Loop Integrands from the Ambitwistor String

Yvonne Geyer

Chulalongkorn University
Bangkok

Twistor Theory and Beyond

arXiv:1507.00321, 1511.06315, 1607.08887, 1805.05344
with Lionel Mason, Ricardo Monteiro and Piotr Tourkine
arXiv:2106.03968
with Ricardo Monteiro and Ricardo Stark-Muchão

Ambitwistor strings and the scattering equations

Lionel Mason and David Skinner ${ }^{\dagger}$
*The Mathematical Institute. Andrew Wiles Building, Woodstock Road, Oxford OX United Kingdom

One-loop amplitudes on the Riemann sphere
Department of Applied Mathe Wilberforce Road, Cambridge United Kingdom

Yvonne Geyer ${ }^{1}$ Lionel Mason. Ricardo Monteiro ${ }^{2}$, Piotr Tourkine ${ }^{3}$
Abstract: We show that which only the massless part

${ }^{1}$ Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK

 ${ }^{2}$ CERN, Theory Group, Geneva, Switzerlandsity of Cambridge, Wilberforce Road, Cambridge CB3 OWA, UK

Loop Integrands for Scattering Amplitudes from the Riemann Sphere

Yvonne Geyer ${ }^{\dagger}$, Lionel Mason ${ }^{\dagger}$. Ricardo Monteiro ${ }^{\dagger}$, Piotr Tourkine ${ }^{\ddagger}$
Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
he scattering equations provide a powerful framework for the study plitudes in a variety of theories. Their derivation from ambitwistor to proposals for formulae at one loop on a torus for 10 dimensional ${ }^{\ddagger}$ DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
we recently showed how these can be reduced to the Riemann sphere

The scattering equations on the Riemann sphere g gauge theory and gravity amplitudes. Adamo, Casali for supergravity amplitudes based on scattering equa to transform this into a formula on the Riemann spl integrands on the Riemann sphere that promises to ha ing equations that depend on the loop momentum. W low points, for supergravity and super-Yang-Mills am Finally, we show that the off-shell scattering equations we give a proposal for the all-loop integrands for supe

Two-Loop Scattering Amplitudes from the Riemann Sphere

$$
\text { Yvonne Geyer }{ }^{1} \text {, Lionel Mason }{ }^{1} \text { Ricardo Monteiro }{ }^{2} \text {, Piotr Tourkine }{ }^{3}
$$

${ }^{1}$ Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
${ }^{12}$ Theoretical Physics Department, CERN, Geneva, Switzerland
${ }^{3}$ DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
The scattering equations give striking formulae for massless scattering amplitudes at tree level and, as shown recently, at one loop. The progress at loop level was based on ambitwistor string theory, which naturally yields the scattering equations. We proposed that, for ambitwistor strings, the standard loop expansion in terms of the genus of the worldsheet is equivalent to an expansion in terms of nodes of a Riemann sphere, with the nodes carrying the loop momenta. In this paper we show how to obtain two-loop scattering equations with the correct. factorization properties. We adapt genus-two integrands from the ambitwistor string to the nodal Riemann sphere and show that these yield correct answers, by matching standard results for the four-point two-loop amplitudes of maximal supergravity and super-Yang-Mills theory. In the Yang-Mills case, this requires the loop analogue of the Parke-Taylor factor carrying the colour dependence, which includes non-planar contributions.

Outline

- Worldsheet models for Field Theory
- sugra amplitudes
$=$ ambitwistor string correlators
- simplification via residue theorem

Outline

- Worldsheet models for Field Theory
- sugra amplitudes
$=$ ambitwistor string correlators
- simplification via residue theorem

- Status of loop amplitudes

Outline

- Worldsheet models for Field Theory
- sugra amplitudes
$=$ ambitwistor string correlators
- simplification via residue theorem

- Status of loop amplitudes

Outline

- Worldsheet models for Field Theory
- sugra amplitudes
$=$ ambitwistor string correlators
- simplification via residue theorem

- Status of loop amplitudes

Worldsheet Model:
Ambitwistor String

Worldsheet models for Field Theory

- chiral worldsheet theory: $X^{\mu} \in \Omega^{0}(\Sigma), P_{\mu} \in \Omega^{0}\left(K_{\Sigma}\right)$
- 'RNS' model: $S_{M}=S_{\psi_{1}}+S_{\psi_{2}} \quad$ (others possible)
- action: $S_{\psi}=\int \psi \cdot \bar{D} \psi+\chi P \cdot \psi$ with $\psi_{r=1,2}^{\mu} \in \Pi \Omega^{0}\left(K_{\Sigma}^{1 / 2}\right)$
- BRST: free, linear CFTs with $d_{\text {crit }}=10$

Worldsheet models for Field Theory

Ambitwistor string

```
[Mason,Skinner '13; c.f. Berkovits]
```

$$
\bar{D}=\bar{\partial}+e \partial
$$

no α^{\prime} !

$$
S_{\mathrm{A}}=\frac{1}{2 \pi} \int_{\Sigma} P \cdot \stackrel{\downarrow}{\bar{D}} X-\frac{\tilde{e}}{2} P^{2}+S_{M}
$$

- chiral worldsheet theory: $X^{\mu} \in \Omega^{0}(\Sigma), P_{\mu} \in \Omega^{0}\left(K_{\Sigma}\right)$
- 'RNS' model: $S_{M}=S_{\psi_{1}}+S_{\psi_{2}} \quad$ (others possible)
- action: $\quad S_{\psi}=\int \psi \cdot \bar{D} \psi+\chi P \cdot \psi$ with $\psi_{r=1,2}^{\mu} \in \Pi \Omega^{0}\left(K_{\Sigma}^{1 / 2}\right)$
- BRST: free, linear CFTs with $d_{\text {crit }}=10$
- target space: $\mathbb{A}=$ phase space of complexified null geodesics

Vector vs twistor representations of \mathbb{A}

- Vector representation [Mason,Skinner '13; c.f. Berkovits]

$$
S_{\mathbb{A}}=\frac{1}{2 \pi} \int_{\Sigma} P \cdot \bar{D} X-\frac{\tilde{e}}{2} P^{2}+S_{M}
$$

- 'RNS' ambitwistor string

- $\mathbb{A}=\left\{(X, P) \in T^{*} \mathbb{M} \mid P^{2}=0\right\} /\left\{P \cdot \partial_{X}\right\}$

Vector vs twistor representations of \mathbb{A}

- Vector representation [Mason,Skinner '13; c.f. Berkovits]

$$
S_{\mathbb{A}}=\frac{1}{2 \pi} \int_{\Sigma} P \cdot \bar{D} X-\frac{\tilde{e}}{2} P^{2}+S_{M}
$$

- 'RNS' ambitwistor string

- $\mathbb{A}=\left\{(X, P) \in T^{*} \mathbb{M} \mid P^{2}=0\right\} /\left\{P \cdot \partial_{X}\right\}$
- Twistor representation

$$
S=\int_{\Sigma} W \cdot \bar{D} Z-Z \cdot \bar{D} W+a Z \cdot W
$$

- 4d twistor / ambitwistor string

- $Z \in \Omega^{0}\left(K_{\Sigma}^{1 / 2} \otimes \mathbb{T}\right), W \in \Omega^{0}\left(K_{\Sigma}^{1 / 2} \otimes \mathbb{T}^{*}\right)$
- $\mathbb{A}=\left\{(Z, W) \in \mathbb{T} \times \mathbb{T}^{*} \mid Z \cdot W=0\right\} /\left\{W \cdot \partial_{W}-Z \cdot \partial_{Z}\right\}$
- Vector representation [Mason,Skinner '13; c.f. Berkovits]

$$
S_{\mathbb{A}}=\frac{1}{2 \pi} \int_{\Sigma} P \cdot \bar{D} X-\frac{\tilde{e}}{2} P^{2}+S_{M}
$$

- 'RNS' ambitwistor string

- $\mathbb{A}=\left\{(X, P) \in T^{*} \mathbb{M} \mid P^{2}=0\right\} /\left\{P \cdot \partial_{X}\right\}$
- Twistor representation

$$
S=\int_{\Sigma} W \cdot \bar{D} Z-Z \cdot \bar{D} W+a Z \cdot W
$$

- 4d twistor / ambitwistor string

- $Z \in \Omega^{0}\left(K_{\Sigma}^{1 / 2} \otimes \mathbb{T}\right), W \in \Omega^{0}\left(K_{\Sigma}^{1 / 2} \otimes \mathbb{T}^{*}\right)$
- $\mathbb{A}=\left\{(Z, W) \in \mathbb{T} \times \mathbb{T}^{*} \mid Z \cdot W=0\right\} /\left\{W \cdot \partial_{W}-Z \cdot \partial_{Z}\right\}$
- related models in $d=5,6$

