# Twistor Theory and Donaldson-Thomas invariants 

Ian Strachan<br>(joint with Tom Bridgeland: Lett.Math.Phys (2021) 111:54)

$28^{\text {th }}$ September, 2021


First Meeting

## Physics Letters A

# Nonlinear Schrödinger and korteweg-de Vries are reductions of self-dual YangMills 

L.J. Mason ${ }^{1,2,3}$, G.A.J. Sparling ${ }^{3}$

Show more $\checkmark$
$\infty_{0}^{\infty}$ Share Cite
https://doi.org/10.1016/0375-9601(89)90964-X
Get rights and content

## Background: From SU(2) to $\operatorname{SU}(\infty)$ : Large $N$-limits replacing matrices by vector fields

Lax equations:

$$
\mathcal{L}_{1}=\frac{\partial}{\partial z_{1}}+\varepsilon^{-1} A, \quad \mathcal{L}_{2}=\frac{\partial}{\partial z_{2}}+\varepsilon^{-1} B
$$

with $A, B \in \mathfrak{g}$. Integrability condition/Frobenius integrability:

$$
\left[\mathcal{L}_{i}, \mathcal{L}_{j}\right]=0
$$

gives $A=J^{-1} \partial_{z_{1}} J, B=J^{-1} \partial_{z_{2}} J$ where $J \in G$ and:

$$
\partial_{z_{1}}\left(J^{-1} \partial_{z_{2}} J\right)-\partial_{z_{2}}\left(J^{-1} \partial_{z_{1}} J\right)=0
$$

What happens for $S U(N)$ as $N \rightarrow \infty$ ?

Use the algebra of volume preserving diffeomorphisms of a surface $\Sigma^{2}$

$$
\mathcal{L}_{1}=\frac{\partial}{\partial z_{1}}+\varepsilon^{-1} H_{f}, \quad \mathcal{L}_{2}=\frac{\partial}{\partial z_{2}}+\varepsilon^{-1} H_{g}
$$

where

$$
H_{f}=\frac{\partial f}{\partial \theta_{1}} \frac{\partial}{\partial \theta_{2}}-\frac{\partial f}{\partial \theta_{2}} \frac{\partial}{\partial \theta_{1}}
$$

and $\left[H_{j}, H_{g}\right]=H_{\{f, g\}}$.

Use the algebra of volume preserving diffeomorphisms of a surface $\Sigma^{2}$

$$
\mathcal{L}_{1}=\frac{\partial}{\partial z_{1}}+\varepsilon^{-1} H_{f}, \quad \mathcal{L}_{2}=\frac{\partial}{\partial z_{2}}+\varepsilon^{-1} H_{g}
$$

where

$$
H_{f}=\frac{\partial f}{\partial \theta_{1}} \frac{\partial}{\partial \theta_{2}}-\frac{\partial f}{\partial \theta_{2}} \frac{\partial}{\partial \theta_{1}}
$$

and $\left[H_{j}, H_{g}\right]=H_{\{f, g\}}$.
Then $\left[\mathcal{L}_{1}, \mathcal{L}_{2}\right]=0$ implies there exists a function $W$ such that $g=\partial_{z_{2}} W, f=\partial_{z_{1}} W$ where $W$ satisfies

$$
\frac{\partial^{2} W}{\partial \theta_{1} \partial z_{1}} \frac{\partial^{2} W}{\partial \theta_{2} \partial z_{2}}-\frac{\partial^{2} W}{\partial \theta_{1} \partial z_{2}} \frac{\partial^{2} W}{\partial \theta_{2} \partial z_{1}}=1
$$

This is Plebanski's first heavenly equation. The function $W$ is the Kähler potential of a metric $g$.

- The metric is Ricci flat, with (anti)-self-dual Weyl tensor.
- Penrose non-linear graviton construction. There is a twistor space $\mathcal{T}$ - fibred over $\mathbb{P}^{1}$ with normal bundle $\mathcal{O}(1) \oplus \mathcal{O}(1)$.

This is Plebanski's first heavenly equation. The function $W$ is the Kähler potential of a metric $g$.

- The metric is Ricci flat, with (anti)-self-dual Weyl tensor.
- Penrose non-linear graviton construction. There is a twistor space $\mathcal{T}$ - fibred over $\mathbb{P}^{1}$ with normal bundle $\mathcal{O}(1) \oplus \mathcal{O}(1)$.

