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Abstract: We show that string theories admit chiral infinite tension analogues in

which only the massless parts of the spectrum survive. Geometrically they describe

holomorphic maps to spaces of complex null geodesics, known as ambitwistor spaces.

They have the standard critical space–time dimensions of string theory (26 in the

bosonic case and 10 for the superstring). Quantization leads to the formulae for tree–

level scattering amplitudes of massless particles found recently by Cachazo, He and

Yuan. These representations localize the vertex operators to solutions of the same

equations found by Gross and Mende to govern the behaviour of strings in the limit

of high energy, fixed angle scattering. Here, localization to the scattering equations

emerges naturally as a consequence of working on ambitwistor space. The worldsheet

theory suggests a way to extend these amplitudes to spinor fields and to loop level. We

argue that this family of string theories is a natural extension of the existing twistor

string theories.
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Abstract: The scattering equations provide a powerful framework for the study

of scattering amplitudes in a variety of theories. Their derivation from ambitwistor

string theory led to proposals for formulae at one loop on a torus for 10 dimensional

supergravity, and we recently showed how these can be reduced to the Riemann sphere

and checked in simple cases. We also proposed analogous formulae for other theories

including maximal super-Yang-Mills theory and supergravity in other dimensions at one

loop. We give further details of these results and extend them in two directions. Firstly,

we propose new formulae for the one-loop integrands of Yang-Mills theory and gravity in

the absence of supersymmetry. These follow from the identification of the states running

in the loop as expressed in the ambitwistor-string correlator. Secondly, we give a

systematic proof of the non-supersymmetric formulae using the worldsheet factorisation

properties of the nodal Riemann sphere underlying the scattering equations at one loop.

Our formulae have the same decomposition under the recently introduced Q-cuts as

one-loop integrands and hence give the correct amplitudes.
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Loop Integrands for Scattering Amplitudes from the Riemann Sphere

Yvonne Geyer†, Lionel Mason†, Ricardo Monteiro†, Piotr Tourkine‡
†Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK

‡DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

The scattering equations on the Riemann sphere give rise to remarkable formulae for tree-level
gauge theory and gravity amplitudes. Adamo, Casali and Skinner conjectured a one-loop formula
for supergravity amplitudes based on scattering equations on a torus. We use a residue theorem
to transform this into a formula on the Riemann sphere. What emerges is a framework for loop
integrands on the Riemann sphere that promises to have wide application, based on off-shell scatter-
ing equations that depend on the loop momentum. We present new formulae, checked explicitly at
low points, for supergravity and super-Yang-Mills amplitudes and for n-gon integrands at one loop.
Finally, we show that the off-shell scattering equations naturally extend to arbitrary loop order, and
we give a proposal for the all-loop integrands for supergravity and planar super-Yang-Mills theory.

I. INTRODUCTION

Worldsheet formulations of quantum field theories have
had wide ranging impact on the study of scattering am-
plitudes, from the conceptual simplicity of having one ba-
sic object instead of multitudes of Feynman diagrams to
unexpected new structures such as those relating gauge
theory and gravity. They lie at the heart of string
theory, and more recently, in the form of twistor- and
ambitwistor-string theory, have been applied to many
conventional field theories. However, the mathematical
framework becomes very challenging on the higher-genus
worldsheets required to describe loop effects, and it is dif-
ficult to see how the relative simplicity of the expected
amplitudes arises from integrals involving theta functions
over moduli spaces of Riemann surfaces. In this letter, we
show how in such worldsheet models based on the scatter-
ing equations, we can transform formulae on higher-genus
surfaces to ones on the Riemann sphere. The framework
can potentially be applied more generally in field theory.

Given n null momenta ki, the scattering equations de-
termine n points σi on a Riemann sphere, up to Möbius
transformations. The scattering equations not only arise
from conventional string theory at low tension [1], they
also underpin the remarkable formulae for tree-level scat-
tering amplitudes of gauge theory and gravity that arise
from twistor-string theories [2, 3] and the more recent
formulae in arbitrary dimension due to Cachazo, He and
Yuan (CHY) [4, 5]. The CHY formulae arise from am-
bitwistor string theories [6–8], and Adamo, Casali and
Skinner (ACS) [9] showed that these lead to formulae for
10-dimensional type-II supergravity 1-loop amplitudes in
terms of scattering equations on an elliptic curve or torus
(and, in principle, to g loops on curves of genus g). The
ACS 1-loop proposal was investigated further by Casali
and one of us [10], motivating the n-gon conjecture for an
expression on the elliptic curve which gives rise to loop
integrands based on permutations of polygons. At fixed
loop momentum, both the ACS and the n-gon formulae
localise to give a sum of residues, involving Jacobi theta
functions and the modular parameter τ for the elliptic
curve. Despite the successful factorisation checks, the

question remains as to how such formulae could reduce
to the rational expressions we expect of loop integrands.

Here we modify the scattering equations on the elliptic
curve so as to be able to identify a well-defined loop inte-
grand. We then use a residue theorem in the modular τ -
plane to derive new formulae on a nodal Riemann sphere,
without Jacobi theta functions. New off-shell scattering
equations determine the location of the nodes of the Rie-
mann sphere, where the off-shell loop momentum is in-
serted. The new formulae give 1-loop integrands which
are rational functions of the momenta. This is a scheme
that in principle extends to provide formulae for multi-
loop integrands, applicable also to other theories.

The existence of a canonical loop integrand for non-
planar gauge theories and gravity is controversial. There
are many choices for the loop momentum `, as we can
translate ` in any particular diagram. The formulae we
obtain give a natural global choice, although not an ob-
vious one from the perspective of Feynman diagrams. In
order to transform standard integrands into our formu-
lae, we must perform a variety of shifts.

In this paper, we first prove the equivalence of the ACS
and n-gon conjecture on elliptic curves to corresponding
formulae on the Riemann sphere, giving new 1-loop pro-
posals. These pass various checks and the general form
of the loop integrand that arises is given. We also pro-
pose a formula on the Riemann sphere for the 1-loop
integrand of super Yang-Mills, and subject it to similar
checks. Finally, we give a brief discussion of the extension
to an all-loop conjecture for type-II supergravity and su-
per Yang-Mills theory. At g-loops, these loop integrands
have the same level of complexity as n + 2g-point trees.
Further details will appear elsewhere.

II. SCATTERING EQUATIONS ON A TORUS

We use the complex coordinate z on the elliptic curve
Σq = C/{Z⊕Zτ} where q = e2πiτ . The scattering equa-
tions are equations for n points zi ∈ Σq that depend on
n momenta ki ∈ Rd, i = 1, . . . n. To define them we
construct a meromorphic 1-form P (z, zi|q)dz on Σq that
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The scattering equations give striking formulae for massless scattering amplitudes at tree level
and, as shown recently, at one loop. The progress at loop level was based on ambitwistor string
theory, which naturally yields the scattering equations. We proposed that, for ambitwistor strings,
the standard loop expansion in terms of the genus of the worldsheet is equivalent to an expansion
in terms of nodes of a Riemann sphere, with the nodes carrying the loop momenta. In this paper,
we show how to obtain two-loop scattering equations with the correct factorization properties. We
adapt genus-two integrands from the ambitwistor string to the nodal Riemann sphere and show that
these yield correct answers, by matching standard results for the four-point two-loop amplitudes
of maximal supergravity and super-Yang-Mills theory. In the Yang-Mills case, this requires the
loop analogue of the Parke-Taylor factor carrying the colour dependence, which includes non-planar
contributions.