Spectrum and correlators

- Spectrum: type II supergravity

$$
V_{\mathrm{NS}}=c \tilde{c} \delta\left(\gamma_{1}\right) \delta\left(\gamma_{2}\right) \epsilon_{\mu \nu} \psi_{1}^{\mu} \psi_{2}^{\nu} e^{i k \cdot X} \quad \text { with } k^{2}=\epsilon_{\mu \nu} k^{\nu}=\epsilon_{\mu \nu} k^{\mu}=0
$$

\Rightarrow worldsheet theory for QFT amplitudes

Spectrum and correlators

- Spectrum: type II supergravity

$$
\begin{gathered}
V_{\mathrm{NS}}=c \tilde{c} \delta\left(\gamma_{1}\right) \delta\left(\gamma_{2}\right) \epsilon_{\mu \nu} \psi_{1}^{\mu} \psi_{2}^{\nu} e^{i k \cdot X} \quad \text { with } k^{2}=\epsilon_{\mu \nu} k^{\nu}=\epsilon_{\mu \nu} k^{\mu}=0 \\
\Rightarrow \text { worldsheet theory for QFT amplitudes }
\end{gathered}
$$

- correlators $=$ field theory amplitudes

Spectrum and correlators

- Spectrum: type II supergravity

$$
\begin{gathered}
V_{\mathrm{NS}}=c \tilde{c} \delta\left(\gamma_{1}\right) \delta\left(\gamma_{2}\right) \epsilon_{\mu \nu} \psi_{1}^{\mu} \psi_{2}^{\nu} e^{i k \cdot X} \quad \text { with } k^{2}=\epsilon_{\mu \nu} k^{\nu}=\epsilon_{\mu \nu} k^{\mu}=0 \\
\Rightarrow \text { worldsheet theory for QFT amplitudes }
\end{gathered}
$$

- correlators $=$ field theory amplitudes

- tree-level $=$ CHY amplitude ${ }_{[C a c h a z o, ~ H e, ~ Y u a n ~ ' 13] ~}$

$$
\mathcal{A}_{n}^{(0)}=\left\langle\prod_{i=1}^{n} V\left(\sigma_{i}\right)\right\rangle=\int_{\mathfrak{M}_{0, n}} \frac{d^{n} \sigma}{\operatorname{volSL}(2, \mathbb{C})} \prod_{i}^{\prime} \bar{\delta}\left(\mathcal{E}_{i}\right) \mathcal{I}_{n}
$$

Spectrum and correlators

- Spectrum: type II supergravity

$$
\begin{gathered}
V_{\mathrm{NS}}=c \tilde{c} \delta\left(\gamma_{1}\right) \delta\left(\gamma_{2}\right) \epsilon_{\mu \nu} \psi_{1}^{\mu} \psi_{2}^{\nu} e^{i k \cdot X} \quad \text { with } k^{2}=\epsilon_{\mu \nu} k^{\nu}=\epsilon_{\mu \nu} k^{\mu}=0 \\
\Rightarrow \text { worldsheet theory for QFT amplitudes }
\end{gathered}
$$

- correlators $=$ field theory amplitudes

- tree-level $=$ CHY amplitude ${ }_{[C a c h a z o, ~ H e, ~ Y u a n ~ ' 13] ~}$

$$
\mathcal{A}_{n}^{(0)}=\left\langle\prod_{i=1}^{n} V\left(\sigma_{i}\right)\right\rangle=\int_{\mathfrak{M}_{0, n}} \frac{d^{n} \sigma}{\operatorname{volSL}(2, \mathbb{C})} \prod_{i}^{\prime} \bar{\delta}\left(\mathcal{E}_{i}\right) \mathcal{I}_{n}
$$

Spectrum and correlators

- Spectrum: type II supergravity

$$
V_{\mathrm{NS}}=c \tilde{c} \delta\left(\gamma_{1}\right) \delta\left(\gamma_{2}\right) \epsilon_{\mu \nu} \psi_{1}^{\mu} \psi_{2}^{\nu} e^{i k \cdot X} \quad \text { with } k^{2}=\epsilon_{\mu \nu} k^{\nu}=\epsilon_{\mu \nu} k^{\mu}=0
$$

\Rightarrow worldsheet theory for QFT amplitudes

- correlators $=$ field theory amplitudes

- tree-level $=$ CHY amplitude ${ }_{[C a c h a z o, ~ H e, ~ Y u a n ~ ' 13] ~}$

$$
\mathcal{A}_{n}^{(0)}=\left\langle\prod_{i=1}^{n} V\left(\sigma_{i}\right)\right\rangle=\int_{\mathfrak{M}_{0, n}} \frac{d^{n} \sigma}{\operatorname{volSL}(2, \mathbb{C})} \prod_{i}^{\prime} \bar{\delta}\left(\mathcal{E}_{i}\right) \mathcal{I}_{n}
$$

- P localizes onto EoM: $\quad \bar{\partial} P_{\mu}=\sum_{i} k_{i \mu} \bar{\delta}\left(\sigma-\sigma_{i}\right) d \sigma$
- tree-level:

$$
P_{\mu}=\sum_{i} \frac{k_{i \mu}}{\sigma-\sigma_{i}} d \sigma
$$

Spectrum and correlators

- Spectrum: type II supergravity

$$
V_{\mathrm{NS}}=c \tilde{c} \delta\left(\gamma_{1}\right) \delta\left(\gamma_{2}\right) \epsilon_{\mu \nu} \psi_{1}^{\mu} \psi_{2}^{\nu} e^{i k \cdot X} \quad \text { with } \quad k^{2}=\epsilon_{\mu \nu} k^{\nu}=\epsilon_{\mu \nu} k^{\mu}=0
$$

\Rightarrow worldsheet theory for QFT amplitudes

- correlators $=$ field theory amplitudes

- tree-level $=$ CHY amplitude ${ }_{[C a c h a z o, ~ H e, ~ Y u a n ~ ' 13] ~}$

$$
\mathcal{A}_{n}^{(0)}=\left\langle\prod_{i=1}^{n} V\left(\sigma_{i}\right)\right\rangle=\int_{\mathfrak{M}_{0, n}} \frac{d^{n} \sigma}{\operatorname{volSL}(2, \mathbb{C})} \prod_{i}^{\prime} \bar{\delta}\left(\mathcal{E}_{i}\right) \mathcal{I}_{n}
$$

- P localizes onto EoM: $\quad \bar{\partial} P_{\mu}=\sum_{i} k_{i \mu} \bar{\delta}\left(\sigma-\sigma_{i}\right) d \sigma$
- tree-level:

$$
P_{\mu}=\sum_{i} \frac{k_{i \mu}}{\sigma-\sigma_{i}} d \sigma
$$

- $P^{2}=0 \leftrightarrow$

> scattering equations
> $\mathcal{E}_{i}=\operatorname{Res}_{\sigma_{i}} P^{2}=2 k_{i} \cdot P\left(\sigma_{i}\right)$

CHY amplitudes

$$
\mathcal{A}_{n}^{(0)}=\int_{\mathfrak{M}_{0, n}} \frac{d^{n} \sigma}{\operatorname{volSL}(2, \mathbb{C})} \prod_{i}^{\prime} \bar{\delta}\left(\mathcal{E}_{i}\right) \mathcal{I}_{n}^{(0)}
$$

$$
\mathcal{A}_{n}^{(0)}=\int_{\mathfrak{M}_{0, n}} \frac{d^{n} \sigma}{\operatorname{volSL}(2, \mathbb{C})} \prod_{i}^{\prime} \bar{\delta}\left(\mathcal{E}_{i}\right) \mathcal{I}_{n}^{(0)}
$$

- Measure
- integral over $\mathfrak{M}_{0, n}$

CHY amplitudes

$$
\mathcal{A}_{n}^{(0)}=\int_{\mathfrak{M}_{0, n}} \frac{d^{n} \sigma}{\operatorname{volSL}(2, \mathbb{C})} \prod_{i}^{\prime} \bar{\delta}_{\uparrow}\left(\mathcal{E}_{i}\right) \mathcal{I}_{n}^{(0)}
$$

- Measure
momenta $k_{i} \in \mathbb{R}^{d}$
- fully localized on scattering equations

$$
\mathcal{E}_{i}=\operatorname{Res}_{\sigma_{i}} P^{2}=\sum_{j \neq i} \frac{2 k_{i} \cdot k_{j}}{\sigma_{i}-\sigma_{j}} \quad \text { with } P_{\mu}(\sigma)=\sum_{i} \frac{k_{i \mu}}{\sigma-\sigma_{i}} d \sigma
$$

$$
\mathcal{A}_{n}^{(0)}=\int_{\mathfrak{M}_{0, n}} \frac{d^{n} \sigma}{\operatorname{volSL}(2, \mathbb{C})} \prod_{i}^{\prime} \bar{\delta}\left(\mathcal{E}_{i}\right) \mathcal{I}_{n}^{(0)}
$$