Generalization:

- Normal bundle $\mathcal{O}\left(n_{1}\right) \oplus \ldots \mathcal{O}\left(n_{N}\right)$.
- HyperKähler, hypercomplex, quaternionically Kähler. All in $4 k$-dimensions.

This is Plebanski's first heavenly equation. The function $W$ is the Kähler potential of a metric $g$.

- The metric is Ricci flat, with (anti)-self-dual Weyl tensor.
- Penrose non-linear graviton construction. There is a twistor space $\mathcal{T}$ - fibred over $\mathbb{P}^{1}$ with normal bundle $\mathcal{O}(1) \oplus \mathcal{O}(1)$.

Generalization:

- Normal bundle $\mathcal{O}\left(n_{1}\right) \oplus \ldots \mathcal{O}\left(n_{N}\right)$.
- HyperKähler, hypercomplex, quaternionically Kähler. All in $4 k$-dimensions.

Aside:
If $\Sigma^{2}=\mathbb{T}^{2}$ then:
$\left\{\begin{array}{c}\text { volume preserving } \\ \text { diffeomorphism of } \mathbb{T}^{2}\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}\text { automorphims of an } \\ \text { algebraic torus }\end{array}\right\}$

## Donaldson-Thomas Invariants

Consider the algebra with basis $x_{1}^{a} x_{2}^{b}$ and with multiplication $(m \in \mathbb{N})$

$$
x_{1}^{a} x_{2}^{b} \cdot x_{1}^{c} x_{2}^{d}=(-1)^{m(a d-b c)} x_{1}^{a+c} x_{2}^{b+d}
$$

Easy to check that the transformation $T_{a, b}$

$$
x_{1} \mapsto x_{1} \cdot\left(1-x_{1}^{a} x_{2}^{b}\right)^{-m b}, \quad x_{2} \mapsto x_{2} \cdot\left(1-x_{1}^{a} x_{2}^{b}\right)^{m a}
$$

is an automorphism.

## Donaldson-Thomas Invariants

Consider the algebra with basis $x_{1}^{a} x_{2}^{b}$ and with multiplication $(m \in \mathbb{N})$

$$
x_{1}^{a} x_{2}^{b} \cdot x_{1}^{c} x_{2}^{d}=(-1)^{m(a d-b c)} x_{1}^{a+c} x_{2}^{b+d}
$$

Easy to check that the transformation $T_{a, b}$

$$
x_{1} \mapsto x_{1} \cdot\left(1-x_{1}^{a} x_{2}^{b}\right)^{-m b}, \quad x_{2} \mapsto x_{2} \cdot\left(1-x_{1}^{a} x_{2}^{b}\right)^{m a}
$$

is an automorphism.
Theorem (Integrality conjecture/Reineke, Kontsevich \& Soibelman)
There exists integers $N(a, b)$ - called numerical Donaldson-Thomas (DT) invariants such that

$$
T_{1,0} \cdot T_{0,1}=\prod_{\frac{\partial}{b} \uparrow} T_{a, b}^{N(a, b)}
$$

The product is over increasing values of $a / b$.

Example
$(m=1) T_{1,0} \cdot T_{0,1}=T_{0,1} \cdot T_{1,1} \cdot T_{1,0}$

Example

$$
(m=1) T_{1,0} \cdot T_{0,1}=T_{0,1} \cdot T_{1,1} \cdot T_{1,0}
$$

Easily generalised:
Let $\langle-,-\rangle$ be a skew form on $\Gamma \cong \mathbb{Z}^{r}$ Define multiplication

$$
x^{\alpha} \cdot x^{\beta}=(-1)^{\langle\alpha, \beta\rangle} x^{\alpha+\beta}
$$

and automorphims

$$
T_{\alpha}: x^{\beta} \mapsto x^{\beta} \cdot\left(1-x^{\alpha}\right)^{\langle\alpha, \beta\rangle}
$$

