visual inspection

Post-mortem visual inspection of the experimental setup:

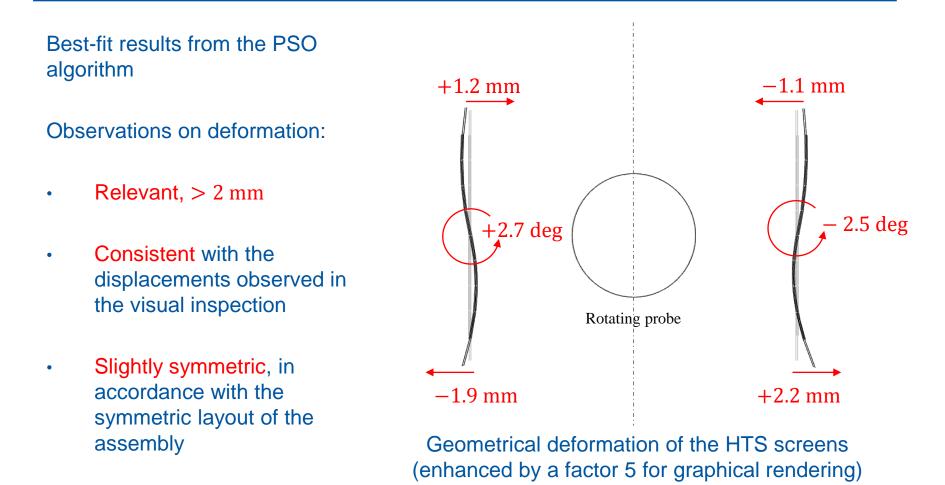
Undesired gap between holder and foam box



Analysis (2/3): Parameters Fitting

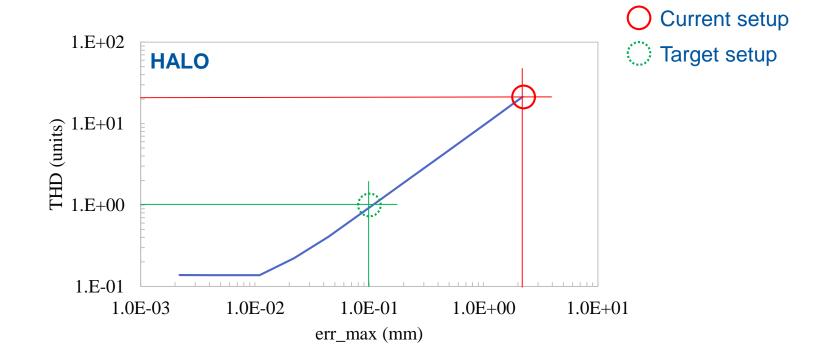
Particle Swarm Optimizer (PSO) (*) : $\mathbb{R}^6 \to \mathbb{R}$ where

- $\mathbb{R}^6 : \{\varepsilon_{up}, \varepsilon_{dn}, \varepsilon_{\theta}\} \times 2 \text{ (two screens)}$
- \mathbb{R} : $F_p(\varepsilon) = \sum_{i=1}^6 (|a_i^{\text{meas}} a_i^{\text{sim}}| |b_i^{\text{meas}} b_i^{\text{sim}}|)$ penalty function,
- HALO standalone dataset