- Measure
- integral over $\mathfrak{M}_{0, n}$
- fully localized on scattering equations

$$
\mathcal{E}_{i}=\operatorname{Res}_{\sigma_{i}} P^{2}=\sum_{j \neq i} \frac{2 k_{i} \cdot k_{j}}{\sigma_{i}-\sigma_{j}} \quad \text { with } \quad P_{\mu}(\sigma)=\sum_{i} \frac{k_{i \mu}}{\sigma-\sigma_{i}} d \sigma
$$

- Integrand $\mathcal{I}_{n}^{(0)}$
- specifies theory

$$
\begin{array}{lll}
\text { Yang-Mills, } & \epsilon_{\mu} t^{a} e^{i k \cdot X}: & \mathcal{I}_{\mathrm{YM}}=\mathcal{I}_{\text {kin }\left(\sigma_{i}, k_{i}, \epsilon_{i}\right)} \times \mathcal{C}\left(\sigma_{i}, \mathfrak{a}_{\mathrm{i}}\right) \\
\text { Gravity, } & \epsilon_{\mu} \tilde{\epsilon}_{\nu} e^{i k \cdot X}: & \mathcal{I}_{\text {grav }}=\mathcal{I}_{\text {kin }}\left(\sigma_{i}, k_{i}, \epsilon_{i}\right) \times \mathcal{I}_{\text {kin }}\left(\sigma_{i}, k_{i}, \tilde{\epsilon}_{i}\right)
\end{array}
$$

$$
\mathcal{A}_{n}^{(0)}=\int_{\mathfrak{M}_{0, n}} \frac{d^{n} \sigma}{\operatorname{volSL}(2, \mathbb{C})} \prod_{i}^{\prime} \bar{\delta}\left(\mathcal{E}_{i}\right) \mathcal{I}_{n}^{(0)}
$$

- Measure
- integral over $\mathfrak{M}_{0, n}$
- fully localized on scattering equations

$$
\mathcal{E}_{i}=\operatorname{Res}_{\sigma_{i}} P^{2}=\sum_{j \neq i} \frac{2 k_{i} \cdot k_{j}}{\sigma_{i}-\sigma_{j}} \quad \text { with } \quad P_{\mu}(\sigma)=\sum_{i} \frac{k_{i \mu}}{\sigma-\sigma_{i}} d \sigma
$$

- Integrand $\mathcal{I}_{n}^{(0)}$
- specifies theory

$$
\begin{array}{lll}
\text { Yang-Mills, } & \epsilon_{\mu} t^{a} e^{i k \cdot X}: & \mathcal{I}_{\text {YM }}=\mathcal{I}_{\text {kin }\left(\sigma_{i}, k_{i}, \epsilon_{i}\right)} \times \mathcal{C}_{\left(\sigma_{i}, a_{\mathrm{i}}\right)} \\
\text { Gravity, } & \epsilon_{\mu} \tilde{\epsilon}_{\nu} e^{i k \cdot X}: & \mathcal{I}_{\text {grav }}=\mathcal{I}_{\text {kin }}\left(\sigma_{i}, k_{i}, \epsilon_{i}\right) \times \mathcal{I}_{\text {kin }}\left(\sigma_{i}, k_{i}, \tilde{\epsilon}_{i}\right)
\end{array}
$$

- 'woldsheet double copy' c.f [Kawai,Lemellen, Tye ' '86; Bern, Carrasco, Johansson '08]

$$
\text { Gravity } \sim \mathrm{YM}^{2}
$$

Integrand and the Colour-kinematics duality

- Colour-kinematics duality
$\mathcal{A}_{\mathrm{YM}}=\sum_{\alpha \in \Gamma_{n}} \frac{N_{\alpha(\epsilon)}}{D_{\alpha}}$ $\mathcal{A}_{\mathrm{grav}}=\sum_{\alpha \in \Gamma_{n}} \frac{N_{\alpha(\epsilon)} N_{\alpha}(\tilde{\epsilon})}{D_{\alpha}}$

Kinematic numerators N_{α} satisfying same Jacobi's as C_{α} :

$=\left.\left.\right|_{1} ^{2}\right|_{4} ^{3}$

Integrand and the Colour-kinematics duality

- Colour-kinematics duality

$$
\mathcal{A}_{\mathrm{YM}}=\sum_{\alpha \in \Gamma_{n}} \frac{N_{\alpha}(\epsilon) C_{\alpha}(\mathfrak{a})}{D_{\alpha}} \quad \mathcal{A}_{\mathrm{grav}}=\sum_{\alpha \in \Gamma_{n}} \frac{N_{\alpha}(\epsilon) N_{\alpha}(\tilde{\epsilon})}{D_{\alpha}}
$$

Kinematic numerators N_{α} satisfying same Jacobi's as C_{α} :

$=\left.\left.\right|_{1} ^{2}\right|_{4} ^{3}$

- CHY integrands
[CHY '13; Bjerrum-Bohr et.al. '16, ...]

Integrand and the Colour-kinematics duality

- Colour-kinematics duality

$$
\mathcal{A}_{\mathrm{YM}}=\sum_{\alpha \in \Gamma_{n}} \frac{N_{\alpha}(\epsilon) C_{\alpha}(\mathfrak{a})}{D_{\alpha}} \quad \mathcal{A}_{\mathrm{grav}}=\sum_{\alpha \in \Gamma_{n}} \frac{N_{\alpha}(\epsilon) N_{\alpha}(\tilde{\epsilon})}{D_{\alpha}}
$$

Kinematic numerators N_{α} satisfying same Jacobi's as C_{α} :

- CHY integrands
[CHY '13; Bjerrum-Bohr et.al. '16, ...]
- Connection to BCJ:

$$
\mathcal{C}_{(\mathfrak{a})}=\sum_{\alpha \in S_{n-2}} \frac{C_{\alpha(\mathfrak{a})}}{(1 \alpha n)} \quad \mathcal{I}_{\text {kin }(\epsilon)} \stackrel{\text { SE }}{=} \sum_{\alpha \in S_{n-2}} \frac{N_{\alpha(\epsilon)}}{(1 \alpha n)}
$$

Parke-Taylor factor
$(12 \ldots n):=\sigma_{12} \sigma_{23} \ldots \sigma_{n 1}$

Integrand and the Colour-kinematics duality

- Colour-kinematics duality

$$
\mathcal{A}_{\mathrm{YM}}=\sum_{\alpha \in \Gamma_{n}} \frac{N_{\alpha(\epsilon)} C_{\alpha(\mathfrak{a})}}{D_{\alpha}} \quad \mathcal{A}_{\mathrm{grav}}=\sum_{\alpha \in \Gamma_{n}} \frac{N_{\alpha(\epsilon)} N_{\alpha(\tilde{\epsilon})}}{D_{\alpha}}
$$

Kinematic numerators N_{α} satisfying same Jacobi's as C_{α} :

- CHY integrands
[CHY '13; Bjerrum-Bohr et.al. '16, ...]
- Connection to BCJ:

$$
\mathcal{C}(\mathfrak{a})=\sum_{\alpha \in S_{n-2}} \frac{C_{\alpha(\mathfrak{a})}}{(1 \alpha n)} \quad \mathcal{I}_{\mathrm{kin}(\epsilon)} \stackrel{\mathrm{SE}}{=} \sum_{\alpha \in S_{n-2}} \frac{N_{\alpha(\epsilon)}}{(1 \alpha n)}
$$

- Colour C_{α} and BCJ numerators N_{α} for 'half-ladder' master diagrams

Integrand and the Colour-kinematics duality

- Colour-kinematics duality

$$
\mathcal{A}_{\mathrm{YM}}=\sum_{\alpha \in \Gamma_{n}} \frac{N_{\alpha}(\epsilon) C_{\alpha(\mathfrak{a})}}{D_{\alpha}}
$$

$$
\mathcal{A}_{\text {grav }}=\sum_{\alpha \in \Gamma_{n}} \frac{N_{\alpha(\epsilon)} N_{\alpha(\tilde{\epsilon})}}{D_{\alpha}}
$$

Kinematic numerators N_{α} satisfying same Jacobi's as C_{α} :

- CHY integrands
[CHY '13; Bjerrum-Bohr et.al. '16, ...]
- Connection to BCJ:

$$
\mathcal{C}(\mathfrak{a})=\sum_{\alpha \in S_{n-2}} \frac{\left.C_{\alpha(\mathfrak{a}}\right)}{(1 \alpha n)} \quad \mathcal{I}_{\mathrm{kin}(\epsilon)} \stackrel{\text { SE }}{=} \sum_{\alpha \in S_{n-2}} \frac{N_{\alpha(\epsilon)}}{(1 \alpha n)}
$$

- Colour C_{α} and BCJ numerators N_{α} for 'half-ladder' master diagrams

genus- g correlators $=$ loop integrands

Genus- g correlator $=$ loop int's

$$
\mathcal{A}_{n}^{(g)}=\left\langle\prod_{i=1}^{n} V\left(\sigma_{i}\right)\right\rangle_{\Sigma_{g}}
$$

