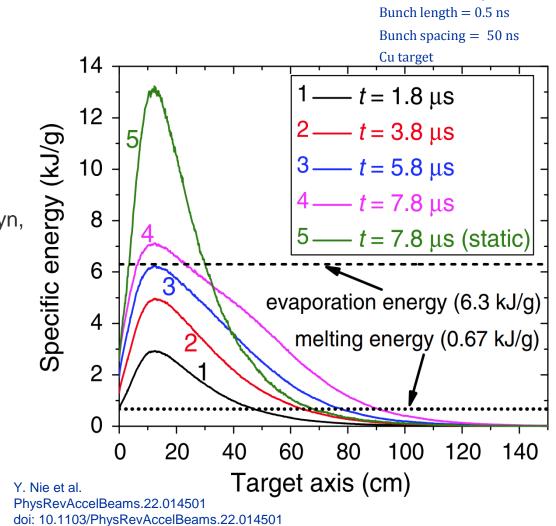


Automatic Generation of FLUKA Input Files for Hydrodynamic Tunnelling Studies

Jens Kruse-Hansen

17-12-2020

Acknowledgements


- Supervision by Christoph Wiesner
- Talks and advice from Daniel Wollmann
- Yuancun Nie for providing insight into his work
- Federico Carra and Marco Masci for Autodyn assistance
- Code review by Michał Maciejewski

Penetration Depth from Energy Deposition at Constant Densities

Beam failure

- Static approximation
 - Total specific energy is obtained by multiplying dose per proton at t=0µs by total number of protons
 - Normally this is sufficient and only requires one-way coupling of an energy code (FLUKA) and hydrocode (e.g Ansys-Autodyn, BIG2)
- Difference in distribution of deposited energy
 - If considering the density change of the target material during the beam impact the penetration depth increases
 - This is known as hydrodynamic tunnelling

Proton energy = $440 \ GeV$

Bunch intensity = $1.5 \cdot 10^{11}$ rms beam size $\sigma_{x,y} = 0.2mm$

Hydrodynamic Tunnelling

Beyond design failure

- In case of entire beam being lost at one point •
 - No dilution case •
 - Severe extraction failure •
 - Incorrect field strength for extraction kick •
 - Wrong energy from BETS •
- The penetration depth will be significantly longer • than if assuming constant density throughout the impact.
 - Validated in 2012 HiRadMat experiment with SPS beam •
 - The time structure allows for the density of the material ۲ to change before the next bunch hits.
 - First bunches deplete density along the beam path and ٠ allows subsequent bunches to penetrate further.

Proton energy = 440 GeVBunch intensity = $1.5 \cdot 10^{11}$ rms beam size $\sigma_{x,y} = 0.2mm$ Bunch length = 0.5 ns Bunch spacing = 50 ns Cu target