Projections of the penalty function from the \mathbb{R}^6 parametric space

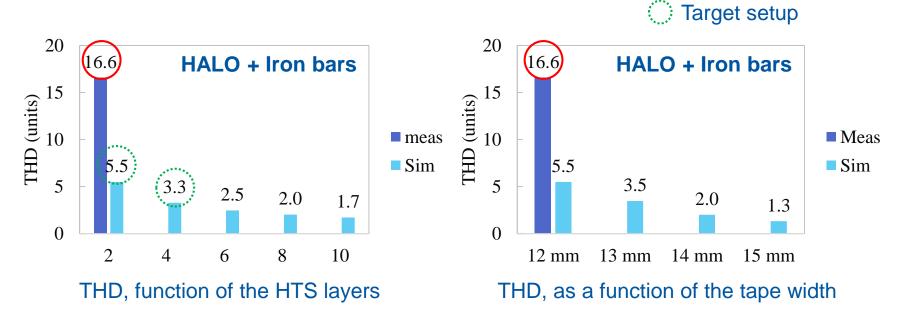
(*) CAVEAT: Inverse problem, with infinite solutions. The optimizer works in a functional subspace which is determined a-priori by the educated guess on the mechanical deformation. Although the solution is arbitrary, it is still useful to understand the behavior of the screen.


Analysis (3/3): Geometrical Deformation

TECHNISCHE UNIVERSITÄT DARMSTADT

Extrapolation (1/2): Screen Error

Application of a scaling factor k_{ϵ} to geometrical errors { $\epsilon_{up}, \epsilon_{dn}, \epsilon_{\ell(\theta)}$ }:


If $\max\{\epsilon_{up}, \epsilon_{dn}, \epsilon_{\ell(\theta)}\} \le 0.1 \text{ mm} \text{ (i.e. } k_{\epsilon} \cong 20) \rightarrow \text{THD } \le 1 \text{ unit}$

Extrapolation (2/2): Field Correction

Assumption: geometrical error $\leq 0.1 \text{ mm}$ Field correction improvement by:

- 1. More HTS layers
- 2. Longer HTS layers (for reference)

 $Q_{THD} = 2.2 \rightarrow 6.4$ (improved geometry) $\rightarrow 10.6$ (HTS layers doubling)

Current setup

Lessons Learnt

Design

- Curvature in the HTS screen → face-to-face tape-stacking
- Geometrical error → tolerance of 0.1 mm
- Geometrical error → mechanical regulation for the HTS holder
- Mechanical deformations \rightarrow avoid metal folding in manufacturing (expensive)

Experiment

- Alignment at 300 K ⇒ alignment at 77 K
- Rotating-probe tube freezing, time-at-cold limited to ~10-15 minutes
- Iron bars mounting without removing the experimental setup from the magnet

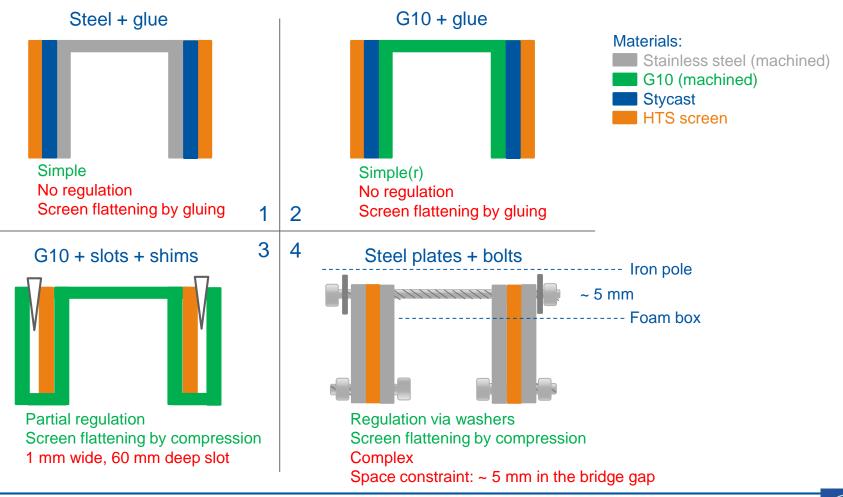
Analysis

- Higher Q_{THD} needed for a convincing proof-of-concept
 - Reduced screen error → high improvement
 - Increased field distortion (more iron) → small improvement with the current design Second HTS layer helpful