Example
$(m=1) T_{1,0} \cdot T_{0,1}=T_{0,1} \cdot T_{1,1} \cdot T_{1,0}$
Easily generalised:
Let $\langle-,-\rangle$ be a skew form on $\Gamma \cong \mathbb{Z}^{r}$ Define multiplication

$$
x^{\alpha} \cdot x^{\beta}=(-1)^{\langle\alpha, \beta\rangle} x^{\alpha+\beta}
$$

and automorphims

$$
T_{\alpha}: x^{\beta} \mapsto x^{\beta} \cdot\left(1-x^{\alpha}\right)^{\langle\alpha, \beta\rangle}
$$

and these transformation preserve the Poisson bracket

$$
\left\{x^{\alpha}, x^{\beta}\right\}=\langle\alpha, \beta\rangle x^{\alpha} \cdot x^{\beta}
$$

This is best seem by first proving

$$
T_{\alpha}=A d \exp \left\{-L i_{2}\left(x^{\alpha}\right)\right\}
$$

Example

$$
(m=1) T_{1,0} \cdot T_{0,1}=T_{0,1} \cdot T_{1,1} \cdot T_{1,0}
$$

Easily generalised:
Let $\langle-,-\rangle$ be a skew form on $\Gamma \cong \mathbb{Z}^{r}$ Define multiplication

$$
x^{\alpha} \cdot x^{\beta}=(-1)^{\langle\alpha, \beta\rangle} x^{\alpha+\beta}
$$

and automorphims

$$
T_{\alpha}: x^{\beta} \mapsto x^{\beta} \cdot\left(1-x^{\alpha}\right)^{\langle\alpha, \beta\rangle}
$$

and these transformation preserve the Poisson bracket

$$
\left\{x^{\alpha}, x^{\beta}\right\}=\langle\alpha, \beta\rangle x^{\alpha} \cdot x^{\beta}
$$

This is best seem by first proving

$$
T_{\alpha}=A d \exp \left\{-L i_{2}\left(x^{\alpha}\right)\right\}
$$

N.B. Connections to quivers: the original example is the $m$-Kronecker quiver, and spaces of stability conditions.

Key idea I (Joyce): combine DT-invariants into generating functions, and see what differential equations they satisfy

$$
d F_{\gamma}=\sum_{\gamma=\alpha+\beta}\left[F_{\alpha}, F_{\beta}\right] d \log Z(\beta)
$$

Note:
" $d \Gamma+\frac{1}{2} \Gamma \wedge \Gamma=0$ but we do not expect that $d \Gamma=0$ and $\Gamma \wedge \Gamma=0$ as happens in the Gromov-Witten case, so we do not have a 1-parameter family of flat connections and a Frobenius manifold"

Key idea I (Joyce): combine DT-invariants into generating functions, and see what differential equations they satisfy

$$
d F_{\gamma}=\sum_{\gamma=\alpha+\beta}\left[F_{\alpha}, F_{\beta}\right] d \log Z(\beta)
$$

Note:
" $d \Gamma+\frac{1}{2} \Gamma \wedge \Gamma=0$ but we do not expect that $d \Gamma=0$ and $\Gamma \wedge \Gamma=0$ as happens in the Gromov-Witten case, so we do not have a 1-parameter family of flat connections and a Frobenius manifold" Key idea II (Bridgeland \& Toledano Laredo): Interpret equations as isomonodromy equations, with Stokes data coming from the automorphism $T_{\alpha}$

## HyperKähler geometry and Donaldson-Thomas invariants

Key idea I (Joyce): combine DT-invariants into generating functions, and see what differential equations they satisfy

$$
d F_{\gamma}=\sum_{\gamma=\alpha+\beta}\left[F_{\alpha}, F_{\beta}\right] d \log Z(\beta)
$$

Note:
$" d \Gamma+\frac{1}{2} \Gamma \wedge \Gamma=0$ but we do not expect that $d \Gamma=0$ and $\Gamma \wedge \Gamma=0$ as happens in the Gromov-Witten case, so we do not have a 1-parameter family of flat connections and a Frobenius manifold" Key idea II (Bridgeland \& Toledano Laredo): Interpret equations as isomonodromy equations, with Stokes data coming from the automorphism $T_{\alpha}$
Key idea III (Bridgeland) Derive further set of conditions, together with some algebraic conditions and homogeneity conditions.

## Bridgeland, Strachan

These equations define a (complex) hyperKähler metric on the total space $X=\mathcal{T}_{M}$, with a conformal (homothetic) Killing vector field
more precisely, a (strong) Joyce structure.