Genus- g correlator $=$ loop int's

$$
\mathcal{A}_{n}^{(g)}=\left\langle\prod_{i=1}^{n} V\left(\sigma_{i}\right)\right\rangle_{\Sigma_{g}}=\int d^{10} \ell^{I} \int_{\mathfrak{M}_{g, n}} \prod_{I \leq J} d \Omega_{I J} \bar{\delta}\left(u^{I J}\right) \prod_{i} \bar{\delta}\left(\mathcal{E}_{i}\right) \mathcal{I}_{n}^{(g)}
$$

- Moduli space $\mathfrak{M}_{g, n}$
- homology basis: $\#\left(A_{I}, B_{J}\right)=\delta_{I J}$ modular group: $\quad \operatorname{Sp}(4, \mathbb{Z})_{\#}$
- holomorphic differentials ω_{I}

$$
\delta_{I J}=\oint_{A_{I}} \omega_{J} \quad \Omega_{I J}=\oint_{B_{I}} \omega_{J}
$$

$$
\mathcal{A}_{n}^{(g)}=\left\langle\prod_{i=1}^{n} V\left(\sigma_{i}\right)\right\rangle_{\Sigma_{g}}=\int d^{10} \ell^{I} \int_{\mathfrak{M}_{g, n}} \prod_{I \leq J} d \Omega_{I J} \bar{\delta}\left(u^{I J}\right) \prod_{i} \bar{\delta}\left(\mathcal{E}_{i}\right) \mathcal{I}_{n}^{(g)}
$$

- Moduli space $\mathfrak{M}_{g, n}$
- homology basis: $\#\left(A_{I}, B_{J}\right)=\delta_{I J}$ modular group: $\quad \operatorname{Sp}(4, \mathbb{Z})_{\#}$
- holomorphic differentials ω_{I}

$$
\delta_{I J}=\oint_{A_{I}} \omega_{J} \quad \Omega_{I J}=\oint_{B_{I}} \omega_{J}
$$

- Scattering equations
- P determined by $\bar{\partial} P=\sum_{i} k_{i} \bar{\delta}\left(z-z_{i}\right) d z$

$$
P_{\mu}(z)=2 \pi i \ell_{\mu}^{I} \omega_{I}(z)+\sum_{i} k_{i \mu} \omega_{i, *}(z)
$$

$$
\mathcal{A}_{n}^{(g)}=\left\langle\prod_{i=1}^{n} V\left(\sigma_{i}\right)\right\rangle_{\Sigma_{g}}=\int d^{10} \ell^{I} \int_{\mathfrak{M}_{g, n}} \prod_{I \leq J} d \Omega_{I J} \bar{\delta}\left(u^{I J}\right) \prod_{i} \bar{\delta}\left(\mathcal{E}_{i}\right) \mathcal{I}_{n}^{(g)}
$$

- Moduli space $\mathfrak{M}_{g, n}$
- homology basis: $\#\left(A_{I}, B_{J}\right)=\delta_{I J}$ modular group: $\quad \operatorname{Sp}(4, \mathbb{Z})_{\#}$
- holomorphic differentials ω_{I}

$$
\delta_{I J}=\oint_{A_{I}} \omega_{J} \quad \Omega_{I J}=\oint_{B_{I}} \omega_{J}
$$

- Scattering equations
- P determined by $\bar{\partial} P=\sum_{i} k_{i} \bar{\delta}\left(z-z_{i}\right) d z$

$$
P_{\mu}(z)=2 \pi i \ell_{\mu}^{I} \omega_{I}(z)+\sum_{i} k_{i \mu} \omega_{i, *}(z)
$$

- scattering equations enforce $P^{2}(z)=0$:

$$
\mathcal{E}_{i}=\left.\operatorname{Res}_{z_{i}} P^{2} \quad P^{2}\right|_{\mathcal{E}_{i}=0}=u^{I J} \omega_{I} \omega_{J}
$$

$$
\mathcal{A}_{n}^{(g)}=\int d^{10} \ell^{I} \int_{\mathfrak{M}_{g, n}} \prod_{I \leq J} d \Omega_{I J} \bar{\delta}\left(u^{I J}\right) \prod_{i} \bar{\delta}\left(\mathcal{E}_{i}\right) \mathcal{I}_{n}^{(g)}
$$

- Properties
- modular invariance
- localization on scattering equations

$$
\operatorname{dim} \mathfrak{M}_{g, n}=\# \text { SE's }=3 g-3+n
$$

$$
\mathcal{A}_{n}^{(g)}=\int d^{10} \ell^{I} \int_{\mathfrak{M} g, n} \prod_{I \leq J} d \Omega_{I J} \bar{\delta}\left(u^{I J}\right) \prod_{i} \bar{\delta}\left(\mathcal{E}_{i}\right) \mathcal{I}_{n}^{(g)}
$$

- Properties
- modular invariance
- localization on scattering equations

$$
\operatorname{dim} \mathfrak{M}_{g, n}=\# \text { SE's }=3 g-3+n
$$

- Questions
- loop integration UV divergent in $d=10$
- calculation of loop integrand?

Field theory! How can we see that the integrand is rational?

- Residue theorem on fundamental domain Look at $g=1$:

Residue theorem to the nodal sphere

- Residue theorem on fundamental domain Look at $g=1$:

Residue theorem to the nodal sphere

- Residue theorem on fundamental domain Look at $g=1$:

Residue theorem to the nodal sphere

- Residue theorem on fundamental domain Look at $g=1$:

- Integrand localizes on nodal sphere

$$
\begin{aligned}
\mathfrak{I}_{n}^{(1)} & =\int_{\mathfrak{M}_{1, n}} \frac{d q}{q} \bar{\delta}(u) \mathcal{I}^{(1)}(q) \\
& =
\end{aligned}
$$

- Residue theorem on fundamental domain Look at $g=1$:

- Integrand localizes on nodal sphere

$$
\begin{aligned}
\mathfrak{J}_{n}^{(1)} & =\int_{\mathfrak{M}_{1, n}} \frac{d q}{q} \bar{\delta}(u) \mathcal{I}^{(1)}(q) \stackrel{\text { res }}{=}-\int_{\mathfrak{M}_{1, n}} \frac{d q}{u} \bar{\delta}(q) \mathcal{I}^{(1)}(q)=-\frac{1}{\ell^{2}} \int_{\mathfrak{M}_{0, n+2}} \mathcal{I}^{(1)}(0) \\
& = \\
& \stackrel{\text { res }}{=}
\end{aligned}
$$

$$
\mathcal{A}_{n}^{(g)}=\int \frac{d^{10} \ell^{I}}{\prod\left(\ell^{I}\right)^{2}} \int_{\mathfrak{M}_{0, n+2 g}} c^{(g)}\left(\mathcal{J}^{(g)} \mathcal{I}_{L}^{(g)}\right)\left(\mathcal{J}^{(g)} \mathcal{I}_{R}^{(g)}\right) \prod_{A=1}^{n+2 g}{ }^{\prime} \bar{\delta}\left(\mathcal{E}_{A}\right)
$$

- From residue theorem
- traded localization on $P^{2}=0$ for $q_{I I}=e^{i \pi \Omega_{I I}}=0$

$$
\mathcal{A}_{n}^{(g)}=\int \frac{d^{10} \ell^{I}}{\prod\left(\ell^{I}\right)^{2}} \int_{\mathfrak{M}_{0, n+2 g}} c^{(g)}\left(\mathcal{J}^{(g)} \mathcal{I}_{L}^{(g)}\right)\left(\mathcal{J}^{(g)} \mathcal{I}_{R}^{(g)}\right) \prod_{A=1}^{n+2 g} \bar{\delta}\left(\mathcal{E}_{A}\right)
$$

- From residue theorem
- traded localization on $P^{2}=0$ for $q_{I I}=e^{i \pi \Omega_{I I}}=0$
- modular parameters $q_{I J}=e^{2 i \pi \Omega_{I J}}$ vs. nodal points $\sigma_{I^{ \pm}}$

$$
\begin{aligned}
\prod_{I<J} \frac{d q_{I J}}{q_{I J}}=\frac{\mathcal{J}^{(g)}}{\operatorname{vol} \operatorname{SL}(2, \mathbb{C})} \quad \mathcal{J}^{(g)}=J^{(g)} \prod_{I^{ \pm}} d \sigma_{I^{ \pm}} \\
J^{(1)}=\left(\sigma_{+-}\right)^{-2} \quad * *
\end{aligned}
$$

- From residue theorem
- traded localization on $P^{2}=0$ for $q_{I I}=e^{i \pi \Omega_{I I}}=0$
- modular parameters $q_{I J}=e^{2 i \pi \Omega_{I J}}$ vs. nodal points $\sigma_{I^{ \pm}}$

$$
\prod_{I<J} \frac{d q_{I J}}{q_{I J}}=\frac{\mathcal{J}^{(g)}}{\operatorname{vol} \operatorname{SL}(2, \mathbb{C})} \quad \mathcal{J}^{(g)}=J^{(g)} \prod_{I^{ \pm}} d \sigma_{I^{ \pm}}
$$