Conclusions

Highly non-standard experimental campaign successfully completed

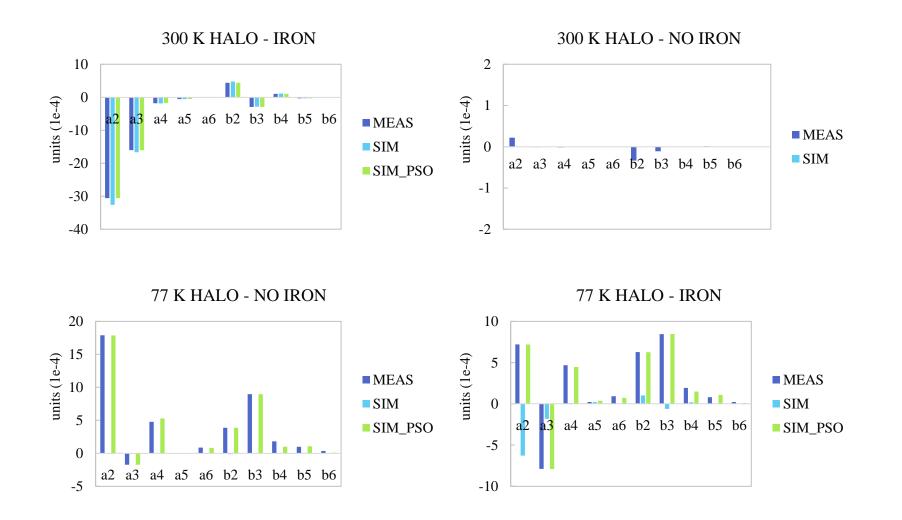
- 1. Reproducibility of results, persistency of the screening currents
- 2. Sensitivity not fully satisfactory for a proof of concept


Validation of the coupled-field formulation (developed for HTS applications)

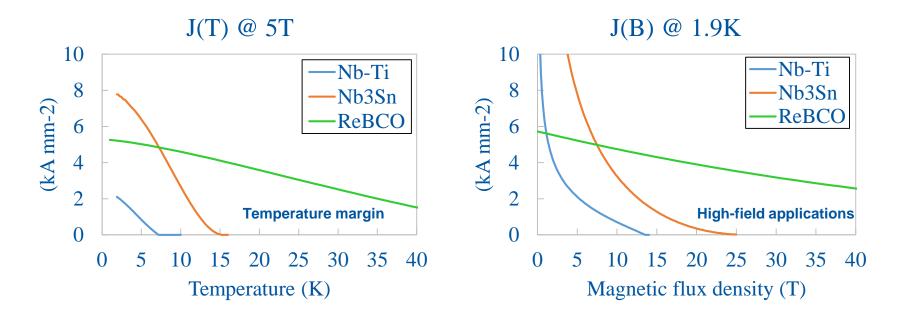
- 1. Numerical simulations in agreement with measurements
- 2. Useful insights for improving the design of the HTS screen
- 3. Extrapolation shows relevant margins for improvement

Next Steps

Second experimental campaign with improved holder design. Tentative proposals:

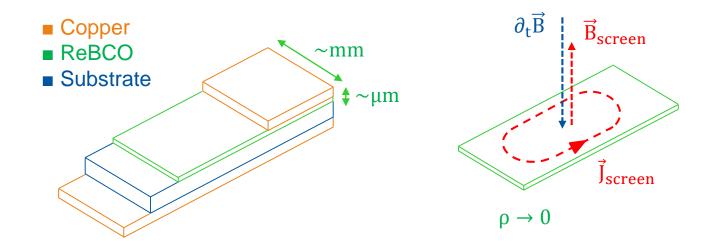


Results - Overview



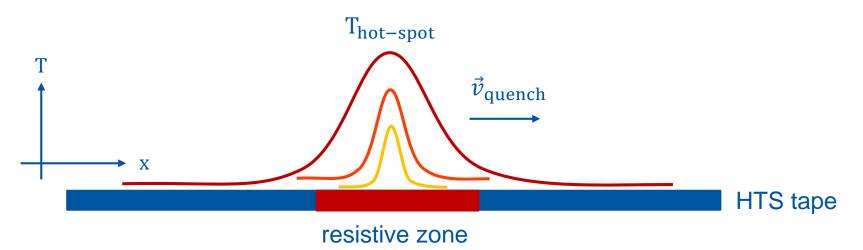
High-Temperature Superconductors (HTS)

Copper oxides (CuO₂) doped with rare earths (La, Bi-Sr-Ca, Y-Ga-Ba etc.)