I. INTRODUCTION

The Cachazo-He-Yuan (CHY) formulae provide re-
markable tree-level expressions for scattering amplitudes
in theories of massless particles, written as an integral
over marked points on the Riemann sphere. The integral
localises as a sum over the solutions to the scattering
equations [1]. This formalism generalizes earlier work
of Roiban, Spradlin and Volovich [2] based on Witten’s
twistor string theory [3]. The CHY formulae themselves
originate in ambitwistor string theory [4]: this provided a
loop-level formulation [5, 6] giving new formulae at genus
one (torus) [5, 7] and two [8] for type II supergravities in
10 dimensions. In [9, 10], we showed how the torus for-
mulae reduce to formulae on a nodal Riemann sphere, by
means of integration by parts in the moduli space of the
torus. The node carries the loop momentum. We pro-
posed that an analogous reduction was possible at any
genus, leading to a new formalism that could become
a practical tool in the computation of scattering ampli-
tudes. In the one-loop case, our explicit analysis provided
a proof that the formulae from ambitwistor strings repro-
duce the correct answer. Furthermore, on the nodal Rie-
mann sphere, the formalism is more flexible than on the
torus, and the formulae could be extended to a variety
of theories with or without supersymmetry. An alterna-
tive approach to the one-loop scattering equations was
pursued in [11, 12].

However, one loop is not such a stringent test of the
framework, as many difficulties arise only at higher loops.
The Feynman tree theorem, for example, shows how to
construct one-loop integrands from tree formulae, if mas-
sive legs are allowed, and massive legs had already been
considered in this context [13]; an example of our formu-
lae has been reproduced following such an approach [14].
However, the situation is more difficult at higher loops
despite recent progress inspired by the tree theorem [15].

In [9], we gave a brief sketch as to how the loop-

level scattering equations are obtained by reduction to
the nodal Riemann sphere. In this Letter, we give a
precise formulation at two loops. To fix the details of
the reduction to the sphere, we use a factorization ar-
gument that leads to new off-shell scattering equations.
An alternative approach [16] applies higher-dimensional
tree-level rules for the integration of the scattering equa-
tions to give diagrams for a scalar theory; however, our
aim here is to give a framework that yields loop inte-
grands on a nodal Riemann sphere for complete ampli-
tudes. With this, we adapt genus-two supergravity in-
tegrands (type II, d = 10) to a doubly nodal sphere,
leading to the correct integrand for the four-point am-
plitude in maximal supergravity. We then conjecture an
adjustment that gives instead a super-Yang-Mills inte-
grand. These are checked both by factorization and nu-
merically. Non-supersymmetric integrands require cer-
tain degenerate solutions to the scattering equations (on
which the supersymmetric integrands vanish). We char-
acterize these degenerate solutions here, but leave the
subtler non-supersymmetric integrands for the future.

II. FROM HIGHER GENUS TO THE SPHERE

The higher genus scattering equations were formulated
in the ambitwistor-string framework on Riemann surfaces
Σg of genus g [5, 6], in terms of a meromorphic 1-form Pµ,
µ = 1, . . . , d (the momentum of the string) that solves

∂̄P =

n∑
i=1

ki δ
2(z − zi) dz ∧ dz̄, (1)

where zi are n marked points on Σg. The solution is
written as

P =

n∑
i=1

kiω
(g)
zi,z0(z) +

g∑
r=1

`rω
(g)
r , (2)
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Worldsheet models for Field Theory

Ambitwistor string [Mason,Skinner ’13; c.f. Berkovits]

SA =
1

2π

∫
Σ

P · D̄X − ẽ

2
P 2 + SM

D = ∂̄ + e∂

no α′!

I chiral worldsheet theory: Xµ ∈ Ω0(Σ), Pµ ∈ Ω0(KΣ)

I ‘RNS’ model: SM = Sψ1 + Sψ2 (others possible)

• action: Sψ =
∫
ψ ·Dψ + χP · ψ with ψµr=1,2 ∈ ΠΩ0(K

1/2
Σ )

• BRST: free, linear CFTs with dcrit = 10

I target space: A = phase space of complexified null geodesics

L

x
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M
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Vector vs twistor representations of A

I Vector representation [Mason,Skinner ’13; c.f. Berkovits]

Worldsheet models for Field Theory

Ambitwistor string [Mason,Skinner ’13; c.f. Berkovits]

SA =
1

2π

�

Σ

P · D̄X − ẽ

2
P 2 + SM

D = ∂̄ + e∂

no α�!

� chiral worldsheet theory: Xµ ∈ Ω0(Σ), Pµ ∈ Ω0(KΣ)

� ‘RNS’ model: SM = Sψ1 + Sψ2 (others possible)

• action: Sψ =
�
ψ ·Dψ + χP · ψ with ψµ

r=1,2 ∈ ΠΩ0(K
1/2
Σ )

• BRST: free, linear CFTs with dcrit = 10

� target space: A = phase space of complexified null geodesics
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SA =
1

2π

∫
Σ

P · D̄X − ẽ

2
P 2 + SM

• ’RNS’ ambitwistor string
• A =

{
(X,P ) ∈ T ∗M |P 2 = 0

}
/ {P · ∂X}

I Twistor representation [Witten, Berkovits ’04, RSVW]

S =

∫
Σ

W ·DZ − Z ·DW + aZ ·W

• 4d twistor / ambitwistor string
• Z ∈ Ω0(K

1/2
Σ ⊗ T), W ∈ Ω0(K

1/2
Σ ⊗ T∗)

• A = {(Z,W ) ∈ T× T∗ |Z ·W = 0} / {W · ∂W − Z · ∂Z}

• related models in d = 5, 6 [YG, Mason, Skinner ’20; Albonico, YG, Mason WiP]
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2
P 2 + SM

• ’RNS’ ambitwistor string
• A =

{
(X,P ) ∈ T ∗M |P 2 = 0

}
/ {P · ∂X}

I Twistor representation [Witten, Berkovits ’04, RSVW]

S =

∫
Σ

W ·DZ − Z ·DW + aZ ·W

• 4d twistor / ambitwistor string
• Z ∈ Ω0(K

1/2
Σ ⊗ T), W ∈ Ω0(K

1/2
Σ ⊗ T∗)

• A = {(Z,W ) ∈ T× T∗ |Z ·W = 0} / {W · ∂W − Z · ∂Z}

• related models in d = 5, 6 [YG, Mason, Skinner ’20; Albonico, YG, Mason WiP]



Spectrum and correlators
I Spectrum: type II supergravity

VNS = cc̃ δ(γ1)δ(γ2) εµνψ
µ
1ψ

ν
2 e

ik·X with k2 = εµνk
ν = εµνk

µ = 0

⇒ worldsheet theory for QFT amplitudes

I correlators = field theory amplitudes

A = (0) + (1) + (2) + . . .

SE

1
k2

L

τ

τ ′

τ ′′

A = + + + . . .

1I tree-level = CHY amplitude [Cachazo, He, Yuan ’13]

A(0)
n =

〈
n∏
i=1

V (σi)

〉
=

∫
M0,n

dnσ

vol SL(2,C)

∏
i

′
δ̄ (Ei) In

• P localizes onto EoM: ∂̄Pµ =
∑
i ki µδ̄(σ − σi) dσ

• tree-level: Pµ =
∑
i

ki µ
σ−σi

dσ

• P 2 = 0 ↔ scattering equations
Ei = ResσiP

2 = 2ki · P (σi)



Spectrum and correlators
I Spectrum: type II supergravity

VNS = cc̃ δ(γ1)δ(γ2) εµνψ
µ
1ψ

ν
2 e

ik·X with k2 = εµνk
ν = εµνk

µ = 0

⇒ worldsheet theory for QFT amplitudes

I correlators = field theory amplitudes

A = (0) + (1) + (2) + . . .