- $c^{(g)}$ remnant of fundamental domain

$$
\mathcal{A}_{n}^{(g)}=\int \frac{d^{10} \ell^{I}}{\prod\left(\ell^{I}\right)^{2}} \int_{\mathfrak{M}_{0, n+2 g}} c^{(g)}\left(\mathcal{J}^{(g)} \mathcal{I}_{L}^{(g)}\right)\left(\mathcal{J}^{(g)} \mathcal{I}_{R}^{(g)}\right) \prod_{A=1}^{n+2 g} \bar{\delta}^{\left.n+\mathcal{E}_{A}\right)}
$$

- From residue theorem
- traded localization on $P^{2}=0$ for $q_{I I}=e^{i \pi \Omega_{I I}}=0$
- modular parameters $q_{I J}=e^{2 i \pi \Omega_{I J}}$ vs. nodal points $\sigma_{I^{ \pm}}$

$$
\prod_{I<J} \frac{d q_{I J}}{q_{I J}}=\frac{\mathcal{J}^{(g)}}{\operatorname{vol~SL}(2, \mathbb{C})} \quad \mathcal{J}^{(g)}=J^{(g)} \prod_{I^{ \pm}} d \sigma_{I^{ \pm}}
$$

- $c^{(g)}$ remnant of fundamental domain
- Scattering equations

$$
\mathcal{E}_{A}=\operatorname{Res}_{\sigma_{A}} \mathfrak{P}^{(g)} \quad \mathfrak{P}^{(g)}=P^{2}-\left(\ell^{I} \omega_{I^{+} I^{-}}\right)^{2}+L_{(g)}^{I J} \omega_{I^{+}{ }_{I^{-}}} \omega_{J^{+} J^{-}}
$$

Comments

- Different theories possible
- dim. red. to $d \leq 10$
- sugra and sYM (next slide)

- Different theories possible
- dim. red. to $d \leq 10$
- sugra and sYM (next slide)

- Unorthodox integrand representation
- 'linear' propagator factors of form $2 \ell_{I} \cdot K+K^{2}$
- related to standard representation by residue theorem
- Different theories possible
- dim. red. to $d \leq 10$
- sugra and sYM (next slide)
- Unorthodox integrand representation
- 'linear' propagator factors of form $2 \ell_{I} \cdot K+K^{2}$
- related to standard representation by residue theorem

- Different theories possible
- dim. red. to $d \leq 10$
- sugra and sYM (next slide)
- Unorthodox integrand representation
- 'linear' propagator factors of form $2 \ell_{I} \cdot K+K^{2}$
- related to standard representation by residue theorem

- Different theories possible
- dim. red. to $d \leq 10$
- sugra and sYM (next slide)

- Unorthodox integrand representation
- 'linear' propagator factors of form $2 \ell_{I} \cdot K+K^{2}$
- related to standard representation by residue theorem

- Physical interpretation of $\mathfrak{P}^{(g)}$ and $c^{(g)}$
- $\mathfrak{P}^{(g)}$: correct poles in 'linear' representation
- $c^{(g)}$: no unphysical poles
- BCJ double copy at g loops

State-of-the-art: 5 loops
[Bern, Carrasco, Chen, Edison, Johansson, Parra-Martinez, Roiban, Zeng '17-18]

$$
\mathcal{A}_{\mathrm{YM}}^{(g)}=\sum_{\alpha \in \Gamma_{n}^{(g)}} \int_{I=1}^{g} d^{D} \ell^{I} \frac{N_{\alpha}(\epsilon) C_{\alpha}(\mathfrak{a})}{S_{\alpha} D_{\alpha}} \quad \mathcal{A}_{\mathrm{grav}}^{(g)}=\sum_{\substack{\text { symmetry } \\ \text { factor }}} \int \prod_{I=\Gamma_{n}^{(g)}}^{g} d^{D} \ell^{I} \frac{N_{\alpha}(\epsilon) N_{\alpha}(\tilde{\epsilon})}{S_{\alpha} D_{\alpha}}
$$

- BCJ double copy at g loops

State-of-the-art: 5 loops

[Bern, Carrasco, Chen, Edison, Johansson, Parra-Martinez, Roiban, Zeng '17-18]

$$
\mathcal{A}_{\mathrm{YM}}^{(g)}=\sum_{\alpha \in \Gamma_{n}^{(g)}} \int \prod_{I=1}^{g} d^{D} \ell^{I} \frac{N_{\alpha(\epsilon)} C_{\alpha(\mathfrak{a})}}{S_{\alpha} D_{\alpha}} \quad \mathcal{A}_{\mathrm{grav}}^{(g)}=\sum_{\alpha \in \Gamma_{n}^{(g)}} \int \prod_{I=1}^{g} d^{D} \ell^{I} \frac{N_{\alpha(\epsilon)} N_{\alpha}(\tilde{\epsilon})}{S_{\alpha} D_{\alpha}}
$$

- Nodal sphere
- sYM from single copy

$$
\mathcal{I}_{\text {YM }}^{(g)}=\mathcal{C}^{(g)}\left(\mathcal{J}^{(g)} \mathcal{I}_{\text {kin }}^{(g)}(\epsilon)\right) \quad \mathcal{I}_{\text {grav }}^{(g)}=\left(\mathcal{J}^{(g)} \mathcal{I}_{\text {kin }}^{(g)}{ }^{(\epsilon)}\right)\left(\mathcal{J}^{(g)} \mathcal{I}_{\text {kin }}^{(g)}(\tilde{\epsilon})\right)
$$

- Half-integrands in BCJ representation:

$$
\mathcal{C}^{(g)}=\sum_{\alpha \in S_{n+2 g-2}} \frac{C^{(g)}\left(1^{+} \alpha 1^{-}\right)}{\left(1^{+} \alpha 1^{-}\right)} \quad \mathcal{J}^{(g)} \mathcal{I}_{\text {kin }}^{(g)}=\sum_{\alpha \in S_{n+2 g-2}} \frac{N^{(g)}\left(1^{+} \alpha, 1^{-}\right)}{\left(1^{+} \alpha 1^{-}\right)}
$$

- 'half-ladder' master diagrams

$$
=
$$

Beyond two loops?
 Hard! Need new strategy.

Status of loop amplitudes: Superstring vs Supergravity

- Superstring

4-pt amplitude, massless external states

- tree-level and 1-loop: [Green, Schwarz '82]
- 2-loops: [D'Hoker, Phong; Berkovits '05]
- 3-loops: partial work [D'Hoker, Phong; Cacciatori, d.Piazza, v.Greemen]
[Gomez, Mafra '13]

Status of loop amplitudes: Superstring vs Supergravity

- Superstring

4-pt amplitude, massless external states

- tree-level and 1-loop: [Green, Schwar2 '82]
- 2-loops: [D'Hoker, Phong; Berkovits '05]
- 3-loops: partial work [D'Hoker, Phong; Cacciatori, d.Piazza, v.Greemen] [Gomez, Mafra '13]
- Supergravity

4pt amplitude, maximal supersymmetry
State-of-the-art: 5 loops!
[BCJ et.al. '17-'18]

Status of loop amplitudes: Superstring vs Supergravity

- Superstring

4-pt amplitude, massless external states

- tree-level and 1-loop: [Green, Schwarz '82]
- 2-loops: [D'Hoker, Phong; Berkovits '05]
- 3-loops: partial work [D'Hoker, Phong; Cacciatori, d.Piazza, v.Greemen] [Gomez, Mafra '13]
- Supergravity

4pt amplitude, maximal supersymmetry
State-of-the-art: 5 loops!
[BCJ et.al. '17-'18]

GOAL: sugra advances \longrightarrow superstring

Tools: modern amplitudes techniques

- colour-kinematics duality
- ambitwistor string

4-pt amplitudes for $g \leq 2$

- Supergravity
from ambitwistor string, higher genus and nodal sphere

$$
\begin{aligned}
\mathcal{A}_{\mathbb{A}}^{(g)} & =\mathcal{R}^{4} \int d^{10} \ell^{I} \quad \int_{\mathfrak{M}_{g, 4}} \prod_{I \leq J} d \Omega_{I J}\left(\mathcal{Y}_{\mathbb{A}}^{(g)}\right)^{2} \prod_{i=1}^{4} \bar{\delta}\left(\mathcal{E}_{i}\right) \prod_{I \leq J} \bar{\delta}\left(u^{I J}\right) \\
& =\mathcal{R}^{4} \int \frac{d^{10} \ell^{I}}{\prod_{I}\left(\ell^{I}\right)^{2}} \int_{\mathfrak{M}_{0,4+2 g}} c^{(g)}\left(\mathcal{J}^{(g)} \mathcal{Y}^{(g)}\right)^{2} \prod_{A=1}^{4+2 g}{ }^{\prime} \bar{\delta}\left(\mathcal{E}_{A}\right)
\end{aligned}
$$