Higher critical temperature and coercive field with respect to the traditional low-temperature superconductors (LTS), such as Nb-Ti or Nb3Sn

Transient Effects: Screening Currents in HTS

HTS tape in a time-dependent magnetic field $\partial_t \vec{B}$:


 $\partial_t \vec{B} \rightarrow \text{Screening currents } \vec{J}_{\text{screen}}$ $\rho \rightarrow 0 \rightarrow \text{Persistent magnetization } \vec{B}_{\text{screen}}$ Large filament size (5-12 mm) \rightarrow large \vec{B}_{screen} Magnetic field quality and thermal behavior, as principal Joule loss contribution

Inhomogeneous current density distribution \rightarrow Solid conductors!

Transient Effects: Quench in HTS

Local transition from superconducting to normal conducting state

Energy dissipated in the resistive zone

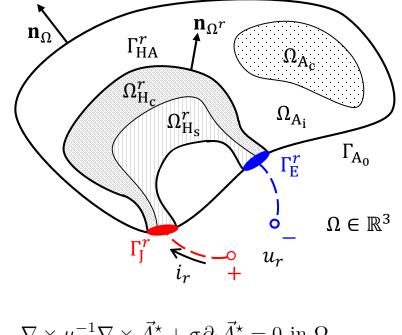
Potentially irreversible effects for high energy-density devices (accelerator magnets)!

HTS characteristics:

- low heat diffusivity
- low \vec{v}_{quench} , small resistive zone, difficult to detect
- high T_{hot-spot}, potential damage in short time (tens of ms)

Formulation

Domain decomposition


 Ω_H^r source domain (*r*-th winding)

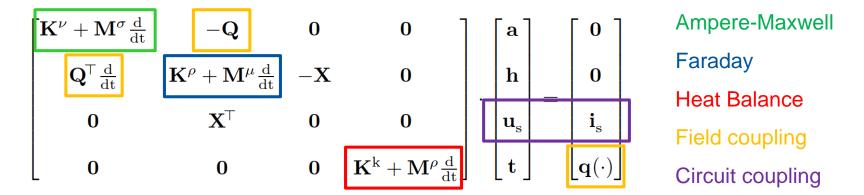
- $\Omega^{r}_{H_{s}}$ and $\Omega^{r}_{H_{c}}$ for superconducting and normal conducting parts
- Ω_A source-free domain
- Ω_{A_c} and Ω_{A_i} for normal conducting and insulating materials

Strong formulation

for $r = 1, ..., N_r$ windings:

- \vec{A}^* in Ω_A : reduced magnetic vector potential
- \vec{H} in Ω_H^r : magnetic field strength

Ampere
Maxwell
$$\nabla \times \mu^{-1} \nabla \times \vec{A}^{\star} + \sigma \partial_t \vec{A}^{\star} = 0$$
 in Ω_A


Faraday
$$\nabla \times \rho \nabla \times \vec{H} + \partial_t \mu \vec{H} + \nabla \times \vec{\chi}_r u_r = 0 \text{ in } \Omega^r_{\mathrm{H}}$$

$$\begin{array}{l} \text{Algebraic} \quad \int \limits_{\Omega_{\mathrm{H}}^{r}} \vec{\chi_{r}} \cdot (\nabla \times \vec{H}) \, \mathrm{d}\Omega = i_{r} \end{array}$$