SE

1
k2

L

τ

τ ′

τ ′′

A = + + + . . .

1

I tree-level = CHY amplitude [Cachazo, He, Yuan ’13]

A(0)
n =

〈
n∏
i=1

V (σi)

〉
=

∫
M0,n

dnσ

vol SL(2,C)

∏
i

′
δ̄ (Ei) In

• P localizes onto EoM: ∂̄Pµ =
∑
i ki µδ̄(σ − σi) dσ

• tree-level: Pµ =
∑
i

ki µ
σ−σi

dσ

• P 2 = 0 ↔ scattering equations
Ei = ResσiP

2 = 2ki · P (σi)



Spectrum and correlators
I Spectrum: type II supergravity

VNS = cc̃ δ(γ1)δ(γ2) εµνψ
µ
1ψ

ν
2 e

ik·X with k2 = εµνk
ν = εµνk

µ = 0

⇒ worldsheet theory for QFT amplitudes

I correlators = field theory amplitudes

A = (0) + (1) + (2) + . . .

SE

1
k2

L

τ

τ ′

τ ′′

A = + + + . . .

1I tree-level = CHY amplitude [Cachazo, He, Yuan ’13]

A(0)
n =

〈
n∏
i=1

V (σi)

〉
=

∫
M0,n

dnσ

vol SL(2,C)

∏
i

′
δ̄ (Ei) In

• P localizes onto EoM: ∂̄Pµ =
∑
i ki µδ̄(σ − σi) dσ

• tree-level: Pµ =
∑
i

ki µ
σ−σi

dσ

• P 2 = 0 ↔ scattering equations
Ei = ResσiP

2 = 2ki · P (σi)



Spectrum and correlators
I Spectrum: type II supergravity

VNS = cc̃ δ(γ1)δ(γ2) εµνψ
µ
1ψ

ν
2 e

ik·X with k2 = εµνk
ν = εµνk

µ = 0

⇒ worldsheet theory for QFT amplitudes

I correlators = field theory amplitudes

A = (0) + (1) + (2) + . . .

SE

1
k2

L

τ

τ ′

τ ′′

A = + + + . . .

1I tree-level = CHY amplitude [Cachazo, He, Yuan ’13]

A(0)
n =

〈
n∏
i=1

V (σi)

〉
=

∫
M0,n

dnσ

vol SL(2,C)

∏
i

′
δ̄ (Ei) In

• P localizes onto EoM: ∂̄Pµ =
∑
i ki µδ̄(σ − σi) dσ

• tree-level: Pµ =
∑
i

ki µ
σ−σi

dσ

• P 2 = 0 ↔ scattering equations
Ei = ResσiP

2 = 2ki · P (σi)



Spectrum and correlators
I Spectrum: type II supergravity

VNS = cc̃ δ(γ1)δ(γ2) εµνψ
µ
1ψ

ν
2 e

ik·X with k2 = εµνk
ν = εµνk

µ = 0

⇒ worldsheet theory for QFT amplitudes

I correlators = field theory amplitudes

A = (0) + (1) + (2) + . . .

SE

1
k2

L

τ

τ ′

τ ′′

A = + + + . . .

1I tree-level = CHY amplitude [Cachazo, He, Yuan ’13]

A(0)
n =

〈
n∏
i=1

V (σi)

〉
=

∫
M0,n

dnσ

vol SL(2,C)

∏
i

′
δ̄ (Ei) In

• P localizes onto EoM: ∂̄Pµ =
∑
i ki µδ̄(σ − σi) dσ

• tree-level: Pµ =
∑
i

ki µ
σ−σi

dσ

• P 2 = 0 ↔ scattering equations
Ei = ResσiP

2 = 2ki · P (σi)



Spectrum and correlators
I Spectrum: type II supergravity

VNS = cc̃ δ(γ1)δ(γ2) εµνψ
µ
1ψ

ν
2 e

ik·X with k2 = εµνk
ν = εµνk

µ = 0

⇒ worldsheet theory for QFT amplitudes

I correlators = field theory amplitudes

A = (0) + (1) + (2) + . . .

SE

1
k2

L

τ

τ ′

τ ′′

A = + + + . . .

1I tree-level = CHY amplitude [Cachazo, He, Yuan ’13]

A(0)
n =

〈
n∏
i=1

V (σi)

〉
=

∫
M0,n

dnσ

vol SL(2,C)

∏
i

′
δ̄ (Ei) In

• P localizes onto EoM: ∂̄Pµ =
∑
i ki µδ̄(σ − σi) dσ

• tree-level: Pµ =
∑
i

ki µ
σ−σi

dσ

• P 2 = 0 ↔ scattering equations
Ei = ResσiP

2 = 2ki · P (σi)
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Gravity, εµ ε̃ν e
ik·X : Igrav = Ikin(σi, ki, εi) × Ikin(σi, ki, ε̃i)

• ‘woldsheet double copy’ c.f [Kawai,Lewellen,Tye ’86; Bern,Carrasco,Johansson ’08]

Gravity ∼ YM2
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Integrand and the Colour-kinematics duality
I Colour-kinematics duality

[Bern,Carrasco,Johansson ’08]

AYM =
∑
α∈Γn

Nα(ε) Cα(a)

Dα
Agrav =

∑
α∈Γn

Nα(ε) Nα(ε̃)

Dα

fa1a2·f ·a3· . . .

Kinematic numerators Nα satisfying same Jacobi’s as Cα:

1 4

2 3

=
1 4

2 3

−
1 4

2 3

I CHY integrands
[CHY ’13; Bjerrum-Bohr et.al. ’16, ...]

• Connection to BCJ:

C(a) =
∑

α∈Sn−2

Cα(a)

(1αn)
Ikin(ε)

SE
=
∑

α∈Sn−2

Nα(ε)

(1αn)

Parke-Taylor factor

(12 . . . n) := σ12σ23 . . . σn1

• Colour Cα and BCJ numerators Nα
for ‘half-ladder’ master diagrams

1 n

α(2) α(3) α(n− 1)
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genus-g correlators = loop integrands

A = (0) + (1) + (2) + . . .

SE

1
k2

L

τ

τ ′

τ ′′

A = + + + . . .

1



Genus-g correlator = loop int’s [Adamo,Casali,Skinner,Tourkine,YG,Mason,Monteiro ’13-’18]

g ≤ 2

A(g)
n =

〈
n∏
i=1

V (σi)

〉
Σg

=

∫
d10`I

∫
Mg,n

∏
I≤J

dΩIJ δ̄
(
uIJ
) ∏

i

δ̄ (Ei) I(g)
n

I Moduli space Mg,n

• homology basis: #(AI , BJ) = δIJ
modular group: Sp(4,Z)#

• holomorphic differentials ωI

δIJ =

∮
AI

ωJ ΩIJ =

∮
BI

ωJ

I Scattering equations

• P determined by ∂̄P =
∑
i ki δ̄(z − zi) dz

Pµ(z) = 2πi `Iµ ωI(z) +
∑
i

ki µ ωi,∗(z)

hom. solution
loop momenta

merom. diff’s ω[ij]

Resziωij = 1

• scattering equations enforce P 2(z) = 0:

Ei = ResziP
2 P 2

∣∣∣
Ei = 0

= uIJ ωIωJ
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Higher genus amplitude formulae

A(g)
n =

∫
d10`I

∫
Mg,n

∏
I≤J

dΩIJ δ̄
(
uIJ
) ∏

i

δ̄ (Ei) I(g)
n

I Properties

• modular invariance
• localization on scattering equations

dimMg,n = # SE’s = 3g − 3 + n

I Questions

• loop integration UV divergent in d = 10
• calculation of loop integrand?