4-pt amplitudes for $g \leq 2$

- Supergravity
from ambitwistor string, higher genus and nodal sphere

$$
\mathcal{A}_{\mathbb{A}}^{(g)}=\mathcal{R}^{4} \int d^{10} \ell^{I} \quad \int_{\mathfrak{M}_{g, 4}} \prod_{I \leq J} d \Omega_{I J}\left(\mathcal{Y}_{\mathbb{A}}^{(g)}\right)^{2} \prod_{i=1}^{4} \bar{\delta}\left(\mathcal{E}_{i}\right) \prod_{I \leq J} \bar{\delta}\left(u^{I J}\right)
$$

$$
=\mathcal{R}^{4} \int \frac{d^{10} \ell^{I}}{\prod_{I}\left(\ell^{I}\right)^{2}} \int_{\mathfrak{M}_{0,4+2 g}} c^{(g)}\left(\mathcal{J}^{(g)} \mathcal{Y}^{(g)}\right)^{2} \prod_{A=1}^{4+2 g} \bar{\delta}\left(\mathcal{E}_{A}\right)
$$

- Supergravity
from ambitwistor string, higher genus and nodal sphere

$$
\begin{aligned}
\mathcal{A}_{\mathbb{A}}^{(g)} & =\mathcal{R}^{4} \int d^{10} \ell^{I} \quad \int_{\mathfrak{M}_{g, 4}} \prod_{I \leq J} d \Omega_{I J}\left(\mathcal{Y}_{\mathbb{A}}^{(g)}\right)^{2} \prod_{i=1}^{4} \bar{\delta}\left(\mathcal{E}_{i}\right) \prod_{I \leq J} \bar{\delta}\left(u^{I J}\right) \\
& =\mathcal{R}^{4} \int \frac{d^{10} \ell^{I}}{\prod_{I}\left(\ell^{I}\right)^{2}} \int_{\mathfrak{M}_{0,4+2 g}} c^{(g)}\left(\mathcal{J}^{(g)} \mathcal{Y}^{(g)}\right)^{2} \prod_{A=1}^{4+2 g g} \bar{\delta}\left(\mathcal{E}_{A}\right)
\end{aligned}
$$

- Type II superstring chiral splitting form [D'Hoker,Phong ' 88 , '05]

$$
\begin{aligned}
\mathcal{A}_{\mathbb{S}}^{(g)}=\mathcal{R}^{4} & \int_{\mathfrak{M}_{g, 4}}\left|\prod_{I \leq J} d \Omega_{I J}\right|^{2} \int d^{10} \ell^{I}\left|\mathcal{Y}_{\mathbb{S}}^{(g)}\right|^{2} \\
& \times \prod_{i<j}\left|E\left(z_{i}, z_{j}\right)\right|^{\alpha^{\prime} s_{i j} / 2}\left|e^{\frac{\alpha^{\prime}}{2}\left(i \pi \Omega_{I J} \ell^{I} \cdot \ell^{J}+2 \pi i \sum_{j} \ell^{I} \cdot k_{j} \int_{z_{0}}^{z_{j}} \omega_{I}\right)}\right|^{2}
\end{aligned}
$$

Chiral integrands

- Observation 1:
\exists representations s.t.

$$
\mathcal{Y}_{\mathbb{S}}^{(g)} \cong \mathcal{Y}_{\mathbb{A}}^{(g)} \quad \bmod \quad(d \text {-exact },(\mathcal{E}, u))
$$

- superstring: mod d-exact terms, $\mathcal{Y}_{\mathbb{S}}^{(g)}$ independent of α^{\prime}
- ambitwistor: mod scattering equations

Chiral integrands

- Observation 1:
\exists representations s.t.

$$
\mathcal{Y}_{\mathbb{S}}^{(g)} \cong \mathcal{Y}_{\mathbb{A}}^{(g)} \quad \bmod \quad(d \text {-exact },(\mathcal{E}, u))
$$

- superstring: $\bmod d$-exact terms, $\mathcal{Y}_{\mathbb{S}}^{(g)}$ independent of α^{\prime}
- ambitwistor: mod scattering equations
- Observation 2:

Direct equality for BCJ representation

$$
\mathcal{Y}_{\mathbb{S}}^{(g)}=\mathcal{Y}_{\mathbb{A}}^{(g)} \quad \text { s.t. } \quad(2 \pi i)^{4} \mathcal{J}^{(g)} \mathcal{Y}^{(g)}=\sum_{\alpha \in S_{2+2 g}} \frac{N_{\mathbf{B C J}}^{(g)}\left(1^{+} \alpha 1^{-}\right)}{\left(1^{+} \alpha 1^{-}\right)}
$$

Chiral integrands

- Observation 1:
\exists representations s.t.

$$
\mathcal{Y}_{\mathbb{S}}^{(g)} \cong \mathcal{Y}_{\mathbb{A}}^{(g)} \quad \bmod \quad(d \text {-exact },(\mathcal{E}, u))
$$

- superstring: $\bmod d$-exact terms, $\mathcal{Y}_{\mathbb{S}}^{(g)}$ independent of α^{\prime}
- ambitwistor: mod scattering equations
- Observation 2:

Direct equality for BCJ representation

$$
\mathcal{Y}_{\mathbb{S}}^{(g)}=\mathcal{Y}_{\mathbb{A}}^{(g)} \quad \text { s.t. } \quad(2 \pi i)^{4} \mathcal{J}^{(g)} \mathcal{Y}^{(g)}=\sum_{\alpha \in S_{2+2 g}} \frac{N_{\mathrm{BCJ}}^{(g)}\left(1^{+} \alpha 1^{-}\right)}{\left(1^{+} \alpha 1^{-}\right)}
$$

Assumptions

- straightforward extension of $\mathcal{A}_{\mathbb{S}}^{(g)}$ and $\mathcal{A}_{\mathbb{A}}^{(g)}$ to $g=3$
- Schottky problem for $g \geq 4$
- $\begin{gathered}\text { non-projectedness of } \\ \text { [Donagi, Witten 113; Witten 115] }\end{gathered}$ supermoduli space for $g \geq 5$
- scattering equations on nodal sphere for $g \geq 4$?

- straightforward extension of Observation 2 to $g=3$

Strategy

Strategy

(i) start with supergravity loop integrand in a BCJ representation, $N^{(g)}$

(i) start with supergravity loop integrand in a BCJ representation, $N^{(g)}$
(ii) translate to worldsheet representation

$$
(2 \pi i)^{4} \mathcal{J}^{(g)} \mathcal{Y}^{(g)}=\sum_{\alpha \in S_{2+2 g}} \frac{N^{(g)}\left(1^{+} \alpha 1^{-}\right)}{\left(1^{+} \alpha 1^{-}\right)}
$$

(i) start with supergravity loop integrand in a BCJ representation, $N^{(g)}$
(ii) translate to worldsheet representation

$$
\begin{aligned}
& \text { sheet representatıon } \\
& (2 \pi i)^{4} \mathcal{J}^{(g)} \mathcal{Y}^{(g)}=\sum_{\alpha \in S_{2+2 g}} \frac{N^{(g)}\left(1^{+} \alpha 1^{-}\right)}{\left(1^{+} \alpha 1^{-}\right)}
\end{aligned}
$$

(iii) uplift to higher genus: $\mathcal{Y}_{\mathbb{S}}^{(g)}=\mathcal{Y}_{\mathbb{A}}^{(g)}$

- $\left.\mathcal{Y}_{\mathbb{A}}^{(g)}\right|_{\text {nodal }}=\mathcal{Y}^{(g)}$
- modular invariance

Proof of concept: 2-loop integrand

2-loop superstring amplitude from field theory

Upshot: reproduces known $\mathcal{Y}_{\mathbb{S}}^{(2)}$
[D'Hoker,Phong '05; Berkovits '05]

(i) Supergravity integrand in BCJ representation

Upshot: $\begin{gathered}\text { reproduces known } \\ \text { [D'Hoker,Phong '05; Berkovits '05] } \\ \mathcal{S}^{(2)}\end{gathered}$
(i) Supergravity integrand in BCJ representation
[Bern,Dixon, Dunbar, Perelstein, Rozowsky '98]

(ii) Translate to nodal sphere

Using colour-kinematics / BCJ numerator relation on WS

$$
(2 \pi i)^{4} \mathcal{J}^{(2)} \mathcal{Y}^{(2)}=\sum_{\alpha \in S_{4+2}} \frac{N^{(2)}\left(1^{+} \alpha 1^{-}\right)}{\left(1^{+} \alpha 1^{-}\right)}
$$

