A conformally invariant Yang-Mills energy and equation on 6-manifolds

Rod Gover,

> Links: e.g.
> G. + Peterson+ Sleigh, arXiv:2107.08515
> Branson + G. Commun. Contemp. Math. 9 (2007)
> Branson +G. (2005), Comm. Partial Differential Equations 30 (2005),
> Bailey+Eastwood+G. Rocky Mtn 1994
> University of Auckland
> Department of Mathematics
> Twistor Theory and Beyond, 2021

Plan

- The conformal Laplacian aka Yamabe operator
- The GJMS operators and Q-curvature
- "Long" operators on differential forms and Q-operators
- Bach Gravity
- Conformal tractors
- The Yang-Mills equations
- A Q-like object for gauge connections and higher Yang-Mills
- Links to the obstruction tensor

Toward a link to Lionel - some background

On pseudo-Riemannian n-manifolds the conformal wave operator/conformal Laplacian

$$
Y^{g} u:=\left(\Delta^{g}+\frac{n-2}{4(n-1)} S c^{g}\right) u \quad \text { here } S c^{g} \text { is the scalar curvature }
$$

is conformally covariant: If we replace the g with $\widehat{g}=e^{2 \omega} g$, then

$$
Y_{\widehat{\delta}} e^{\left(1-\frac{n}{2}\right) \omega} u=e^{\left(-1-\frac{n}{2}\right) \omega} Y^{g} u \quad \omega \in C^{\infty}(M) .
$$

Hence (put $e^{\left(1-\frac{n}{2}\right) \omega} u=1$) the Yamabe equation

$$
\frac{n-2}{4(n-1)} S c^{\widehat{g}} u^{\frac{n+2}{n-2}}=\left(\Delta^{g}+\frac{n-2}{4(n-1)} S c^{g}\right) u .
$$

But in critical dim $n=2: \Delta^{\widehat{s}} u=e^{-2 \omega} \Delta^{g} u$ and (exercise):

$$
S c^{\widehat{g}}=e^{-2 \omega}\left(\mathrm{Sc}^{\widehat{g}}+2 \Delta \omega\right) .
$$

So Gauss curvature prescription is qualitatively different than Scalar curvature prescription in higher dim. and $\int_{M} \mathrm{Sc}$ is conformally invariant on closed M - as required by Gauss Bonnet!.

The GJ-Mason-S Operators and Q-curvature

There is a generalization of this whole picture to higher order/dim! Paneitz produced a conformally covariant $P_{4}=\Delta^{2}+$ lots and then Graham-Jenne-Mason-Sparling constructed operators

$$
P_{2 m}=\Delta^{m}+\text { lots } \quad m \in \mathbb{Z}_{+}, \quad 2 m-n \notin 2 \mathbb{Z}_{+}
$$

s.t.

$$
P_{2 m}^{\widehat{g}} \circ e^{\left(m-\frac{\eta}{2}\right) \omega}=e^{-\left(m+\frac{n}{2}\right) \omega} P_{2 m}^{g} .
$$

Branson noticed these have the form (FSA by Graham-Zworksi)

$$
P_{2 m}=\delta S_{2 m} d+\frac{n-2 m}{2} Q_{2 m}
$$

thus a generalisation of the Yamabe equation governing $Q_{2 m}^{\widehat{g}}$ and, in the critical $\operatorname{dim} n=2 m$:

$$
Q^{\widehat{g}}=e^{-n \omega}\left(Q^{g}+P_{n} \omega\right)
$$

So Q-curvature prescription is similar to Gauss, and $\int_{M} Q$ is conformally invariant on closed M of even dimension.

Long and Q-operators on forms

In fact there is a much bigger picture still!! On k-forms \mathcal{E}^{k} ($0 \leq k \leq n / 2$) there are similar operators

$$
L_{2 m}: \mathcal{E}^{k}[w] \rightarrow \mathcal{E}^{k}[u] \quad L_{2 m}=-2 u(\delta d)^{m}-2 w(d \delta)^{m}+\text { lots }
$$

where $w=m+k-\frac{n}{2}$, and δ is formal adjoint of d (really ∇).
Again $w=0$ (true forms) is the critical case and
Thm : [Branson+G. 2007]

$$
L_{2 m+2}=\delta Q_{2 m} d
$$

is conformally invariant and FSA with

$$
Q_{2 m}^{\widehat{\mathrm{g}}}=e^{\mu \omega}\left(Q_{2 m}^{g}+L_{2 m} \circ \omega\right) \quad \text { on closed forms. } \therefore \int_{M}\left\langle u_{k}, Q w_{k}\right\rangle c i
$$