Field theory! How can we see that the integrand is rational?
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Residue theorem to the nodal sphere [YG,Mason,Monteiro,Tourkine ’15-’18]

I Residue theorem on fundamental domain
Look at g = 1:

A = + + + . . .

1
2- 12

τ

2

solutions to u = 0

on Ei = 0

q = e2πiτ = 0

τ = i∞

I Integrand localizes on nodal sphere

I(1)
n =

∫
M1,n

dq

q
δ̄(u) I(1)(q)

res
= −

∫
M1,n

dq

u
δ̄(q) I(1)(q) = − 1

`2

∫
M0,n+2

I(1)(0)

=

res
=
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loop expansion = nodal expansion

A = + + + . . .

1
2- 12

τ

2



Loop amplitudes from the nodal sphere

A(g)
n =

∫
d10`I∏
(`I)2

∫
M0,n+2g

c(g)
(
J (g) I(g)

L

)(
J (g) I(g)

R

) n+2g∏
A=1

′
δ̄ (EA)

I From residue theorem
• traded localization on P 2 = 0 for qII = eiπΩII = 0

• modular parameters qIJ = e2iπΩIJ vs. nodal points σI±∏
I<J

dqIJ
qIJ

=
J (g)

vol SL(2,C)
J (g) = J (g)

∏
I±

dσI±

J (1) =
(
σ+−

)−2
**

J (2) =
(
σ1+2+σ1+2−σ1−2+σ1−2−

)−1

• c(g) remnant of fundamental domain

c(1) = 1

c(2) =
σ
1+2−σ1−2+

σ
1+1−σ2+2−

• Scattering equations

EA = ResσAP
(g) P(g) = P 2 − (`IωI+I−)2 + LIJ

(g) ωI+I−ωJ+J−

LIJ
(1) = 0

L12
(2) = `21 + `22
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Comments

A = + + + . . .

1
2- 12

τ

2

I Different theories possible
• dim. red. to d ≤ 10
• sugra and sYM (next slide)

I Unorthodox integrand representation

• ‘linear’ propagator factors of form 2`I ·K +K2

• related to standard representation by residue theorem

Example

K

`

`+K

1

`2(`+K)2
=

1

`2(2` ·K +K2)
+

1

(`+K)2(−2` ·K −K2)

shift−→
1

`2

(
1

2` ·K +K2
+

1

−2` ·K +K2

)

I Physical interpretation of P(g) and c(g)

• P(g): correct poles in ‘linear’ representation
• c(g): no unphysical poles
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Colour-kinematics at loop level [Bern,Carrasco,Johansson ’10]

I BCJ double copy at g loops
State-of-the-art: 5 loops
[Bern,Carrasco,Chen,Edison,Johansson,Parra-Martinez,Roiban,Zeng ’17-18]

A(g)

YM =
∑
α∈Γ

(g)
n

∫
g∏
I=1

dD`I
Nα(ε) Cα(a)

SαDα
A(g)

grav =
∑
α∈Γ

(g)
n

∫
g∏
I=1

dD`I
Nα(ε) Nα(ε̃)

SαDα

symmetry
factor

I Nodal sphere
[He,Schlotterer,Zhang ’16-’17; YG,Monteiro ’17-19’; ...]

• sYM from single copy

I(g)

YM = C(g)
(
J (g)I(g)

kin(ε)

)
I(g)

grav =
(
J (g)I(g)

kin(ε)

)(
J (g)I(g)

kin(ε̃)

)
• Half-integrands in BCJ representation:

C(g) =
∑

α ∈ Sn+2g−2

C(g)
(1+α 1−)

(1+ α 1−)
J (g)I(g)

kin =
∑

α ∈ Sn+2g−2

N (g)
(1+α, 1−)

(1+ α 1−)3

where we used the determinant

∆
(g)
i1...ig

= εI1...Ig ωI1(σi1) . . . ωIg (σig ) (13)

defined for any g. The expression (12) is built from the
differentials ωI , which naturally lift from the nodal sphere
to become the holomorphic Abelian differentials on the
genus-2 surface. Indeed, the genus-2 expression is also

valid as Y(2)
A in (2) and, crucially for us, as Y(2)

S in (1).
The object ∆(g) is a modular form of weight −1 at any

genus, which at genus 2 gives Y(2)
S the appropriate weight

such that the moduli-space integral is well defined. At
three loops, the answer is not as simple as (12), but ∆(3)

still appears, as seen in [10] and as we will see here.

Y(g)
S FROM BCJ NUMERATORS

Let us present and test our strategy. The steps are to:

(i) take a supergravity loop integrand written in a BCJ
double-copy representation,

(ii) translate that integrand into the ambitwistor string
moduli-space integrand localised on the nodal Rie-
mann sphere, i.e. obtain Y(g) ,

(iii) uplift that formula to a higher-genus modular form
conjecturally valid for the superstring, i.e. obtain

Y(g)
S such that Y(g)

S → Y(g) as qII → 0 .

With our current understanding, step (iii) relies on an
educated guess, as we will exemplify.

Starting with step (i), a BCJ representation is one in
which the loop integrand is written in terms of trivalent
diagrams, whose numerators are the square of analogous
numerators in non-planar SYM obeying the BCJ colour-
kinematics duality [12, 32] [33]. See [34] for a review
of this remarkable construction, which was motivated by
the KLT relations of string theory [35]. Indeed, there is a
large body of work relating this construction to aspects
of string theory, e.g. [36–52]. Step (ii) is based on the
connection to the scattering equations story, for which
we use the following relation based on a differential form
with logarithmic singularities [53]

(2πi)4 J (g)Y(g) =
∑

ρ∈S2+2g

N (g)(1+, ρ, 1−)

(1+, ρ, 1−)

4+2g∏
A=1

dσA ,

(14)
where (ABC . . .D) = σABσBC . . . σDA is a Parke-Taylor
denominator. The BCJ numerators N (g), which depend
on a particle ordering, are SYM numerators whose square
gives the supergravity numerators; this square effectively
translates into the square of J (g)Y(g) in (4). Notice, how-
ever, that we have extracted the overall factor R4 in (4),
whose ‘square root’ is therefore not included in the SYM

FIG. 2: Two-loop example. Diagram associated to the
numerator N(1+, 2, 2+, 3, 4, 2−, 1, 1−).

numerators. The correspondence between the numera-
tors N (g) and trivalent diagrams is best understood in
an explicit example, to be discussed below. Before that,
let us make two comments. The first is that two marked
points singled out in (14) were chosen to be σ1± , but the
sum is independent of that choice. The second, for the
reader familiar with the scattering equations formalism
including the developments [54–57], is that equalities like
(14) often hold only when the marked points satisfy the
scattering equations (e.g. for CHY Pfaffians). Here, on
the other hand, we propose that (14) defines Y(g) such
that it may be uplifted to the superstring, as happens up
to two loops.

Let us test the strategy at two loops, for which the
BCJ representation of the four-point supergravity loop
integrand is long known [58] [59]. The two-loop BCJ
numerators can be compactly written as

N (2)(1+, ρ1, 2
±, ρ2, 2

∓, ρ3, 1
−) =

{
sij ρ2 = {i, j}
0 otherwise .