2-loop superstring amplitude from field theory

Upshot: $\underset{\substack{\text { reproduces } \\ \text { [D'Hoker,Phong '05; Berkovits '05] }}}{\mathcal{S}^{(2)}}$
(i) Supergravity integrand in BCJ representation
[Bern,Dixon,Dunbar,Perelstein,Rozowsky '98]

(ii) Translate to nodal sphere

Using colour-kinematics / BCJ numerator relation on WS

$$
(2 \pi i)^{4} \mathcal{J}^{(2)} \mathcal{Y}^{(2)}=\sum_{\alpha \in S_{4+2}} \frac{N^{(2)}\left(1^{+} \alpha 1^{-}\right)}{\left(1^{+} \alpha 1^{-}\right)}
$$

(iii) Uplift to $g=2$

Ansatz with correct modular weight:

- modular weight -2
- construct from $\Delta_{i j}^{(2)}=\varepsilon^{I J} \omega_{I}\left(z_{i}\right) \omega_{J}\left(z_{j}\right)$

2-loop superstring amplitude from field theory

Upshot: $\underset{\substack{\text { reproduces } \\ \text { [D'Hoker,Phong '05; Berkovits '05] }}}{\mathcal{S}^{(2)}}$
(i) Supergravity integrand in BCJ representation
[Bern,Dixon,Dunbar,Perelstein,Rozowsky '98]

(ii) Translate to nodal sphere

Using colour-kinematics / BCJ numerator relation on WS

$$
(2 \pi i)^{4} \mathcal{J}^{(2)} \mathcal{Y}^{(2)}=\sum_{\alpha \in S_{4+2}} \frac{N^{(2)}\left(1^{+} \alpha 1^{-}\right)}{\left(1^{+} \alpha 1^{-}\right)}
$$

(iii) Uplift to $g=2$

Ansatz with correct modular weight:

- modular weight -2
- construct from $\Delta_{i j}^{(2)}=\varepsilon^{I J} \omega_{I}\left(z_{i}\right) \omega_{J}\left(z_{j}\right)$

$$
\mathcal{Y}_{\mathbb{S}}^{(2)}=\mathcal{Y}_{\mathbb{A}}^{(2)}=\frac{1}{3}\left(\left(s_{14}-s_{13}\right) \Delta_{12}^{(2)} \Delta_{34}^{(2)}+\operatorname{cyc}(234)\right)
$$

Lessons from 2 loops: $g=2$ ansatz

$$
\mathcal{Y}_{\mathrm{S}}^{(2)}=\mathcal{Y}_{\mathrm{A}}^{(2)}=\frac{1}{3}\left(\left(s_{14}-s_{13}\right) \Delta_{12}^{(2)} \Delta_{34}^{(2)}+\operatorname{cyc}(234)\right)
$$

$$
\mathcal{Y}_{\mathbb{S}}^{(2)}=\mathcal{Y}_{\mathbb{A}}^{(2)}=\frac{1}{3}\left(\left(s_{14}-s_{13}\right) \Delta_{12}^{(2)} \Delta_{34}^{(2)}+\operatorname{cyc}(234)\right)
$$

- Properties
- modular weight $\bmod \left(\mathcal{Y}_{\mathbb{S}}^{(g)}\right)=g-4$
- homology inv.
- one-form in z_{i}

Functional basis?

$$
\mathcal{Y}_{\mathbb{S}}^{(2)}=\mathcal{Y}_{\mathbb{A}}^{(2)}=\frac{1}{3}\left(\left(s_{14}-s_{13}\right) \Delta_{12}^{(2)} \Delta_{34}^{(2)}+\operatorname{cyc}(234)\right)
$$

- Properties
- modular weight $\bmod \left(\mathcal{Y}_{\mathbb{S}}^{(g)}\right)=g-4$
- homology inv.
- one-form in z_{i}
- Objects on Σ_{2}
- $\Delta_{i_{1} \ldots i_{g}}^{(g)}$ of weight $\bmod \left(\Delta^{(g)}\right)=-1$

$$
\Delta_{i_{1} \ldots i_{g}}^{(g)}=\operatorname{det} \omega_{I}\left(z_{i_{J}}\right)
$$

- ring of mod forms $\Psi_{4}, \Psi_{6}, \Psi_{10}, \Psi_{12}$

$$
\mathcal{Y}_{\mathbb{S}}^{(2)}=\mathcal{Y}_{\mathbb{A}}^{(2)}=\frac{1}{3}\left(\left(s_{14}-s_{13}\right) \Delta_{12}^{(2)} \Delta_{34}^{(2)}+\operatorname{cyc}(234)\right)
$$

- Properties
- modular weight $\bmod \left(\mathcal{Y}_{\mathbb{S}}^{(g)}\right)=g-4$
- homology inv.
- one-form in z_{i}
- Objects on Σ_{2}
- $\Delta_{i_{1} \ldots i_{g}}^{(g)}$ of weight $\bmod \left(\Delta^{(g)}\right)=-1$

$$
\Delta_{i_{1} \ldots i_{g}}^{(g)}=\operatorname{det} \omega_{I}\left(z_{i_{J}}\right)
$$

- ring of mod forms $\Psi_{4}, \Psi_{6}, \Psi_{10}, \Psi_{12}$
- RNS superstring: $\Xi_{8}[\delta] / \Psi_{10}$ chiral measure $S^{\delta}\left(z_{i}, z_{j}\right)$ Szegő kernels

$$
\begin{aligned}
& n \leq 3 \mathrm{pt}: \quad \sum_{\delta} \Xi_{8}[\delta]\left(S_{. .}^{\delta}\right)_{c y c}^{n}=0 \\
& 4 \mathrm{pt}: \quad \sum_{\delta} \frac{\Xi_{8}[\delta]}{\Psi_{10}}\left(S_{. .}^{\delta}\right)_{\mathrm{cyc}}^{4} \cong \pi^{4}\left(\Delta_{12}^{(2)} \Delta_{34}^{(2)}-\Delta_{14}^{(2)} \Delta_{23}^{(2)}\right)
\end{aligned}
$$

New results:
 3-loop integrand

3 loops (i): BCJ representation

(i) Supergravity integrand in BCJ representation
[Bern, Carrasco, Johansson '10]

Integral $I^{(x)}$	$\mathcal{N}=4$ Super-Yang-Mills ($\sqrt{\mathcal{N}}=8$ supergravity $)$ numerator
(a)-(d)	s^{2}
(e)-(g)	$\left(s\left(-\tau_{35}+\tau_{45}+t\right)-t\left(\tau_{25}+\tau_{45}\right)+u\left(\tau_{25}+\tau_{35}\right)-s^{2}\right) / 3$
(h)	$\begin{aligned} & \quad\left(s\left(2 \tau_{15}-\tau_{16}+2 \tau_{26}-\tau_{27}+2 \tau_{35}+\tau_{36}+\tau_{37}-u\right)\right. \\ & \left.+t\left(\tau_{16}+\tau_{26}-\tau_{37}+2 \tau_{36}-2 \tau_{15}-2 \tau_{27}-2 \tau_{35}-3 \tau_{17}\right)+s^{2}\right) / 3 \\ & \hline \end{aligned}$
(i)	$\begin{gathered} \quad\left(s\left(-\tau_{25}-\tau_{26}-\tau_{35}+\tau_{36}+\tau_{45}+2 t\right)\right. \\ \left.+t\left(\tau_{26}+\tau_{35}+2 \tau_{36}+2 \tau_{45}+3 \tau_{46}\right)+u \tau_{25}+s^{2}\right) / 3 \\ \hline \end{gathered}$
(j)-(1)	$s(t-u) / 3$

3 loops (i): BCJ representation

(i) Supergravity integrand in BCJ representation
[Bern, Carrasco, Johansson '10]

Integral $I^{(x)}$	$\mathcal{N}=4$ Super-Yang-Mills $(\sqrt{\mathcal{N}=8 \text { supergravity }) \text { numerator }}$		
$(\mathrm{a})-(\mathrm{d})$	s^{2}		
$(\mathrm{e})-(\mathrm{g})$	$\left(s\left(-\tau_{35}+\tau_{45}+t\right)-t\left(\tau_{25}+\tau_{45}\right)+u\left(\tau_{25}+\tau_{35}\right)-s^{2}\right) / 3$		
$(\mathrm{~h})$	$\left(s\left(2 \tau_{15}-\tau_{16}+2 \tau_{26}-\tau_{27}+2 \tau_{35}+\tau_{36}+\tau_{37}-u\right)\right.$		
	$\left.+t\left(\tau_{16}+\tau_{26}-\tau_{37}+2 \tau_{36}-2 \tau_{15}-2 \tau_{27}-2 \tau_{35}-3 \tau_{17}\right)+s^{2}\right) / 3$		
(i)	$\left(s\left(-\tau_{25}-\tau_{26}-\tau_{35}+\tau_{36}+\tau_{45}+2 t\right)\right.$		
	$\left.+t\left(\tau_{26}+\tau_{35}+2 \tau_{36}+2 \tau_{45}+3 \tau_{46}\right)+u \tau_{25}+s^{2}\right) / 3$		
$(\mathrm{j})-(\mathrm{l})$	$s(t-u) / 3$		
$\left(\tau_{i r}=2 k_{i} \cdot \ell_{r-4}\right)$			