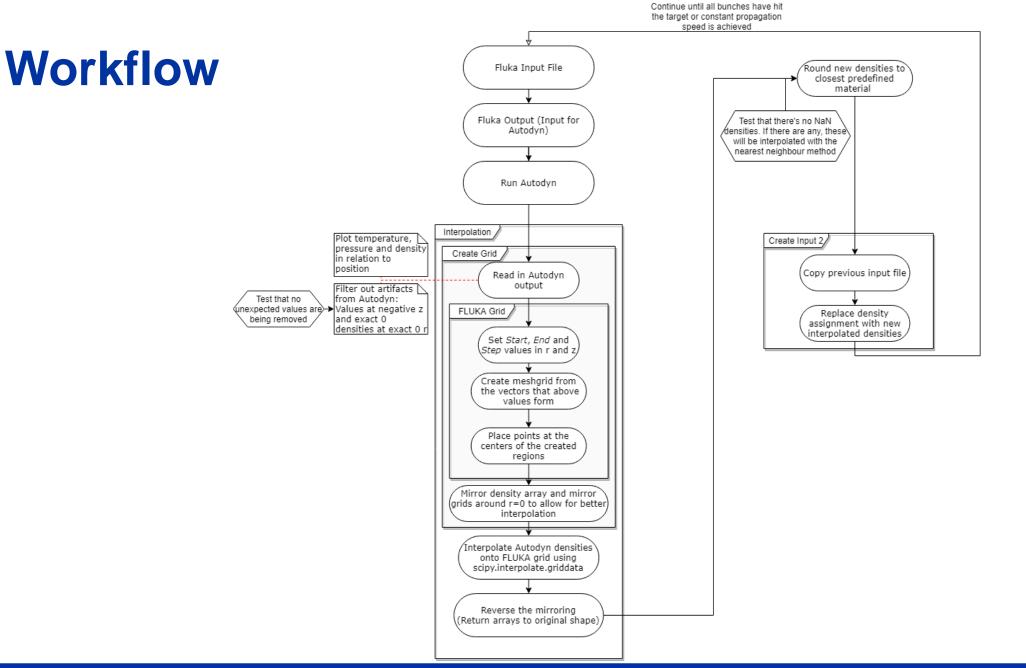
From HiRadMat test in 2012

F. Burkart et. Al.

https://doi.org/10.1063/1.4927721

Continuation of Hydrodynamic Tunneling studies

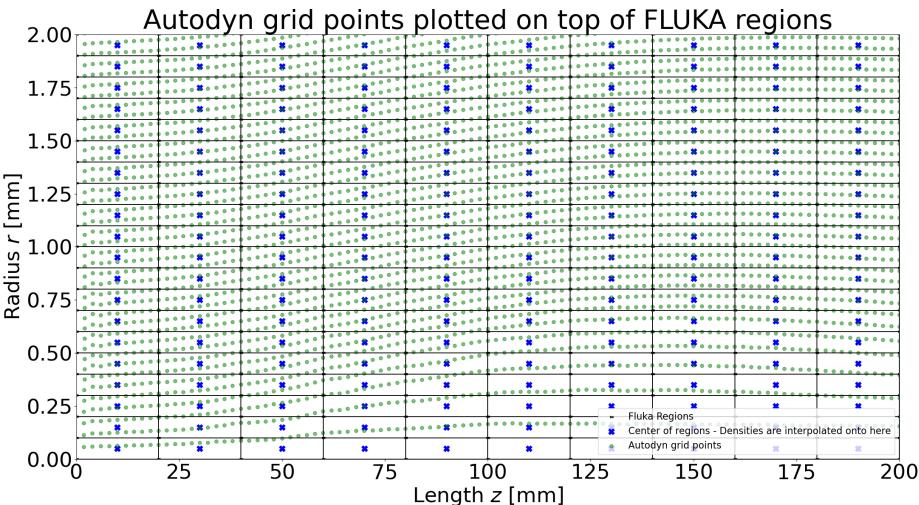
- Continue beyond design failure studies for LHC and HL-LHC
 - Requires coupling of hydro and energy deposition codes (FLUKA and Autodyn)


Earlier Approach

- Energy depositions are simulated using FLUKA and hydrodynamics are simulated using ANSYS-Autodyn.
 - This was performed manually. Density output from Autodyn was interpolated onto the FLUKA geometry by means of averaging in Origin. After this was done a new FLUKA input file was created with the new densities.
 - New input file could then be run, and these steps would be repeated until all bunches had hit the target.

Automate the process

- Python script to achieve the above steps.
 - Find an efficient and reliable way to interpolate the densities from Autodyn onto the FLUKA regions
 - Including automatic checks and plotting
- For benchmarking the HiRadMat12 case will be used, which was already studied by Y. Nie (*Phys. Rev. Accel. Beams* 22 (2019) 014501)



Mirroring and Interpolating

- Interpolating ~260,000 density points from Autodyn onto the 2500-point FLUKA grid
- Autodyn gave unphysical densities at r=0, which is why these points are filtered out
- To allow for the best interpolation the radially symmetrical grid is mirrored around r