(15)

They correspond to half-ladder diagrams with loop mo-
menta ±`1 at the ends; see FIG. 2. A standard two-loop
diagram is then obtained by gluing the nodal legs, i.e. I+

with I−. Taking the result (15) from the literature, it is
possible to obtain Y(2) via (14). Then, it is both natural
and easy to rewrite Y(2) in the form (12), which as ex-
plained earlier can be uplifted to genus 2, matching the

superstring result Y(2)
S . This achieves step (iii).

THREE LOOPS

We now apply our strategy to the much more intricate
three-loop case. From the general form of a three-loop
field theory integrand, namely the inclusion of the rele-
vant diagram topologies, we can determine c(3) and P(3).
However, they do not appear in (14), so they are not im-
portant for the goal of this paper [60]. The important
quantities are J (3) and Y(3). The Jacobian is straight-
forwardly obtained from (7) and can be written as

J (3) = Jhyp

∏
I σI+I−∏

I<J σI+J+σI−J−σI+J−σI−J+

, (16)

where in the factor

Jhyp = σ1+2−σ2+3−σ3+1− − σ1+3−σ3+2−σ2+1− (17)

• ‘half-ladder’ master diagrams
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Beyond two loops?y
Hard! Need new strategy.



Status of loop amplitudes: Superstring vs Supergravity

I Superstring

4-pt amplitude, massless external states
• tree-level and 1-loop: [Green, Schwarz ’82]

• 2-loops: [D’Hoker, Phong; Berkovits ’05]

• 3-loops: partial work [D’Hoker, Phong; Cacciatori, d.Piazza, v.Greemen]

[Gomez, Mafra ’13]

I Supergravity

4pt amplitude, maximal supersymmetry

State-of-the-art: 5 loops!
[BCJ et.al. ’17-’18]

lag!

Goal: sugra advances −→ superstring

Tools: modern amplitudes techniques
• colour-kinematics duality
• ambitwistor string
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4-pt amplitudes for g ≤ 2

I Supergravity

A(0) = R4

s12s13s14

from ambitwistor string, higher genus and nodal sphere

A(g)

A = R4

∫
d10`I

∫
Mg,4

∏
I ≤ J

dΩIJ

(
Y (g)

A

)2
4∏
i = 1

δ̄(Ei)
∏
I ≤ J

δ̄(uIJ)

= R4

∫
d10`I∏
I
(`I)2

∫
M0,4+2g

c(g)
(
J (g) Y (g)

)2
4 + 2g∏
A = 1

′
δ̄(EA)

I Type II superstring
chiral splitting form [D’Hoker,Phong ’88, ’05]

A(g)

S = R4

∫
Mg,4

∣∣∣∏
I ≤ J

dΩIJ

∣∣∣2 ∫ d10`I
∣∣Y (g)

S
∣∣2

×
∏
i < j

∣∣E(zi, zj)
∣∣α′sij/2 ∣∣∣eα′2 (iπΩIJ `

I·̀ J+2πi
∑
j `
I·kj

∫ zj
z0
ωI

)∣∣∣ 2
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Chiral integrands
I Observation 1:
∃ representations s.t.

Y(g)
S
∼= Y(g)

A mod
(
d-exact, (E , u)

)
• superstring: mod d-exact terms, Y(g)

S independent of α′

• ambitwistor: mod scattering equations

I Observation 2:
Direct equality for BCJ representation

Y(g)
S = Y(g)

A s.t. (2πi)4J (g)Y(g) =
∑

α ∈ S2+2g

N
(g)
BCJ(1+ α 1−)

(1+ α 1−)

Assumptions

• straightforward extension of A(g)
S and A(g)

A to g = 3

I Schottky problem for g ≥ 4
I non-projectedness of supermoduli space for g ≥ 5

[Donagi,Witten ’13; Witten ’15]

I scattering equations on nodal sphere for g ≥ 4?

• straightforward extension of Observation 2 to g = 3
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Figure 27: The diagrams for constructing the N = 4 SYM and N = 8 supergravity three-loop
four-point amplitudes. The shaded (red) lines indicate the application of the duality relation. The
external momenta are outgoing and the arrows indicate the directions of the labeled loop momenta.
Diagram (e) is the master diagram.

four-loop four-point amplitudes of N = 4 SYM [6], but fail at five loops. A procedure which
works for this case is described in Sec. 8.

Because the duality imposes stringent relations between diagrams’ numerators, a remark-
ably small subset of generalized unitarity cuts is then sufficient to completely determine the
integrand. Of course, to confirm that it is correct, it is necessary to verify that it reproduces
correctly a spanning set of unitarity cuts that fully determine the amplitude. Quite gener-
ally, one expects that a problem with a generalized cut can be addressed by relaxing some
of the auxiliary constraints.

Let us return now to the three-loop four-point amplitudes of N = 4 SYM theory and
illustrate these ideas. A straightforward enumeration shows that there are 17 distinct cubic
diagrams with three loops and four external legs, which do not have one-loop triangle, bubble
or tadpole subdiagrams. It turns out that the twelve diagrams shown in Fig. 27 are sufficient
for finding a solution to the duality and unitarity cut constraints, as shown in Ref. [2]. Had
we kept all 17 diagrams, the construction would be slightly more involved, with the result

123

4

TABLE I: The numerator factors of the integrals I(x) in fig. 2. The first column labels the integral, the second column the relative
numerator factor for N = 4 super-Yang-Mills theory. The square of this is the relative numerator factor for N = 8 supergravity.
An overall factor of stAtree

4 has been removed, s, t, u are Mandelstam invariants corresponding to (k1+k2)
2, (k2+k3)

2, (k1+k3)
2

and τij = 2ki · lj , where ki and lj are momenta as labeled in fig. 2.

Integral I(x) N = 4 Super-Yang-Mills (
√N = 8 supergravity) numerator

(a)–(d) s2

(e)–(g)
�

s (−τ35 + τ45 + t)− t (τ25 + τ45) + u (τ25 + τ35)− s2
�

/3

(h)
�

s (2τ15 − τ16 + 2τ26 − τ27 + 2τ35 + τ36 + τ37 − u)

+t (τ16 + τ26 − τ37 + 2τ36 − 2τ15 − 2τ27 − 2τ35 − 3τ17) + s2
�

/3

(i)
�

s (−τ25 − τ26 − τ35 + τ36 + τ45 + 2t)

+t (τ26 + τ35 + 2τ36 + 2τ45 + 3τ46) + u τ25 + s2
�

/3

(j)-(l) s(t− u)/3

especially as relevant to four loops and beyond [20].
Perhaps the most surprising feature of our construc-

tion is that, with the duality (3) imposed, the only cut
information actually required to construct the complete
N = 4 sYM amplitude is that under maximal cut condi-
tions the numerator of diagram (e) is s τ45. This suggests
that the constraints of this duality are powerful enough
so that only a relatively small subset of unitarity cuts is
necessary to fully determine higher-loop amplitudes.
The above three-loop example has maximal supersym-

metry. Naturally there is a question of whether our loop-
level conjecture (6) relies on supersymmetry. To see that
it does not we need only look at the two-loop four-point
identical-helicity amplitude in pure Yang-Mills given in
ref. [21]. As noted in ref. [8] the duality is manifest in this
example when cut conditions are imposed. This property
also persists with off-shell loop momenta, and when the
numerators are squared, we obtain the correct identical-
helicity four-graviton amplitude in the theory of gravity
coupled to an antisymmetric tensor and dilaton.
In summary, we propose that the gauge-theory dual-

ity between color and kinematic numerators imposed in
ref. [8] carries over naturally to loop level. This allows
the expression of numerators of gravity diagrams using
two copies of gauge-theory ones. To test this idea, we
discussed two nontrivial examples, one in some detail.
The known connection between scattering amplitudes of
N = 4 super-Yang-Mills theory at weak [5] and strong
coupling [7], suggests that the duality between color
and kinematics will also impose nontrivial constraints at
strong coupling. It also seems likely that an analogous
duality should hold in higher-genus perturbative string
theory. It has not escaped our attention that should the
duality between color and kinematics hold to all loop
orders it would have important implications in studies
of the ultraviolet behavior of quantum gravity theories
(for recent reviews see refs. [22]). We close by remark-
ing that the double-copy gravity numerators hint at some
notion of compositeness, albeit with a rather novel struc-
ture. This structure may very well have important con-

sequences outside of perturbation theory.
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Figure 27: The diagrams for constructing the N = 4 SYM and N = 8 supergravity three-loop
four-point amplitudes. The shaded (red) lines indicate the application of the duality relation. The
external momenta are outgoing and the arrows indicate the directions of the labeled loop momenta.
Diagram (e) is the master diagram.

four-loop four-point amplitudes of N = 4 SYM [6], but fail at five loops. A procedure which
works for this case is described in Sec. 8.