## Bridgeland, Strachan

These equations define a (complex) hyperKähler metric on the total space $X=\mathcal{T}_{M}$, with a conformal (homothetic) Killing vector field
more precisely, a (strong) Joyce structure.
Integrable complex structure $I, J, K$ satisfying the quaterion relations, $d l=0$ etc., and

$$
\mathcal{L}_{E}(g)=g, \quad \mathcal{L}_{E}(I)=0, \quad \mathcal{L}_{E}(J \pm i K)=\mp(J \pm i K) ;
$$

## HyperKähler geometry on $X=\mathcal{T}_{M}$ and Plebanski's $2^{\text {nd }}$ Heavenly equation

Let $z^{i}$ be local coordinates on $M$ and let $\theta^{i}$ be natural linear coordinates on $\mathcal{T}_{M, p}(i=1, \ldots, n)$
Let $\eta^{i j}$ be a constant, non-degenerate, skew matrix with inverse $\omega_{i j}$.

## HyperKähler geometry on $X=\mathcal{T}_{M}$ and Plebanski's $2^{\text {nd }}$

 Heavenly equationLet $z^{i}$ be local coordinates on $M$ and let $\theta^{i}$ be natural linear coordinates on $\mathcal{T}_{M, p}(i=1, \ldots, n)$
Let $\eta^{i j}$ be a constant, non-degenerate, skew matrix with inverse $\omega_{i j}$.

## Plebanski's second heavenly equation

Let $W: X \rightarrow \mathbb{C}$ satisfy the equation

$$
\frac{\partial^{2} W}{\partial \theta_{i} \partial z_{j}}-\frac{\partial^{2} W}{\partial \theta_{j} \partial z_{i}}=\sum_{p, q} \eta^{p q} \frac{\partial^{2} W}{\partial \theta_{i} \partial \theta_{p}} \frac{\partial^{2} W}{\partial \theta_{j} \partial \theta_{q}}
$$

Then the metric on $X=\mathcal{T}_{M}$
$g=\sum_{i, j} \omega_{i j}\left(d \theta_{i} \otimes d z_{j}+d z_{j} \otimes d \theta_{i}\right)-\frac{\partial^{2} W}{\partial \theta_{i} \partial \theta_{j}}\left(d z_{i} \otimes d z_{j}+d z_{j} \otimes d z_{i}\right)$
is hyperKähler.

So we have complex structures $I, J, K$ satisfying the quaternionic relations ( $I^{2}=-1, I J=K$ etc, and $d l=0$ etc.). The geometry is best described in terms of horizontal and vertical vector fields:

$$
v_{i}=\frac{\partial}{\partial \theta_{i}}, \quad h_{i}=\frac{\partial}{\partial z_{i}}+\sum_{p, q} \eta^{p q} \frac{\partial^{2} W}{\partial \theta_{i} \partial \theta_{p}} \frac{\partial}{\partial \theta_{q}}
$$

So we have complex structures $I, J, K$ satisfying the quaternionic relations ( $I^{2}=-1, I J=K$ etc, and $d I=0$ etc.). The geometry is best described in terms of horizontal and vertical vector fields:

$$
v_{i}=\frac{\partial}{\partial \theta_{i}}, \quad h_{i}=\frac{\partial}{\partial z_{i}}+\sum_{p, q} \eta^{p q} \frac{\partial^{2} W}{\partial \theta_{i} \partial \theta_{p}} \frac{\partial}{\partial \theta_{q}}
$$

and the structure are defined by:

$$
\begin{array}{crr}
I\left(v_{j}\right)=i \cdot v_{j}, & J\left(v_{j}\right)=h_{j}, & K\left(v_{j}\right)=-i h_{j}, \\
I\left(h_{j}\right)=-i \cdot h_{j}, & J\left(h_{j}\right)=-v_{j}, & K\left(h_{j}\right)=-i v_{j} . \\
g\left(v_{i}, v_{j}\right)=0, & g\left(v_{i}, h_{j}\right)=\omega_{i j}, & g\left(h_{i}, h_{j}\right)=0 .
\end{array}
$$

With these the Lax equations $\left[\mathcal{L}_{i}, \mathcal{L}_{j}\right]=0$ where $\mathcal{L}_{i}=h_{i}+\varepsilon^{-1} v_{i}$.