E.g. in dimension 6

$$
\begin{aligned}
& \mathcal{E}^{0} \xrightarrow{d} \mathcal{E}^{1} \xrightarrow{d} \mathcal{E}^{2} \xrightarrow{\rightarrow} \mathcal{E}^{3} \xrightarrow{\rightarrow} \mathcal{E}_{2} \xrightarrow{\delta} \mathcal{E}_{1} \xrightarrow{\delta} \mathcal{E}_{0} \\
& P_{6}=\delta Q_{4} d \\
& L_{4}=\delta Q_{2} d \\
& L_{2}=\delta d
\end{aligned}
$$

Recall Bach's conformal gravity

Riemannian geometry: $\left(M^{n}, g\right) \rightsquigarrow \nabla^{g} \rightsquigarrow R_{a b}{ }^{c} d$
The Riemann curvature $R_{a b}{ }^{c}{ }_{d}$ decomposes:

$$
R_{\mathrm{abcd}}=\underbrace{W_{a b c d}}_{\text {trace-free }}+\underbrace{(P \odot g)_{a b c d}}_{\text {trace part }}
$$

Under conformal rescaling $g \mapsto \widehat{g}=e^{-2 \omega} g, \omega \in C^{\infty}(M)$, the Weyl curvature $W_{a b}{ }^{c}{ }_{d}$ is conformally invariant:

$$
W^{\widehat{g}}=W^{g}, \quad \text { whence } \quad|W|_{\overparen{g}}^{2}=e^{-4 \omega}|W|_{g}^{2}
$$

In dim. $n=4$, the measure transforms $d \mu_{\widehat{g}}=e^{4 \omega} d \mu_{g}$, and so

$$
\int_{M}|W|^{2} d \mu_{g} \quad \text { is a conformally invariant energy/action }
$$

with Euler-Lagrange equation, with respect to metric variations

$$
B_{b c}:=2 \nabla_{a} \nabla_{d} W^{a}{ }_{b c}{ }^{d}+R i c_{a d} W^{a}{ }_{b c}{ }^{d}=0 .
$$

- The Bach tensor $B_{b c}$ and Weyl W are the only linear leading term conformal invariants in dimension 4. Higher dimensions?

Conformal geometry and the tractor bundle/connection

There is in general no preferred conformally invariant connection on $T M$ but there is on a rank 2 extension

$$
\mathcal{T}=\mathcal{E}[1] \oplus T^{*} M[1] \oplus \mathcal{E}[-1], \quad \mathcal{E}[1]:=\left(\left(\Lambda^{n} T M\right)^{2}\right)^{\frac{1}{2 n}}
$$

that we call the conformal tractor bundle \mathcal{T}. Given $g \in \boldsymbol{c}$ this connection $\nabla^{\mathcal{T}}$ is given by

$$
\mathcal{T} \stackrel{g}{=} \mathcal{E}[1] \oplus T^{*} M[1] \oplus \mathcal{E}[-1]
$$

$\nabla_{a}^{\mathcal{T}}\left(\sigma, \mu_{b}, \rho\right)=\left(\nabla_{a} \sigma-\mu_{a}, \nabla_{a} \mu_{b}+P_{a b} \sigma+\boldsymbol{g}_{a b} \rho, \nabla_{a} \rho-P_{a b} \mu^{b}\right)$, and $\nabla^{\mathcal{T}}$ preserves a conformally invariant tractor metric h

$$
\mathcal{T} \ni V=\left(\sigma, \mu_{b}, \rho\right) \mapsto 2 \sigma \rho+\mu_{b} \mu^{b}=h(V, V)
$$

This gives the conceptual and practical approach to conformal geometry. E.g.

$$
|W|^{2}=\left|F^{\nabla^{\mathcal{T}}}\right|^{2} \in \Gamma(\mathcal{E}[-4])
$$

where $F^{\nabla^{\mathcal{T}}}=F_{a b}{ }^{C}{ }_{D}$ is the tractor curvature.

G-bundles and connections

We consider:

- $\pi: P \rightarrow M$ be a G-bundle, for some Lie group G.
$\bullet \mathbb{V}$ finite-dimensional G-module \rightarrow associated vec. bun.
$V=P \times_{G} \mathbb{V}$, over M.
- A a G-connection on the bundle P - same notation for associated linear connection on V giving covariant deriv. ∇^{A} on V. - Write F or F^{A} for the curvature of A (or equival. of ∇^{A}).

