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Background: From SU(2) to SU(∞): Large N-limits -
replacing matrices by vector fields

Lax equations:

L1 =
∂

∂z1
+ ε−1A , L2 =

∂

∂z2
+ ε−1B ,

with A ,B ∈ g. Integrability condition/Frobenius integrability:

[Li ,Lj ] = 0

gives A = J−1∂z1J ,B = J−1∂z2J where J ∈ G and:

∂z1
(
J−1∂z2J

)
− ∂z2

(
J−1∂z1J

)
= 0

What happens for SU(N) as N →∞?
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Use the algebra of volume preserving diffeomorphisms of a surface
Σ2

L1 =
∂

∂z1
+ ε−1Hf , L2 =

∂

∂z2
+ ε−1Hg ,

where

Hf =
∂f

∂θ1

∂

∂θ2
− ∂f

∂θ2

∂

∂θ1

and [Hj ,Hg ] = H{f ,g} .

Then [L1,L2] = 0 implies there exists a function W such that
g = ∂z2W , f = ∂z1W where W satisfies

∂2W

∂θ1∂z1

∂2W

∂θ2∂z2
− ∂2W

∂θ1∂z2

∂2W

∂θ2∂z1
= 1
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This is Plebanski’s first heavenly equation. The function W is the
Kähler potential of a metric g .

• The metric is Ricci flat, with (anti)-self-dual Weyl tensor.

• Penrose non-linear graviton construction. There is a twistor
space T - fibred over P1 with normal bundle O(1)⊕O(1) .

Generalization:

• Normal bundle O(n1)⊕ . . .O(nN) .

• HyperKähler , hypercomplex, quaternionically Kähler. All in
4k-dimensions.

Aside:
If Σ2 = T2 then:{

volume preserving
diffeomorphism of T2

}
←→

{
automorphims of an

algebraic torus

}
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Donaldson-Thomas Invariants

Consider the algebra with basis xa
1xb

2 and with multiplication
(m ∈ N)

xa
1xb

2 · xc
1 xd

2 = (−1)m(ad−bc)xa+c
1 xb+d

2

Easy to check that the transformation Ta,b

x1 7→ x1 · (1− xa
1xb

2 )−mb , x2 7→ x2 · (1− xa
1xb

2 )ma

is an automorphism.

Theorem (Integrality conjecture/Reineke, Kontsevich & Soibelman)

There exists integers N(a, b) - called numerical Donaldson-Thomas
(DT) invariants such that

T1,0 · T0,1 =
∏
a
b
↑

T
N(a,b)
a,b

The product is over increasing values of a/b .
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Example

(m = 1) T1,0 · T0,1 = T0,1 · T1,1 · T1,0

Easily generalised:
Let 〈−,−〉 be a skew form on Γ ∼= Zr Define multiplication

xα · xβ = (−1)〈α,β〉xα+β

and automorphims

Tα : xβ 7→ xβ · (1− xα)〈α,β〉

and these transformation preserve the Poisson bracket

{xα, xβ} = 〈α, β〉xα · xβ .
This is best seem by first proving

Tα = Ad exp {−Li2(xα)} .

N.B. Connections to quivers: the original example is the
m-Kronecker quiver, and spaces of stability conditions.
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HyperKähler geometry and Donaldson-Thomas invariants

Key idea I (Joyce): combine DT-invariants into generating
functions, and see what differential equations they satisfy

dFγ =
∑

γ=α+β

[Fα,Fβ]d log Z (β)

Note:

“dΓ + 1
2Γ∧ Γ = 0 but we do not expect that dΓ = 0 and Γ∧ Γ = 0

as happens in the Gromov-Witten case, so we do not have a
1-parameter family of flat connections and a Frobenius manifold”

Key idea II (Bridgeland & Toledano Laredo): Interpret equations
as isomonodromy equations, with Stokes data coming from the
automorphism Tα
Key idea III (Bridgeland) Derive further set of conditions, together
with some algebraic conditions and homogeneity conditions.
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Bridgeland, Strachan

These equations define a (complex) hyperKähler metric on the
total space X = TM , with a conformal (homothetic) Killing vector
field

more precisely, a (strong) Joyce structure.

Integrable complex structure I , J ,K satisfying the quaterion
relations, dI = 0 etc., and

LE (g) = g , LE (I ) = 0, LE (J ± iK ) = ∓(J ± iK );
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HyperKähler geometry on X = TM and Plebanski’s 2nd

Heavenly equation

Let z i be local coordinates on M and let θi be natural linear
coordinates on TM,p (i = 1 , . . . , n)
Let ηij be a constant, non-degenerate, skew matrix with inverse ωij .

Plebanski’s second heavenly equation

Let W : X → C satisfy the equation

∂2W

∂θi∂zj
− ∂2W

∂θj∂zi
=
∑
p,q

ηpq
∂2W

∂θi∂θp

∂2W

∂θj∂θq
.

Then the metric on X = TM

g =
∑
i ,j

ωij(dθi ⊗ dzj + dzj ⊗ dθi )−
∂2W

∂θi∂θj
(dzi ⊗ dzj + dzj ⊗ dzi )

is hyperKähler.
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So we have complex structures I , J ,K satisfying the quaternionic
relations (I 2 = −1 , IJ = K etc, and dI = 0 etc.). The geometry is
best described in terms of horizontal and vertical vector fields:

vi =
∂

∂θi
, hi =

∂

∂zi
+
∑
p,q

ηpq
∂2W

∂θi∂θp

∂

∂θq

and the structure are defined by:

I (vj) = i · vj , J(vj) = hj , K (vj) = −ihj ,

I (hj) = −i · hj , J(hj) = −vj , K (hj) = −ivj .

g(vi , vj) = 0, g(vi , hj) = ωij , g(hi , hj) = 0.