So we have complex structures $I, J, K$ satisfying the quaternionic relations ( $I^{2}=-1, I J=K$ etc, and $d I=0$ etc.). The geometry is best described in terms of horizontal and vertical vector fields:

$$
v_{i}=\frac{\partial}{\partial \theta_{i}}, \quad h_{i}=\frac{\partial}{\partial z_{i}}+\sum_{p, q} \eta^{p q} \frac{\partial^{2} W}{\partial \theta_{i} \partial \theta_{p}} \frac{\partial}{\partial \theta_{q}}
$$

and the structure are defined by:

$$
\begin{array}{crr}
I\left(v_{j}\right)=i \cdot v_{j}, & J\left(v_{j}\right)=h_{j}, & K\left(v_{j}\right)=-i h_{j}, \\
I\left(h_{j}\right)=-i \cdot h_{j}, & J\left(h_{j}\right)=-v_{j}, & K\left(h_{j}\right)=-i v_{j} . \\
g\left(v_{i}, v_{j}\right)=0, & g\left(v_{i}, h_{j}\right)=\omega_{i j}, & g\left(h_{i}, h_{j}\right)=0 .
\end{array}
$$

With these the Lax equations $\left[\mathcal{L}_{i}, \mathcal{L}_{j}\right]=0$ where $\mathcal{L}_{i}=h_{i}+\varepsilon^{-1} v_{i}$.

The main part of the construction is that the holomophic 2-form

$$
\Omega_{-}(v, w)=g(v,(J-i K) w)
$$

on $X$ is the pull-back via the natural projection $\pi: X \rightarrow M$ of a holomorphic sympletic form $\omega=\omega_{i j} d x_{i} \wedge d x_{j}$.

Consider the ansatz:

$$
W(\mathbf{z}, \theta)=\sum_{\alpha} \frac{F_{\alpha}(\mathbf{z}) e^{\theta(\alpha)}}{\mathbf{z}(\alpha)}
$$

In terms of an Euler operator

$$
E=\sum z_{i} \frac{\partial}{\partial z_{i}}
$$

Joyce showed $E\left(F_{\alpha}\right)=0$. And easy to show that $E(W)=-W$ is equivalent to the geometric condition $\mathcal{L}_{E} g=g$.

Consider the ansatz:

$$
W(\mathbf{z}, \theta)=\sum_{\alpha} \frac{F_{\alpha}(\mathbf{z}) e^{\theta(\alpha)}}{\mathbf{z}(\alpha)}
$$

In terms of an Euler operator

$$
E=\sum z_{i} \frac{\partial}{\partial z_{i}}
$$

Joyce showed $E\left(F_{\alpha}\right)=0$. And easy to show that $E(W)=-W$ is equivalent to the geometric condition $\mathcal{L}_{E} g=g$. The second heavenly equation then implies

$$
d F_{\gamma}=\sum_{\alpha+\beta=\gamma}\left[F_{\alpha}, F_{\beta}\right] d \log z(\beta)
$$

which is the isomonodromy deformation condition for

$$
\frac{d}{d \varepsilon}-\left(\frac{z}{\epsilon^{2}}+\frac{H a m_{F}}{\varepsilon}\right)
$$

This has an irregular pole at $\varepsilon=0$ and an regular singularity at $\varepsilon=\infty$. So we have a Riemann-Hilbert problem

## Riemann-Hilbert Problems

Lie group $G$ and associated Lie algebra $\mathfrak{g} \cong \mathfrak{h} \oplus \mathfrak{g}^{\text {od }}$ and $\operatorname{Ham}_{F} \in \mathfrak{g}^{\text {od }}, z \in \mathfrak{h}$.

## Riemann-Hilbert Problems

Lie group $G$ and associated Lie algebra $\mathfrak{g} \cong \mathfrak{h} \oplus \mathfrak{g}^{\text {od }}$ and $\operatorname{Ham}_{F} \in \mathfrak{g}^{\text {od }}, z \in \mathfrak{h}$. Properties:

## Riemann-Hilbert Problems

Lie group $G$ and associated Lie algebra $\mathfrak{g} \cong \mathfrak{h} \oplus \mathfrak{g}^{\text {od }}$ and $\operatorname{Ham}_{F} \in \mathfrak{g}^{\text {od }}, z \in \mathfrak{h}$. Properties:

- Stokes rays/Walls / coming from coincident values in $z$;


## Riemann-Hilbert Problems

Lie group $G$ and associated Lie algebra $\mathfrak{g} \cong \mathfrak{h} \oplus \mathfrak{g}^{\text {od }}$ and $\operatorname{Ham}_{F} \in \mathfrak{g}^{\text {od }}, z \in \mathfrak{h}$. Properties:

- Stokes rays/Walls / coming from coincident values in $z$;
- For a non-Stokes ray $r$ can solve (Balser, Jurkat, Lutz) - with appropriate boundary conditions as $\varepsilon \rightarrow 0$ to get a holomorphic function

$$
\Psi_{r}(\varepsilon): \mathbb{H}_{r} \rightarrow G ;
$$

## Riemann-Hilbert Problems

Lie group $G$ and associated Lie algebra $\mathfrak{g} \cong \mathfrak{h} \oplus \mathfrak{g}^{\text {od }}$ and $\operatorname{Ham}_{F} \in \mathfrak{g}^{\text {od }}, z \in \mathfrak{h}$. Properties:

- Stokes rays/Walls / coming from coincident values in z;
- For a non-Stokes ray $r$ can solve (Balser, Jurkat, Lutz) - with appropriate boundary conditions as $\varepsilon \rightarrow 0$ to get a holomorphic function

$$
\Psi_{r}(\varepsilon): \mathbb{H}_{r} \rightarrow G ;
$$

- Stokes factors: for $\varepsilon \in \mathbb{H}_{r_{1}} \cap \mathbb{H}_{r_{2}}$

$$
\Psi_{r_{2}}(\varepsilon)=\Psi_{r_{1}}(\varepsilon) \mathbb{S}(\Delta)
$$

where $\Delta$ is a region bounded by non-Stokes rays, which may contain Stokes rays $I$ and $\mathbb{S}(\Delta)=\prod \mathbb{S}(I)$

## Essential feature:

$$
\mathbb{S}(I)=\exp \left(\sum D T(\gamma) x^{\gamma}\right)
$$

and these are the automorphisms of the torus $\mathbb{T}$.

Essential feature:

$$
\mathbb{S}(I)=\exp \left(\sum D T(\gamma) x^{\gamma}\right)
$$

and these are the automorphisms of the torus $\mathbb{T}$.

## Programme

quiver/stability conditions
$\downarrow$
DT invariants, automorphims $T_{\alpha}$
$\downarrow$
Stokes data: solve Riemann Hilbert problem
$\downarrow$
Construct $F_{\alpha}$
$\downarrow$
(complex) hyperKähler metric

## Open Problems \& Comments

- A lot of work, even for the $A_{2}$ quiver!
- What about $\varepsilon \rightarrow \infty$ and the Riemann-Hilbert problem across the regions around 0 and $\infty$ ?
- Is there a direct construction from the quiver to the twistor space?


## Open Problems \& Comments

- A lot of work, even for the $A_{2}$ quiver!
- What about $\varepsilon \rightarrow \infty$ and the Riemann-Hilbert problem across the regions around 0 and $\infty$ ?
- Is there a direct construction from the quiver to the twistor space?
- What about quantum DT invariants?


## Unsolved problems: What about the KP hierarchy?

Twistor theory (via curved twistor spaces) works beautifully for the dispersionless KP equation:

$$
\left(u_{t}+u u_{x}\right)_{x}+u_{y y}=0
$$

but not for the full (dispersive) KP equation:

$$
\left(u_{t}+u u_{x}+\hbar u_{x x x}\right)_{x}+u_{y y}=0
$$

## Unsolved problems: What about the KP hierarchy?

Twistor theory (via curved twistor spaces) works beautifully for the dispersionless KP equation:

$$
\left(u_{t}+u u_{x}\right)_{x}+u_{y y}=0
$$

but not for the full (dispersive) KP equation:

$$
\left(u_{t}+u u_{x}+\hbar u_{x x x}\right)_{x}+u_{y y}=0
$$

## Deformation quantization

Think of the KP equation as an integrable deformation of the dispersionless KP equation

## Unsolved problems: What about the KP hierarchy?

Twistor theory (via curved twistor spaces) works beautifully for the dispersionless KP equation:

$$
\left(u_{t}+u u_{x}\right)_{x}+u_{y y}=0
$$

but not for the full (dispersive) KP equation:

$$
\left(u_{t}+u u_{x}+\hbar u_{x x x}\right)_{x}+u_{y y}=0
$$

## Deformation quantization

Think of the KP equation as an integrable deformation of the dispersionless KP equation

Idea: replace sdiff $\Sigma^{2}$ by the Moyal algebra/pseudo-differential operators.