The curvature satisfies the differential Bianchi identity

$$
d^{A} F=0
$$

where d^{A} is the exterior derivative coupled to A.
How can we construct (conformal) invariants that couple A to the underlying (conformal) geometry?

The Yang-Mills action and equations

- Yang-Mills Lagrangian density: $\mathcal{L}(A):=\operatorname{Trace}\left(g^{a b} g^{c d} F_{a c} \circ F_{b d}\right)$.

Under a conformal rescaling $g \mapsto \widehat{g}=e^{2 \omega} g$, the Lagrangian transforms to $e^{-4 \omega} \mathcal{L}(A)$. Again, in dimension 4 , $d \mu^{g} \mapsto d \mu^{\widehat{g}}=e^{4 \omega} d \mu^{g}$, so the YM action $\mathcal{S}(A)$ given by

$$
\begin{equation*}
\mathcal{S}(A):=\int_{M^{4}} \mathcal{L}(A) d \mu^{g} \tag{1}
\end{equation*}
$$

is conformally invariant. It follows at once that the functional gradient, with respect to variations of connection, is also conformally invariant. (This "uses" that the obvious bilinear form on $\operatorname{ad}(V)$ is non-degenerate.) The corresponding Euler-Lagrange equations are the Yang-Mills equations,

$$
\begin{equation*}
\delta^{A} F=0 \tag{2}
\end{equation*}
$$

and are thus conformally invariant as well. Here δ^{A} is the formal adjoint of d_{A}. NB: $A \mapsto \mathcal{S}(A)$ in (1) and $A \mapsto \delta^{A} F^{A}$ in (2) are conformal invariants of connections.

The conformal Yang-Mills system

We can now ask what are these invariants $\mathcal{S}(A)$ and $\delta_{A} F$ if we specialise to the case that A is the tractor connection - i.e.
$\nabla^{A}:=\nabla^{\mathcal{T}}$.
In fact we recover some old favourites.
Proposition:
Tractor YM action $=\mathcal{S}\left(\nabla^{\mathcal{T}}\right)=\int_{M}\left|F^{\nabla^{\mathcal{T}}}\right|^{2} d \mu_{g}=\int_{M}|W|^{2} d \mu_{g}=$ Bach action
and
Theorem:[Merkulov '84, G+Somberg+Soucek '08] The dim. 4 tractor Yang-Mills equations are exactly the Bach flat condition:

$$
\delta^{\nabla^{\mathcal{T}}} F^{\nabla^{\mathcal{T}}}=\left(0,0,0, B_{a c}\right)
$$

NB: The Theorem is not a trivial Corollary of the Proposition.
As the YM equations come from variation of the connection.

Higher dimensions ??

Q: Is it a dim 4 story only? Is there a picture like the above in higher dimensions?
There are candidates on the conformal side: The Fefferman-Graham obstruction tensor

$$
\mathcal{B}_{a c}=\Delta^{n / 2-2} \nabla^{b} \nabla^{d} W_{a b c d}+\text { lower order }
$$

generalises Bach to higher even dimensions n. It is the functional gradient wrt metric variations of

$$
\int_{M} Q^{g} d \mu^{g}, \quad \leftarrow \text { conf. invariant on closed } M
$$

where Q^{g} is Branson's Q-curvature [Graham-Hirachi]. NB: Under conformal transformations $Q^{\widehat{g}}=e^{-n \omega}\left(Q^{g}+P \omega\right)$, where
$P=\Delta^{n / 2}+$ lower order is the order n GJMS conformal Lapacian opertor.
Question: \exists Higher Yang-Mills? Higher conformal invariants of connections?

The Q_{2} operator

Now as mentioned above there are operators on closed differential forms that are analogues of Q-curvature:
Theorem [Branson+G CPDE] On $\left(M^{n}\right.$ even,$\left.g\right) n$ there are differential operators Q_{ℓ}^{g} of order $\ell=n-k$, for integers $0 \leq k \leq n / 2-1$ s.t. on closed k-forms

$$
e^{\ell \omega} Q_{\ell}^{\widehat{g}}=Q_{\ell}^{g}+\delta Q_{\ell-2}^{g} d \circ \omega
$$

E.g. $k=\frac{n}{2}-1$

$$
Q_{2} u=d \delta u-4 P \# u+2 J u .
$$

where again P is the Schouten tensor and J its metric trace. Because of its low order Q_{2} can be coupled to connections A :

$$
Q_{2}^{A} U=d_{A} \delta_{A} U-4 P \# U+2 J U . \quad \text { where } \quad d^{A} U=0
$$

Then under $g \mapsto \widehat{g}=e^{2 \omega} g$: Thm [Branson+G]:

$$
e^{2 \omega} \widehat{Q}_{2}^{A} U=Q_{2}^{A} U+2 \delta_{A} d_{A}(\omega U)
$$

where U is a $\otimes V$-valued $(n / 2-1)$-form that is d^{A}-closed.