Because the duality imposes stringent relations between diagrams’ numerators, a remark-
ably small subset of generalized unitarity cuts is then sufficient to completely determine the
integrand. Of course, to confirm that it is correct, it is necessary to verify that it reproduces
correctly a spanning set of unitarity cuts that fully determine the amplitude. Quite gener-
ally, one expects that a problem with a generalized cut can be addressed by relaxing some
of the auxiliary constraints.

Let us return now to the three-loop four-point amplitudes of N = 4 SYM theory and
illustrate these ideas. A straightforward enumeration shows that there are 17 distinct cubic
diagrams with three loops and four external legs, which do not have one-loop triangle, bubble
or tadpole subdiagrams. It turns out that the twelve diagrams shown in Fig. 27 are sufficient
for finding a solution to the duality and unitarity cut constraints, as shown in Ref. [2]. Had
we kept all 17 diagrams, the construction would be slightly more involved, with the result
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so that only a relatively small subset of unitarity cuts is
necessary to fully determine higher-loop amplitudes.
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it does not we need only look at the two-loop four-point
identical-helicity amplitude in pure Yang-Mills given in
ref. [21]. As noted in ref. [8] the duality is manifest in this
example when cut conditions are imposed. This property
also persists with off-shell loop momenta, and when the
numerators are squared, we obtain the correct identical-
helicity four-graviton amplitude in the theory of gravity
coupled to an antisymmetric tensor and dilaton.
In summary, we propose that the gauge-theory dual-

ity between color and kinematic numerators imposed in
ref. [8] carries over naturally to loop level. This allows
the expression of numerators of gravity diagrams using
two copies of gauge-theory ones. To test this idea, we
discussed two nontrivial examples, one in some detail.
The known connection between scattering amplitudes of
N = 4 super-Yang-Mills theory at weak [5] and strong
coupling [7], suggests that the duality between color
and kinematics will also impose nontrivial constraints at
strong coupling. It also seems likely that an analogous
duality should hold in higher-genus perturbative string
theory. It has not escaped our attention that should the
duality between color and kinematics hold to all loop
orders it would have important implications in studies
of the ultraviolet behavior of quantum gravity theories
(for recent reviews see refs. [22]). We close by remark-
ing that the double-copy gravity numerators hint at some
notion of compositeness, albeit with a rather novel struc-
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sequences outside of perturbation theory.
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Figure 27: The diagrams for constructing the N = 4 SYM and N = 8 supergravity three-loop
four-point amplitudes. The shaded (red) lines indicate the application of the duality relation. The
external momenta are outgoing and the arrows indicate the directions of the labeled loop momenta.
Diagram (e) is the master diagram.

four-loop four-point amplitudes of N = 4 SYM [6], but fail at five loops. A procedure which
works for this case is described in Sec. 8.

Because the duality imposes stringent relations between diagrams’ numerators, a remark-
ably small subset of generalized unitarity cuts is then sufficient to completely determine the
integrand. Of course, to confirm that it is correct, it is necessary to verify that it reproduces
correctly a spanning set of unitarity cuts that fully determine the amplitude. Quite gener-
ally, one expects that a problem with a generalized cut can be addressed by relaxing some
of the auxiliary constraints.

Let us return now to the three-loop four-point amplitudes of N = 4 SYM theory and
illustrate these ideas. A straightforward enumeration shows that there are 17 distinct cubic
diagrams with three loops and four external legs, which do not have one-loop triangle, bubble
or tadpole subdiagrams. It turns out that the twelve diagrams shown in Fig. 27 are sufficient
for finding a solution to the duality and unitarity cut constraints, as shown in Ref. [2]. Had
we kept all 17 diagrams, the construction would be slightly more involved, with the result
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especially as relevant to four loops and beyond [20].
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tion is that, with the duality (3) imposed, the only cut
information actually required to construct the complete
N = 4 sYM amplitude is that under maximal cut condi-
tions the numerator of diagram (e) is s τ45. This suggests
that the constraints of this duality are powerful enough
so that only a relatively small subset of unitarity cuts is
necessary to fully determine higher-loop amplitudes.
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metry. Naturally there is a question of whether our loop-
level conjecture (6) relies on supersymmetry. To see that
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ref. [21]. As noted in ref. [8] the duality is manifest in this
example when cut conditions are imposed. This property
also persists with off-shell loop momenta, and when the
numerators are squared, we obtain the correct identical-
helicity four-graviton amplitude in the theory of gravity
coupled to an antisymmetric tensor and dilaton.
In summary, we propose that the gauge-theory dual-

ity between color and kinematic numerators imposed in
ref. [8] carries over naturally to loop level. This allows
the expression of numerators of gravity diagrams using
two copies of gauge-theory ones. To test this idea, we
discussed two nontrivial examples, one in some detail.
The known connection between scattering amplitudes of
N = 4 super-Yang-Mills theory at weak [5] and strong
coupling [7], suggests that the duality between color
and kinematics will also impose nontrivial constraints at
strong coupling. It also seems likely that an analogous
duality should hold in higher-genus perturbative string
theory. It has not escaped our attention that should the
duality between color and kinematics hold to all loop
orders it would have important implications in studies
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(for recent reviews see refs. [22]). We close by remark-
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Figure 27: The diagrams for constructing the N = 4 SYM and N = 8 supergravity three-loop
four-point amplitudes. The shaded (red) lines indicate the application of the duality relation. The
external momenta are outgoing and the arrows indicate the directions of the labeled loop momenta.
Diagram (e) is the master diagram.

four-loop four-point amplitudes of N = 4 SYM [6], but fail at five loops. A procedure which
works for this case is described in Sec. 8.

Because the duality imposes stringent relations between diagrams’ numerators, a remark-
ably small subset of generalized unitarity cuts is then sufficient to completely determine the
integrand. Of course, to confirm that it is correct, it is necessary to verify that it reproduces
correctly a spanning set of unitarity cuts that fully determine the amplitude. Quite gener-
ally, one expects that a problem with a generalized cut can be addressed by relaxing some
of the auxiliary constraints.