Results

Fine region Linear - Before rounding Autodyn 10 5 10 2 1 4 8 8 Radius *r* [mm] C Radius *r* [mm] Density [*g/cm*³] Density $\left[\frac{g}{cm^3}\right]$ 6 4 1 2 2 0+0 0 200 600 800 200 600 800 400 1000 400 1000 Length z [mm] Length z [mm] Linear - after rounding Linear - from input 10 5 10 3 4 4 8 Radius *r* [mm] C Radius *r* [mm] Density [*g/cm*³] Density [*g/cm*³] 6 6 4 1 2 2 0₊ 0 0+0 200 600 800 1000 200 400 600 800 1000 400 Length z [mm] Length z [mm]

After 144 bunches

Four stages

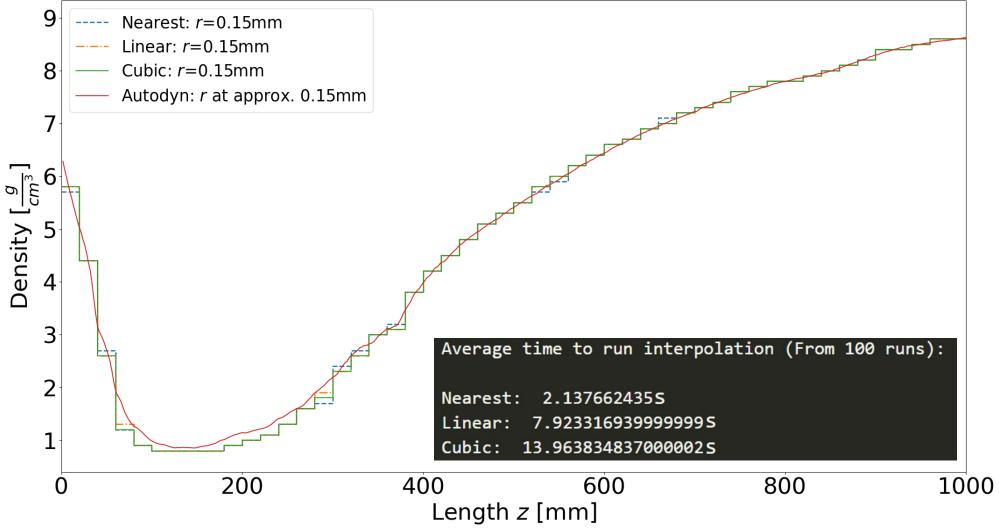
1. From Autodyn

- 2. After interpolation
- 3. After downsampling
- 4. Read in from generated input file as a cross-check

Automatically Generated FLUKA Input File

Reference File

TITLE								TITLE	
07hiradma	at							newInput	File
GLOBAL	20000.							GLOBAL	2000
* Set the defaults for precision simulations								* Set th	e defaults
DEFAULTS							PRECISIO	DEFAULTS	
* Define	the beam ch	naracteristi	cs					* Define	the beam
BEAM	-440.0)		-0.0471	-0.0471		PROTON	BEAM	-440
* Define the beam position								* Define	the beam
BEAMPOS	0.0	0.0	-0.001					BEAMPOS	G
GEOBEGIN							COMBNAME	GEOBEGIN	
0	0	440 GeV pro	ton in cop	per				0	0
ASSIGNMA	BLCKHOLE	BLKBODY						ASSIGNMA	BLCKHOL
ASSIGNMA	VACUUM	VOID						ASSIGNMA	VACUU
ASSIGNMA	CU000	R150400						ASSIGNMA	CU00
ASSIGNMA	CU066	R002001						ASSIGNMA	CU06
ASSIGNMA	CU070	R002002						ASSIGNMA	CU06
ASSIGNMA	CU075	R002003						ASSIGNMA	CU074
ASSIGNMA	CU080	R002004						ASSIGNMA	CU07
ASSIGNMA	CU085	R002005						ASSIGNMA	CU08
ASSIGNMA	CU087	R002006						ASSIGNMA	CU08
ASSIGNMA	CU088	R002007						ASSIGNMA	CU08
ASSIGNMA	CU089	R002008						ASSIGNMA	CU08
ASSIGNMA	CU089	R002009						ASSIGNMA	CU08
ASSIGNMA	CU089	R002010						ASSIGNMA	CU08
ASSIGNMA	CU089	R002011						ASSIGNMA	CU08
ASSIGNMA	CU089	R002012						ASSIGNMA	CU00
ASSIGNMA	CU089	R002013						ASSIGNMA	CU00