Dimension 6

Given a connection A then in dimension $n=6$ its curvature F^{A} is d^{A}-closed $n / 2-1=2$-form (by Bianchi id.). Thus :

$$
Q^{A}:=\left\langle F^{A}, Q_{2}^{A} F^{A}\right\rangle
$$

transforms "like a Q-curvature". Under $g \mapsto \widehat{g}=e^{2 \omega} g$:

$$
Q_{\widehat{g}}^{A}=e^{-6 \omega}\left(Q_{g}^{A}+\delta F \circ F \wedge d \omega\right)
$$

where, as usual, most constants have been set to 1 and details are impressionistic. The measure transforms $d \mu_{\widehat{g}}=e^{6 \omega} d \mu_{\mathrm{g}}$ in dim. 6 . Thus on closed manifolds:

Theorem (G.+ Peterson+Sleigh)

$$
\mathcal{S}(A):=\int_{M} Q^{A} d \mu
$$

is conformally invariant and gauge invariant in dimension 6.

Higher Yang-Mills for dimension 6

We claim that

$$
\mathcal{S}(A):=\int_{M^{6}} Q^{A} d \mu
$$

is a suitable higher YM action energy for dimension 6! Some evidence is its functional gradient wrt variations of connection:

$$
\mathfrak{D}(A):=\delta_{A} Q_{2}^{A} F_{A}-\left[\delta_{A} F_{A}, F_{A}\right]=\delta_{A} d_{A} \delta_{A} F_{A}+\text { lower order. }
$$

Which has "the right" leading order terms. By construction:

Theorem (GPS)

$\mathfrak{D}(A)$ is conformally invariant and gauge invariant.
This is also easily verified directly. As a nice test when we take A to be the tractor connection we have:
Theorem (GPS)
$\mathfrak{D}\left(\nabla^{\mathcal{T}}\right)=\left(0,0,0, \mathcal{B}_{a c}\right)$, where \mathcal{B} is the Fefferman-Graham obstruction tensor.

Application: Einstein equations

The Fefferman-Graham obstruction tensor is the obstruction to smoothly formally solving for the so called Fefferman-Graham ambient metric associated to an even dim. conformal manifold. E.g. For a conformal 6 manifold this associates, at least formally, a dimension 8 Ricci flat manifold. But if the original even dimensional manifold is conformally Einstein then an "all orders" ambient metric exists, by an easy explicit construction. Thus: Theorem (FG): The Fefferman-Graham obstruction tensor $\mathcal{B}_{a c}$ vanishes on conformally Einstein manifolds.
So the FG obstruction-flat equations,

$$
\mathcal{B}_{a c}=0,
$$

are a conformal weakening of the Einstein equations.
Then:

- For dimension 4 this is a Yang-Mills equation on the Tractor connection.
- For dimension 6 this is a higher Yang-Mills equation on the Tractor connection $\mathfrak{D}\left(\nabla^{\mathcal{T}}\right)=0$.

Thank you for Linking in!

Thank you for Listening!

A conformally invariant Yang-Mills energy and equation on 6 -manifolds. The gauge field equations known as the Yang-Mills equations are extremely important in both mathematics and physics, and their conformal invariance in dimension 4 is a critical feature for many applications. In dimension 4, and when specialised to the Cartan/tractor connection, the Yang-Mills current recovers exactly the Bach tensor. This provides a nice link between the Yang-Mills equations and (for example) the conformally-Einstein condition.
We show that there is a simple and elegant route to higher order equations in dimension 6 that are analogous, and arise as the Euler-Lagrange equations of a conformally invariant action. The functional gradient of this action recovers the conformal
Fefferman-Graham obstruction tensor when the gauge connection is taken to be the conformal Cartan (or tractor) connection - so there is a nice analogy to the dimension 4 case. As well as providing evidence that these provide equations provide a good