Let us return now to the three-loop four-point amplitudes of N = 4 SYM theory and
illustrate these ideas. A straightforward enumeration shows that there are 17 distinct cubic
diagrams with three loops and four external legs, which do not have one-loop triangle, bubble
or tadpole subdiagrams. It turns out that the twelve diagrams shown in Fig. 27 are sufficient
for finding a solution to the duality and unitarity cut constraints, as shown in Ref. [2]. Had
we kept all 17 diagrams, the construction would be slightly more involved, with the result

123

4

TABLE I: The numerator factors of the integrals I(x) in fig. 2. The first column labels the integral, the second column the relative
numerator factor for N = 4 super-Yang-Mills theory. The square of this is the relative numerator factor for N = 8 supergravity.
An overall factor of stAtree

4 has been removed, s, t, u are Mandelstam invariants corresponding to (k1+k2)
2, (k2+k3)

2, (k1+k3)
2

and τij = 2ki · lj , where ki and lj are momenta as labeled in fig. 2.

Integral I(x) N = 4 Super-Yang-Mills (
√N = 8 supergravity) numerator

(a)–(d) s2

(e)–(g)
�

s (−τ35 + τ45 + t)− t (τ25 + τ45) + u (τ25 + τ35)− s2
�

/3

(h)
�

s (2τ15 − τ16 + 2τ26 − τ27 + 2τ35 + τ36 + τ37 − u)

+t (τ16 + τ26 − τ37 + 2τ36 − 2τ15 − 2τ27 − 2τ35 − 3τ17) + s2
�

/3

(i)
�

s (−τ25 − τ26 − τ35 + τ36 + τ45 + 2t)

+t (τ26 + τ35 + 2τ36 + 2τ45 + 3τ46) + u τ25 + s2
�

/3

(j)-(l) s(t− u)/3

especially as relevant to four loops and beyond [20].
Perhaps the most surprising feature of our construc-

tion is that, with the duality (3) imposed, the only cut
information actually required to construct the complete
N = 4 sYM amplitude is that under maximal cut condi-
tions the numerator of diagram (e) is s τ45. This suggests
that the constraints of this duality are powerful enough
so that only a relatively small subset of unitarity cuts is
necessary to fully determine higher-loop amplitudes.
The above three-loop example has maximal supersym-

metry. Naturally there is a question of whether our loop-
level conjecture (6) relies on supersymmetry. To see that
it does not we need only look at the two-loop four-point
identical-helicity amplitude in pure Yang-Mills given in
ref. [21]. As noted in ref. [8] the duality is manifest in this
example when cut conditions are imposed. This property
also persists with off-shell loop momenta, and when the
numerators are squared, we obtain the correct identical-
helicity four-graviton amplitude in the theory of gravity
coupled to an antisymmetric tensor and dilaton.
In summary, we propose that the gauge-theory dual-

ity between color and kinematic numerators imposed in
ref. [8] carries over naturally to loop level. This allows
the expression of numerators of gravity diagrams using
two copies of gauge-theory ones. To test this idea, we
discussed two nontrivial examples, one in some detail.
The known connection between scattering amplitudes of
N = 4 super-Yang-Mills theory at weak [5] and strong
coupling [7], suggests that the duality between color
and kinematics will also impose nontrivial constraints at
strong coupling. It also seems likely that an analogous
duality should hold in higher-genus perturbative string
theory. It has not escaped our attention that should the
duality between color and kinematics hold to all loop
orders it would have important implications in studies
of the ultraviolet behavior of quantum gravity theories
(for recent reviews see refs. [22]). We close by remark-
ing that the double-copy gravity numerators hint at some
notion of compositeness, albeit with a rather novel struc-
ture. This structure may very well have important con-

sequences outside of perturbation theory.
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New results:
3-loop integrand
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TABLE I: The numerator factors of the integrals I(x) in fig. 2. The first column labels the integral, the second column the relative
numerator factor for N = 4 super-Yang-Mills theory. The square of this is the relative numerator factor for N = 8 supergravity.
An overall factor of stAtree

4 has been removed, s, t, u are Mandelstam invariants corresponding to (k1+k2)
2, (k2+k3)

2, (k1+k3)
2

and τij = 2ki · lj , where ki and lj are momenta as labeled in fig. 2.

Integral I(x) N = 4 Super-Yang-Mills (
√N = 8 supergravity) numerator
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especially as relevant to four loops and beyond [20].
Perhaps the most surprising feature of our construc-

tion is that, with the duality (3) imposed, the only cut
information actually required to construct the complete
N = 4 sYM amplitude is that under maximal cut condi-
tions the numerator of diagram (e) is s τ45. This suggests
that the constraints of this duality are powerful enough
so that only a relatively small subset of unitarity cuts is
necessary to fully determine higher-loop amplitudes.
The above three-loop example has maximal supersym-

metry. Naturally there is a question of whether our loop-
level conjecture (6) relies on supersymmetry. To see that
it does not we need only look at the two-loop four-point
identical-helicity amplitude in pure Yang-Mills given in
ref. [21]. As noted in ref. [8] the duality is manifest in this
example when cut conditions are imposed. This property
also persists with off-shell loop momenta, and when the
numerators are squared, we obtain the correct identical-
helicity four-graviton amplitude in the theory of gravity
coupled to an antisymmetric tensor and dilaton.
In summary, we propose that the gauge-theory dual-

ity between color and kinematic numerators imposed in
ref. [8] carries over naturally to loop level. This allows
the expression of numerators of gravity diagrams using
two copies of gauge-theory ones. To test this idea, we
discussed two nontrivial examples, one in some detail.
The known connection between scattering amplitudes of
N = 4 super-Yang-Mills theory at weak [5] and strong
coupling [7], suggests that the duality between color
and kinematics will also impose nontrivial constraints at
strong coupling. It also seems likely that an analogous
duality should hold in higher-genus perturbative string
theory. It has not escaped our attention that should the
duality between color and kinematics hold to all loop
orders it would have important implications in studies
of the ultraviolet behavior of quantum gravity theories
(for recent reviews see refs. [22]). We close by remark-
ing that the double-copy gravity numerators hint at some
notion of compositeness, albeit with a rather novel struc-
ture. This structure may very well have important con-

sequences outside of perturbation theory.
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Figure 27: The diagrams for constructing the N = 4 SYM and N = 8 supergravity three-loop
four-point amplitudes. The shaded (red) lines indicate the application of the duality relation. The
external momenta are outgoing and the arrows indicate the directions of the labeled loop momenta.
Diagram (e) is the master diagram.

four-loop four-point amplitudes of N = 4 SYM [6], but fail at five loops. A procedure which
works for this case is described in Sec. 8.

Because the duality imposes stringent relations between diagrams’ numerators, a remark-
ably small subset of generalized unitarity cuts is then sufficient to completely determine the
integrand. Of course, to confirm that it is correct, it is necessary to verify that it reproduces
correctly a spanning set of unitarity cuts that fully determine the amplitude. Quite gener-
ally, one expects that a problem with a generalized cut can be addressed by relaxing some
of the auxiliary constraints.

Let us return now to the three-loop four-point amplitudes of N = 4 SYM theory and
illustrate these ideas. A straightforward enumeration shows that there are 17 distinct cubic
diagrams with three loops and four external legs, which do not have one-loop triangle, bubble
or tadpole subdiagrams. It turns out that the twelve diagrams shown in Fig. 27 are sufficient
for finding a solution to the duality and unitarity cut constraints, as shown in Ref. [2]. Had
we kept all 17 diagrams, the construction would be slightly more involved, with the result
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3 loops (i): BCJ representation

(i) Supergravity integrand in BCJ representation
[Bern,Carrasco,Johansson ’10]

4

TABLE I: The numerator factors of the integrals I(x) in fig. 2. The first column labels the integral, the second column the relative
numerator factor for N = 4 super-Yang-Mills theory. The square of this is the relative numerator factor for N = 8 supergravity.
An overall factor of stAtree

4 has been removed, s, t, u are Mandelstam invariants corresponding to (k1+k2)
2, (k2+k3)

2, (k1+k3)
2

and τij = 2ki · lj , where ki and lj are momenta as labeled in fig. 2.