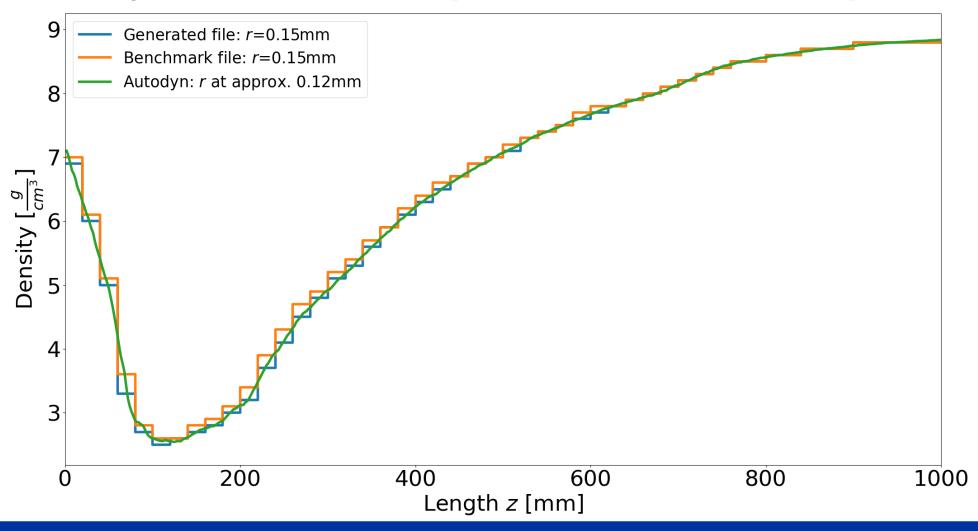

Generated Input File

TITLE								
newInput	File							
GLOBAL	20000							
* Set th	e defaults f	for precision	n simulatio	ons				
DEFAULTS						PRECISIO		
* Define	the beam cl	naracteristi	cs					
BEAM	-0.0471	PROTON						
BEAM -440.0 -0.0471 -0.0471 * Define the beam position								
BEAMPOS	0.0		-0.001					
GEOBEGIN		0.0	0.001			COMBNAM		
0	0	440 GeV pro	ton in conr			CONDINAN		
ASSIGNMA	BLCKHOLE	BLKBODY	con in cobt	Jei				
ASSIGNMA	VACUUM	VOID						
ASSIGNMA	CU000	R150400						
ASSIGNMA	CU066	R002001						
ASSIGNMA	CU069	R002002						
ASSIGNMA	CU074	R002003						
ASSIGNMA	CU079	R002004						
ASSIGNMA	CU085	R002005						
ASSIGNMA	CU087	R002006						
ASSIGNMA	CU088	R002007						
ASSIGNMA	CU089	R002008						
ASSIGNMA	CU089	R002009						
ASSIGNMA	CU089	R002010						
ASSIGNMA	CU089	R002011						
ASSIGNMA	CU000	R002012						
ASSIGNMA	CU000	R002013						