# Deformations of hyperKähler geometry and qDT invariants 

Return to the start: nonlinear terms come from a Poisson bracket. Such brackets may be deformed.

## Deformations of hyperKähler geometry and qDT invariants

Return to the start: nonlinear terms come from a Poisson bracket. Such brackets may be deformed.
Define the operator (where the arrows show which direction the derivatives are to be taken)

$$
P=\exp \left[\frac{i \hbar}{2} \eta^{i j} \frac{\overleftarrow{\partial}}{\partial \theta^{i}} \frac{\vec{\partial}}{\partial \theta^{i}}\right]
$$

With this, one defines the associative product $f * g=f P g$ and the Moyal bracket

$$
\{f, g\}_{M}=\frac{f * g-g * f}{\hbar}=\{f, g\}+\sum_{r} \hbar^{2 r}\{f, g\}^{(r)}
$$

## Deformations of hyperKähler geometry and qDT invariants

Return to the start: nonlinear terms come from a Poisson bracket. Such brackets may be deformed.
Define the operator (where the arrows show which direction the derivatives are to be taken)

$$
P=\exp \left[\frac{i \hbar}{2} \eta^{i j} \frac{\overleftarrow{\partial}}{\partial \theta^{i}} \frac{\vec{\partial}}{\partial \theta^{i}}\right]
$$

With this, one defines the associative product $f * g=f P g$ and the Moyal bracket

$$
\{f, g\}_{M}=\frac{f * g-g * f}{\hbar}=\{f, g\}+\sum_{r} \hbar^{2 r}\{f, g\}^{(r)}
$$

One can also introduce differential operators $\hat{H}_{f}$ - with higher derivatives (formally, as these are to all orders) that are deformations of Hamiltonian vector fields, and have the property

$$
\left[\hat{H}_{f}, \hat{H}_{g}\right]=\hat{H}_{\{f, g\}_{M}}
$$

where the I.h.s. is commutator of operators.

## Deformations of integrable systems

Replace Hamiltonian vector fields in Lax equations with the operators $\hat{H}_{f}$

## Deformations of integrable systems

Replace Hamiltonian vector fields in Lax equations with the operators $\hat{H}_{f}$

## Example

Plebanski's first heavenly equation:

$$
\left\{\frac{\partial W}{\partial z^{i}}, \frac{\partial W}{\partial z^{j}}\right\}_{M}=1
$$

Plebanski's second heavenly equation:

$$
\frac{\partial^{2} W}{\partial z_{i} \partial \theta_{j}}-\frac{\partial^{2} W}{\partial z_{j} \partial \theta_{i}}=\left\{\frac{\partial W}{\partial \theta_{i}}, \frac{\partial W}{\partial \theta_{i}}\right\}_{M}
$$

In terms of a torus basis,

$$
\begin{aligned}
\left\{e^{\theta(\alpha)}, e^{\theta(\beta)}\right\}_{M} & =\frac{2}{\hbar}\left\{\frac{e^{\frac{+i \hbar<\alpha, \beta>}{2}}-e^{\frac{-i \hbar<\alpha, \beta>}{2}}}{2 i}\right\} e^{\theta(\alpha+\beta)} \\
& =\frac{2}{\hbar} \sin \left[\frac{\hbar<\alpha, \beta>}{2}\right] e^{\theta(\alpha+\beta)} \\
& =\frac{1}{i \hbar}\left[\left(-q^{\frac{1}{2}}\right)^{<\alpha, \beta>}-\left(-q^{-\frac{1}{2}}\right)^{<\alpha, \beta>}\right] e^{\theta(\alpha+\beta)}
\end{aligned}
$$