Integral I(x) N = 4 Super-Yang-Mills (
√N = 8 supergravity) numerator

(a)–(d) s2

(e)–(g)
�

s (−τ35 + τ45 + t)− t (τ25 + τ45) + u (τ25 + τ35)− s2
�

/3

(h)
�

s (2τ15 − τ16 + 2τ26 − τ27 + 2τ35 + τ36 + τ37 − u)

+t (τ16 + τ26 − τ37 + 2τ36 − 2τ15 − 2τ27 − 2τ35 − 3τ17) + s2
�

/3

(i)
�

s (−τ25 − τ26 − τ35 + τ36 + τ45 + 2t)

+t (τ26 + τ35 + 2τ36 + 2τ45 + 3τ46) + u τ25 + s2
�

/3

(j)-(l) s(t− u)/3

especially as relevant to four loops and beyond [20].
Perhaps the most surprising feature of our construc-

tion is that, with the duality (3) imposed, the only cut
information actually required to construct the complete
N = 4 sYM amplitude is that under maximal cut condi-
tions the numerator of diagram (e) is s τ45. This suggests
that the constraints of this duality are powerful enough
so that only a relatively small subset of unitarity cuts is
necessary to fully determine higher-loop amplitudes.
The above three-loop example has maximal supersym-

metry. Naturally there is a question of whether our loop-
level conjecture (6) relies on supersymmetry. To see that
it does not we need only look at the two-loop four-point
identical-helicity amplitude in pure Yang-Mills given in
ref. [21]. As noted in ref. [8] the duality is manifest in this
example when cut conditions are imposed. This property
also persists with off-shell loop momenta, and when the
numerators are squared, we obtain the correct identical-
helicity four-graviton amplitude in the theory of gravity
coupled to an antisymmetric tensor and dilaton.
In summary, we propose that the gauge-theory dual-

ity between color and kinematic numerators imposed in
ref. [8] carries over naturally to loop level. This allows
the expression of numerators of gravity diagrams using
two copies of gauge-theory ones. To test this idea, we
discussed two nontrivial examples, one in some detail.
The known connection between scattering amplitudes of
N = 4 super-Yang-Mills theory at weak [5] and strong
coupling [7], suggests that the duality between color
and kinematics will also impose nontrivial constraints at
strong coupling. It also seems likely that an analogous
duality should hold in higher-genus perturbative string
theory. It has not escaped our attention that should the
duality between color and kinematics hold to all loop
orders it would have important implications in studies
of the ultraviolet behavior of quantum gravity theories
(for recent reviews see refs. [22]). We close by remark-
ing that the double-copy gravity numerators hint at some
notion of compositeness, albeit with a rather novel struc-
ture. This structure may very well have important con-

sequences outside of perturbation theory.
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Figure 27: The diagrams for constructing the N = 4 SYM and N = 8 supergravity three-loop
four-point amplitudes. The shaded (red) lines indicate the application of the duality relation. The
external momenta are outgoing and the arrows indicate the directions of the labeled loop momenta.
Diagram (e) is the master diagram.
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illustrate these ideas. A straightforward enumeration shows that there are 17 distinct cubic
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3 loops (ii): nodal sphere

(ii) Translate to nodal sphere
Use colour-kinematics on the worldsheet

(2πi)4J (3)Y(3) =
∑

α∈S6+2

N (3)
(1+ α 1−)

(1+ α 1−)

• J (3) from modular parameters∏
I<J

dqIJ
qIJ

=
J (g)

vol SL(2,C)
J (g) = J (g)

∏
I±

dσI±

J (3) ∼ Jhyp

Jhyp = σ1+2−σ2+3−σ3+1− − σ1+3−σ3+2−σ2+1−

and Ψ9

∣∣∣
nodal
∼ Jhyp

• Hyperelliptic locus y2 =
∏2g+2
a=1 (x− xa):

Ψ9 = 0 with Ψ9
2 = −

∏
δ

ϑδ(0)

Take-away: • J (3)Y(3) 6= 0 on hyperelliptic Jhyp = 0

• Y(3)
S ∼

χ8(zi)

Ψ9
+ . . .
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3 loops (iii): higher genus

Y(g)
S = `Iµ YµI +

Y0

2πi

I Construction of Ansatz

Requirements:

• mod(Y(g)
S ) = g − 4

• one-form in zi

• Y(3)
S
∣∣

nodal
= Y(3)

I linear in loop mom `I

I hyperelliptic Y0 ∼ Ψ−1
9

Genus-3 tools:

• ∆
(3)
i1i2i3

= detωI(ziJ )

• ring of mod forms
34 generators [Tsuyumine ’86]

• chiral measure Ξ8[δ]/Ψ9
[Cacciatori,Dalla Piazza,van Geemen ’08]

I Result

YµI =
2

3

(
αµ1ωI(z1)∆

(3)
234 +cyc(1234)

)
Y0 = s13s14 (D12, 34 − S12, 34)+cyc(234)

• αµ1 = kµ2 (k3 − k4) · k1 + cyc(234)

• D12, 34 = 1
3

(
ω34(z1)∆

(3)
234 + (1↔ 2)

)
+ (12↔ 34)

• S12, 34 = 1
15

(∑
δ

Ξ8[δ]
Ψ9

(
Sδ12S

δ
23S

δ
34S

δ
41 − 1

16
(Sδ12)2(Sδ34)2

)
+ (1↔ 2)

)
I sum over 36 even spin structures δ
I chiral measure Ξ8[δ]/Ψ9 [C,DP,vG ’08]
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= detωI(ziJ )

• ring of mod forms
34 generators [Tsuyumine ’86]
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Proposal for 3-loop 4-pt superstring integrand

Y(g)
S = `Iµ YµI +

Y0

2πi

YµI =
2

3

(
αµ1ωI(z1)∆

(3)
234 +cyc(1234)

)
Y0 = s13s14 (D12, 34 − S12, 34) + cyc(234)

I Properties
• modular invariance
• field theory limit Y(3)

S
∣∣

nodal
= Y(3)

}
by construction

• homology invariance [D’Hoker,Mafra,Pioline,Schlotterer ’20]

I move zl around BL cycle:

zi → zi + δilBL `I → `I − δIL kl
I invariance from interplay of YµI and D12, 34

I Questions
• simplification of S12, 34

• RNS origin of measure unclear [Witten ’15]

• Functional basis? ↔ Uniqueness?
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� ‘RNS’ model: SM = Sψ1 + Sψ2 (others possible)

• action: Sψ =
�
ψ ·Dψ + χP · ψ with ψµ

r=1,2 ∈ ΠΩ0(K
1/2
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• BRST: free, linear CFTs with dcrit = 10

� target space: A = phase space of complexified null geodesics
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s (−τ25 − τ26 − τ35 + τ36 + τ45 + 2t)
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/3

(j)-(l) s(t− u)/3

ambitwistor string
& scattering equations

A = + + + . . .

ansatz:
modular inv.
homology inv.

(i) start with supergravity loop integrand in a BCJ representation, N (g)

(ii) translate to worldsheet representation

(2πi)4J (g)Y(g) =
�

α∈S2+2g

N (g)
(1+ α 1−)

(1+ α 1−)

(iii) uplift to higher genus: Y(g)
S = Y(g)

A
• Y(g)

A
��
nodal

= Y(g)

• modular invariance

I Outlook

• better understanding strings vs. ambitwistor strings
• stronger evidence for 3-loop 4-pt superstring proposal
• higher loops?
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