Interpolation methods

After 144 bunches

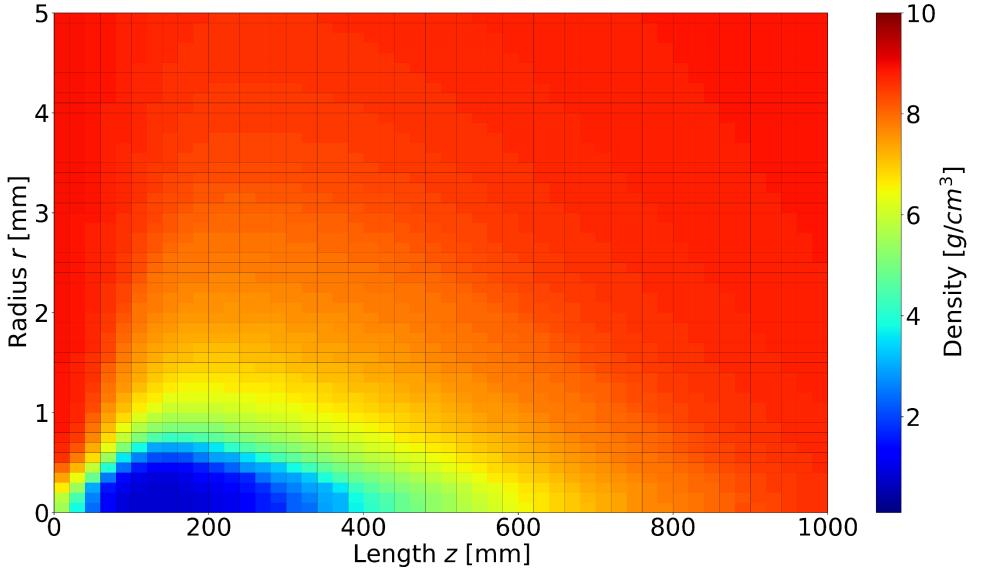
CERN


Scipy.interpolate. griddata

- Nearest neighbour
- Linear
- Cubic
- Linear as the default interpolation

10

- Timing


Comparison of generated input, benchmark input and Autodyn output file (After 92 bunches)

17/12/2020 Jens Kruse-Hansen | Automatic generation of FLUKA input files for hydrodynamic tunnelling studies

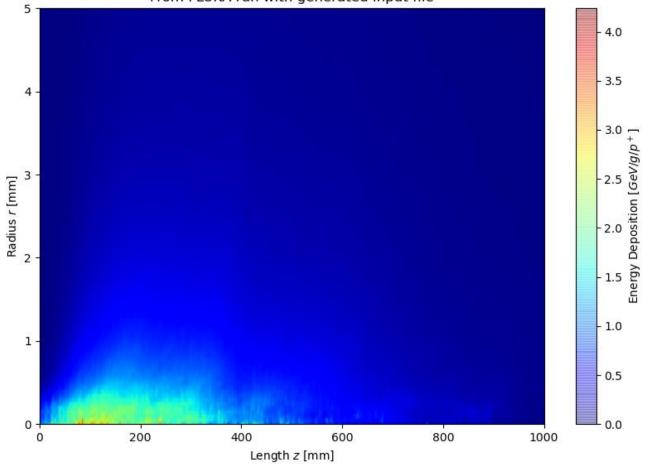
After 144 bunches Data from Run011

Conclusion

- Automatic generation of FLUKA input files has been achieved using a newly developed python script
 - Input files have been automatically produced for every Autodyn output file from the benchmark studies
- Automatically generated input files have been used in FLUKA simulations to obtain energy depositions for the benchmark case
- Added functionality by having an automatic script
 - Choice between nearest, linear and cubic interpolations (or several in same run)
 - Produces several plots along the different steps of the process
 - Creates log file with information e.g., comparison of density changes, faulty data, failed interpolation etc.
 - Saves arrays, so the data can be accessed without having to run the whole script again

Thanks for your attention

home.cern


FLUKA run of generated input file After 48 bunches

Energy Deposition $[GeV/g/p^+]$ after 144 bunches From FLUKA run with generated input file 5 4.0 3.5 4 -3.0 / Deposition [*GeV/g/p*+ 3 Radius r [mm] 2 -Energy 1.5 1.0 1 -0.5 0 -0.0 600 200 400 800 0 1000 Length z [mm]

CERN

FLUKA run of generated input file After 48 bunches

Energy Deposition $[GeV/g/p^+]$ after 48 bunches From FLUKA run with generated input file

FLUKA run of generated input file After 60 bunches

Energy Deposition $[GeV/g/p^+]$ after 60 bunches From FLUKA run with generated input file 5 - 3.5 4 - 3.0 , Deposition [*GeV/g/p*⁺] 3 Radius r [mm] 2 -Energy 1.5 - 1.0 1 -0.5 - 0.0 0 600 800 0 200 400 1000 Length z [mm]