In terms of a torus basis,

$$
\begin{aligned}
\left\{e^{\theta(\alpha)}, e^{\theta(\beta)}\right\}_{M} & =\frac{2}{\hbar}\left\{\frac{e^{\frac{+i \hbar<\alpha, \beta>}{2}}-e^{-\frac{-i \hbar<\alpha, \beta>}{2}}}{2 i}\right\} e^{\theta(\alpha+\beta)} \\
& =\frac{2}{\hbar} \sin \left[\frac{\hbar<\alpha, \beta>}{2}\right] e^{\theta(\alpha+\beta)} \\
& =\frac{1}{i \hbar}\left[\left(-q^{\frac{1}{2}}\right)^{<\alpha, \beta>}-\left(-q^{-\frac{1}{2}}\right)^{<\alpha, \beta>}\right] e^{\theta(\alpha+\beta)}
\end{aligned}
$$

$$
\text { Let } \mathbb{L}=e^{i \hbar} \text { and } q=e^{i(\hbar+2 \pi)} \text {. And, }
$$

$$
\lim _{\hbar \rightarrow 0}\left\{e^{\theta(\alpha)}, e^{\theta(\beta)}\right\}_{M}=<\alpha, \beta>e^{\theta(\alpha+\beta)} .
$$

Two names: sine-algebra or the quantum torus algebra. Or, using the $*$-product, just

$$
e^{\theta(\alpha)} * e^{\theta(\beta)}=\left(-q^{\frac{1}{2}}\right)^{<\alpha, \beta>} e^{\theta(\alpha+\beta)}
$$

With the ansatz

$$
W=\sum_{\alpha} F_{\alpha}(z) \frac{e^{\theta(\alpha)}}{z(\alpha)}
$$

with $F_{\alpha}$ of degree zero, you get the isomonodromy equation

$$
d F_{\gamma}=\sum_{\alpha+\beta=\gamma} \frac{1}{i \hbar}\left\{\mathbb{L}^{\frac{1}{2}<\alpha, \beta>}-\mathbb{L}^{-\frac{1}{2}<\alpha, \beta>}\right\} F_{\alpha} F_{\beta} d \log z(\beta)
$$

With the ansatz

$$
W=\sum_{\alpha} F_{\alpha}(z) \frac{e^{\theta(\alpha)}}{z(\alpha)}
$$

with $F_{\alpha}$ of degree zero, you get the isomonodromy equation

$$
d F_{\gamma}=\sum_{\alpha+\beta=\gamma} \frac{1}{i \hbar}\left\{\mathbb{L}^{\frac{1}{2}<\alpha, \beta>}-\mathbb{L}^{-\frac{1}{2}<\alpha, \beta>}\right\} F_{\alpha} F_{\beta} d \log z(\beta)
$$

Same idea: quantum dilogarithms, qDT invariants and automorphism of the quantum torus gives Stokes matrices, and the functions $F_{\alpha}$.

With the ansatz

$$
W=\sum_{\alpha} F_{\alpha}(z) \frac{e^{\theta(\alpha)}}{z(\alpha)}
$$

with $F_{\alpha}$ of degree zero, you get the isomonodromy equation

$$
d F_{\gamma}=\sum_{\alpha+\beta=\gamma} \frac{1}{i \hbar}\left\{\mathbb{L}^{\frac{1}{2}<\alpha, \beta>}-\mathbb{L}^{-\frac{1}{2}<\alpha, \beta>}\right\} F_{\alpha} F_{\beta} d \log z(\beta)
$$

Same idea: quantum dilogarithms, qDT invariants and automorphism of the quantum torus gives Stokes matrices, and the functions $F_{\alpha}$.
But where is the geometry?

With the ansatz

$$
W=\sum_{\alpha} F_{\alpha}(z) \frac{e^{\theta(\alpha)}}{z(\alpha)}
$$

with $F_{\alpha}$ of degree zero, you get the isomonodromy equation

$$
d F_{\gamma}=\sum_{\alpha+\beta=\gamma} \frac{1}{i \hbar}\left\{\mathbb{L}^{\frac{1}{2}<\alpha, \beta>}-\mathbb{L}^{-\frac{1}{2}<\alpha, \beta>}\right\} F_{\alpha} F_{\beta} d \log z(\beta)
$$

Same idea: quantum dilogarithms, qDT invariants and automorphism of the quantum torus gives Stokes matrices, and the functions $F_{\alpha}$.
But where is the geometry? What are $q$-deformations of hyperKähler geometry, and $q$-deformations of twistor theory.