With these the Lax equations [Li ,Lj ] = 0 where Li = hi + ε−1vi .
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The main part of the construction is that the holomophic 2-form

Ω−(v ,w) = g(v , (J − iK )w)

on X is the pull-back via the natural projection π : X → M of a
holomorphic sympletic form ω = ωijdxi ∧ dxj .
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Consider the ansatz:

W (z, θ) =
∑
α

Fα(z)eθ(α)

z(α)
.

In terms of an Euler operator

E =
∑

zi
∂

∂zi

Joyce showed E (Fα) = 0. And easy to show that E (W ) = −W is
equivalent to the geometric condition LEg = g .

The second
heavenly equation then implies

dFγ =
∑

α+β=γ

[Fα,Fβ]d log z(β)

which is the isomonodromy deformation condition for

d

dε
−
(

z

ε2
+

HamF

ε

)
.

This has an irregular pole at ε = 0 and an regular singularity at
ε =∞ . So we have a Riemann-Hilbert problem
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Riemann-Hilbert Problems

Lie group G and associated Lie algebra g ∼= h⊕ god and
HamF ∈ god , z ∈ h .

Properties:

• Stokes rays/Walls l coming from coincident values in z ;

• For a non-Stokes ray r can solve (Balser, Jurkat, Lutz) - with
appropriate boundary conditions as ε→ 0 to get a
holomorphic function

Ψr (ε) : Hr → G ;

• Stokes factors: for ε ∈ Hr1 ∩Hr2

Ψr2(ε) = Ψr1(ε)S(∆)

where ∆ is a region bounded by non-Stokes rays, which may
contain Stokes rays l and S(∆) =

∏
S(l)
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Essential feature:

S(l) = exp
(∑

DT (γ)xγ
)

and these are the automorphisms of the torus T .

Programme

quiver/stability conditions
l

DT invariants, automorphims Tα
l

Stokes data : solve Riemann Hilbert problem
l

Construct Fα
l

(complex) hyperK ähler metric
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Open Problems & Comments

• A lot of work, even for the A2 quiver!

• What about ε→∞ and the Riemann-Hilbert problem across
the regions around 0 and ∞?

• Is there a direct construction from the quiver to the twistor
space?

• What about quantum DT invariants?
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Unsolved problems: What about the KP hierarchy?

Twistor theory (via curved twistor spaces) works beautifully for the
dispersionless KP equation:

(ut + uux)x + uyy = 0

but not for the full (dispersive) KP equation:

(ut + uux + ~uxxx)x + uyy = 0

Deformation quantization

Think of the KP equation as an integrable deformation of the
dispersionless KP equation

Idea: replace sdiff Σ2 by the Moyal algebra/pseudo-differential
operators.
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Deformations of hyperKähler geometry and qDT invariants

Return to the start: nonlinear terms come from a Poisson bracket.
Such brackets may be deformed.

Define the operator (where the arrows show which direction the
derivatives are to be taken)

P = exp

[
i~
2
ηij
←
∂
∂θi

→
∂
∂θi

]
.

With this, one defines the associative product f ∗ g = fPg and the
Moyal bracket

{f , g}M =
f ∗ g − g ∗ f

~
= {f , g}+

∑
r

~2r{f , g}(r) ,

One can also introduce differential operators Ĥf - with higher
derivatives (formally, as these are to all orders) that are
deformations of Hamiltonian vector fields, and have the property

[Ĥf , Ĥg ] = Ĥ{f ,g}M

where the l.h.s. is commutator of operators.
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Moyal bracket

{f , g}M =
f ∗ g − g ∗ f

~
= {f , g}+

∑
r

~2r{f , g}(r) ,

One can also introduce differential operators Ĥf - with higher
derivatives (formally, as these are to all orders) that are
deformations of Hamiltonian vector fields, and have the property

[Ĥf , Ĥg ] = Ĥ{f ,g}M

where the l.h.s. is commutator of operators.
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Deformations of integrable systems

Replace Hamiltonian vector fields in Lax equations with the
operators Ĥf

Example

Plebanski’s first heavenly equation:{
∂W

∂z i
,
∂W

∂z j

}
M

= 1 .

Plebanski’s second heavenly equation:

∂2W

∂zi∂θj
− ∂2W

∂zj∂θi
=

{
∂W

∂θi
,
∂W

∂θi

}
M

,
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In terms of a torus basis,

{eθ(α), eθ(β)}M =
2

~

{
e

+i~<α,β>
2 − e

−i~<α,β>
2

2i

}
eθ(α+β) ,

=
2

~
sin

[
~ < α, β >

2

]
eθ(α+β) ,

=
1

i~

[
(−q

1
2 )<α,β> − (−q−

1
2 )<α,β>

]
eθ(α+β) .

Let L = e i~ and q = e i(~+2π). And,

lim
~→0
{eθ(α), eθ(β)}M =< α, β > eθ(α+β) .

Two names: sine-algebra or the quantum torus algebra. Or, using
the ∗-product, just

eθ(α) ∗ eθ(β) = (−q
1
2 )<α,β>eθ(α+β) .
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With the ansatz

W =
∑
α

Fα(z)
eθ(α)

z(α)

with Fα of degree zero, you get the isomonodromy equation

dFγ =
∑

α+β=γ

1

i~

{
L

1
2
<α,β> − L−

1
2
<α,β>

}
FαFβd log z(β) .

Same idea: quantum dilogarithms, qDT invariants and
automorphism of the quantum torus gives Stokes matrices, and the
functions Fα .
But where is the geometry? What are q-deformations of
hyperKähler geometry, and q-deformations of twistor theory.
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