Discrete Problem

\vec{A}^{\star} , \vec{H} discretized via Nédélec-type shape functions

Finite material properties, bounded condition number \rightarrow Solver stability \odot

Observations:

- Electric ports used as connections with the external circuit
- $u_s, i_s \rightarrow$ Each winding as one-port component, with impedance Z_r : $u_r = Z_r i_r$

Assumption:

• $(K^{\upsilon} + \lambda M^{\sigma})$ positive-definite (true for gauged \vec{A}^* , e.g. via tree-cotree gauge)

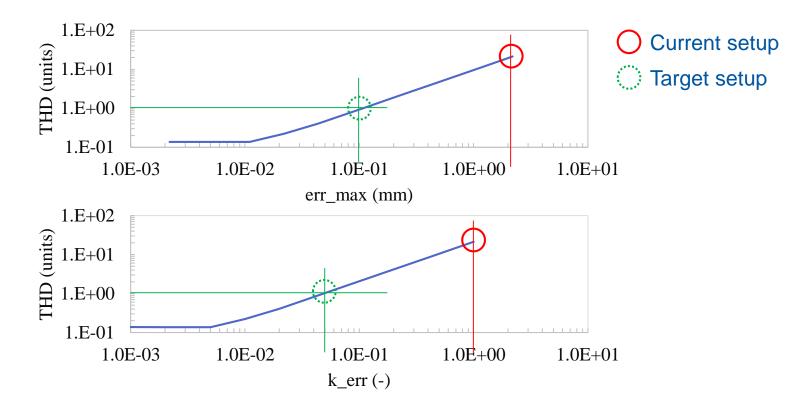
Field-Circuit Coupling Interface

Field-circuit coupling interface (Schwarz transmission condition for linear systems):

$$\mathbf{Z}(j\omega) = \begin{bmatrix} \mathbf{X}^{\top} \begin{bmatrix} \mathbf{K}^{\rho} + j\omega \mathbf{M}^{\mu} + \mathbf{Q}^{\top} \begin{bmatrix} \mathbf{K}^{\nu} + j\omega \mathbf{M}^{\sigma} \end{bmatrix}^{-1} \mathbf{Q} \end{bmatrix}^{-1} \mathbf{X} \end{bmatrix}^{-1}$$

$$\mathbf{X}^{\top} = \mathbf{X}^{\top} \mathbf{X}^{\top} \mathbf{X}^{\top} \mathbf{X}^{\top}$$
resistive \vec{H} -flux \vec{A} -flux Eddy currents

In time domain: $\mathbf{Z}(j\omega) \approx \mathbf{Z}(0) + j\omega \left. \frac{\partial \mathbf{Z}(j\omega)}{\partial j\omega} \right|_{\omega=0}$


$$\mathbf{u}_{s}(t) \approx \mathbf{R}\mathbf{i}_{s}(t) + \mathbf{L}\frac{\mathrm{d}}{\mathrm{dt}}\mathbf{i}_{s}(t) \qquad \underbrace{\mathbf{R}_{i}}_{i_{i}} \qquad \underbrace{\mathbf{L}_{i}}_{i_{i}} \qquad \underbrace{\Delta u_{i}}_{i_{i}} \qquad \underbrace{\mathbf{H}}_{i_{i}} \qquad \underbrace{\Delta u_{i}}_{i_{i}}$$

Linearized field-circuit coupling interface for solid conductors

Extrapolation (1/2): Screen Error

Application of a scaling factor k_{ϵ} to geometrical errors { ϵ_{up} , ϵ_{dn} , $\epsilon_{\ell(\theta)}$ }:

If geometrical error is improved by a factor 20 ($k_{\epsilon} \le 0.05$) i.e. max{ $\epsilon_{up}, \epsilon_{dn}, \epsilon_{\ell(\theta)}$ } $\le 0.1 \text{ mm} \rightarrow \text{THD}$ of the screen ≤ 1 unit