(i)

3 loops (ii): nodal sphere
(ii) Translate to nodal sphere

Use colour-kinematics on the worldsheet

$$
(2 \pi i)^{4} \mathcal{J}^{(3)} \mathcal{Y}^{(3)}=\sum_{\alpha \in S_{6+2}} \frac{N^{(3)}\left(1^{+} \alpha 1^{-}\right)}{\left(1^{+} \alpha 1^{-}\right)}
$$

3 loops (ii): nodal sphere
(ii) Translate to nodal sphere

Use colour-kinematics on the worldsheet

$$
(2 \pi i)^{4} \mathcal{J}^{(3)} \mathcal{Y}^{(3)}=\sum_{\alpha \in S_{6+2}} \frac{N^{(3)}\left(1^{+} \alpha 1^{-}\right)}{\left(1^{+} \alpha 1^{-}\right)}
$$

- $\mathcal{J}^{(3)}$ from modular parameters

$$
\begin{aligned}
& \prod_{I<J} \frac{d q_{I J}}{q_{I J}}=\frac{\mathcal{J}^{(g)}}{\operatorname{vol~SL}(2, \mathbb{C})} \quad \mathcal{J}^{(g)}=J^{(g)} \prod_{I^{ \pm}} d \sigma_{I^{ \pm}} \\
& J^{(3)} \sim J_{\mathrm{hyp}} \\
& J_{\mathrm{hyp}}=\sigma_{1^{+} 2^{-}} \sigma_{2^{+{ }_{3}}}-\sigma_{3^{+_{1}-}}-\sigma_{1^{+} 3^{-}} \sigma_{3^{+} 2^{-}} \sigma_{2^{+_{1}}}
\end{aligned}
$$

3 loops (ii): nodal sphere
(ii) Translate to nodal sphere

Use colour-kinematics on the worldsheet

$$
(2 \pi i)^{4} \mathcal{J}^{(3)} \mathcal{Y}^{(3)}=\sum_{\alpha \in S_{6+2}} \frac{N^{(3)}\left(1^{+} \alpha 1^{-}\right)}{\left(1^{+} \alpha 1^{-}\right)}
$$

- $\mathcal{J}^{(3)}$ from modular parameters

$$
\begin{aligned}
\prod_{I<J} \frac{d q_{I J}}{q_{I J}}=\frac{\mathcal{J}^{(g)}}{\operatorname{vol~SL}(2, \mathbb{C})} & \mathcal{J}^{(g)}=J^{(g)} \prod_{I^{ \pm}} d \sigma_{I^{ \pm}} \\
& J^{(3)} \sim J_{\text {hyp }} \text { and }\left.\quad \Psi_{9}\right|_{\text {nodal }} \sim J_{\text {hyp }}
\end{aligned}
$$

- Hyperelliptic locus $y^{2}=\prod_{a=1}^{2 g+2}\left(x-x_{a}\right)$:

$$
\Psi_{9}=0 \quad \text { with } \quad \Psi_{9}{ }^{2}=-\prod_{\delta} \vartheta_{\delta}(0)
$$

3 loops (ii): nodal sphere
(ii) Translate to nodal sphere

Use colour-kinematics on the worldsheet

$$
(2 \pi i)^{4} \mathcal{J}^{(3)} \mathcal{Y}^{(3)}=\sum_{\alpha \in S_{6+2}} \frac{N^{(3)}\left(1^{+} \alpha 1^{-}\right)}{\left(1^{+} \alpha 1^{-}\right)}
$$

- $\mathcal{J}^{(3)}$ from modular parameters

$$
\begin{aligned}
\prod_{I<J} \frac{d q_{I J}}{q_{I J}}=\frac{\mathcal{J}^{(g)}}{\operatorname{vol~SL}(2, \mathbb{C})} & \mathcal{J}^{(g)}=J^{(g)} \prod_{I^{ \pm}} d \sigma_{I^{ \pm}} \\
& J^{(3)} \sim J_{\text {hyp }} \text { and }\left.\quad \Psi_{9}\right|_{\text {nodal }} \sim J_{\text {hyp }}
\end{aligned}
$$

- Hyperelliptic locus $y^{2}=\prod_{a=1}^{2 g+2}\left(x-x_{a}\right)$:

$$
\Psi_{9}=0 \quad \text { with } \quad \Psi_{9}{ }^{2}=-\prod_{\delta} \vartheta_{\delta}(0)
$$

Take-away: $\bullet \mathcal{J}^{(3)} \mathcal{Y}^{(3)} \neq 0$ on hyperelliptic $J_{\text {hyp }}=0$

$$
\text { - } \mathcal{Y}_{\mathbb{S}}^{(3)} \sim \frac{\chi_{8}\left(z_{i}\right)}{\Psi_{9}}+\ldots
$$

$$
\mathcal{Y}_{\mathbb{S}}^{(g)}=\ell_{\mu}^{I} \mathcal{Y}_{I}^{\mu}+\frac{\mathcal{Y}_{0}}{2 \pi i}
$$

- Construction of Ansatz

Requirements:

- $\bmod \left(\mathcal{Y}_{\mathbb{S}}^{(g)}\right)=g-4$
- one-form in z_{i}
- $\left.\mathcal{Y}_{\mathbb{S}}^{(3)}\right|_{\text {nodal }}=\mathcal{Y}^{(3)}$

$$
\mathcal{Y}_{\mathbb{S}}^{(g)}=\ell_{\mu}^{I} \mathcal{Y}_{I}^{\mu}+\frac{\mathcal{Y}_{0}}{2 \pi i}
$$

- Construction of Ansatz

Requirements:

- $\bmod \left(\mathcal{Y}_{\mathbb{S}}^{(g)}\right)=g-4$
- one-form in z_{i}
- $\left.\mathcal{Y}_{\mathbb{S}}^{(3)}\right|_{\text {nodal }}=\mathcal{Y}^{(3)}$
- linear in loop mom ℓ^{I}
- hyperelliptic $\mathcal{Y}_{0} \sim \Psi_{9}^{-1}$

$$
\mathcal{Y}_{\mathbb{S}}^{(g)}=\ell_{\mu}^{I} \mathcal{Y}_{I}^{\mu}+\frac{\mathcal{Y}_{0}}{2 \pi i}
$$

- Construction of Ansatz

Requirements:

- $\bmod \left(\mathcal{Y}_{\mathbb{S}}^{(g)}\right)=g-4$
- one-form in z_{i}
- $\left.\mathcal{Y}_{\mathbb{S}}^{(3)}\right|_{\text {nodal }}=\mathcal{Y}^{(3)}$
- linear in loop mom ℓ^{I}
- hyperelliptic $\mathcal{Y}_{0} \sim \Psi_{9}^{-1}$

Genus-3 tools:

- $\Delta_{i_{1} i_{2} i_{3}}^{(3)}=\operatorname{det} \omega_{I}\left(z_{i_{J}}\right)$
- ring of mod forms

34 generators [Tsuyumine ' 86$]$

- chiral measure $\Xi_{8}[\delta] / \Psi_{9}$
[Cacciatori,Dalla Piazza,van Geemen '08]

$$
\mathcal{Y}_{\mathbb{S}}^{(g)}=\ell_{\mu}^{I} \mathcal{Y}_{I}^{\mu}+\frac{\mathcal{Y}_{0}}{2 \pi i}
$$

- Construction of Ansatz

Requirements:

- $\bmod \left(\mathcal{Y}_{\mathbb{S}}^{(g)}\right)=g-4$
- one-form in z_{i}
- $\left.\mathcal{Y}_{\mathbb{S}}^{(3)}\right|_{\text {nodal }}=\mathcal{Y}^{(3)}$

Genus-3 tools:

- $\Delta_{i_{1} i_{2} i_{3}}^{(3)}=\operatorname{det} \omega_{I}\left(z_{i_{J}}\right)$
- ring of mod forms

34 generators [Tsuyumine '86]

- chiral measure $\Xi_{8}[\delta] / \Psi_{9}$
[Cacciatori, Dalla Piazza,van Geemen '08]
- Result

$$
\mathcal{Y}_{I}^{\mu}=\frac{2}{3}\left(\alpha_{1}^{\mu} \omega_{I}\left(z_{1}\right) \Delta_{234}^{(3)}+\operatorname{cyc}(1234)\right)
$$

$$
\left(\mathcal{Y}_{0}=s_{13} s_{14}\left(\mathcal{D}_{12,34}-\mathcal{S}_{12,34}\right)+\mathrm{cyc}(234)\right)
$$

$$
\mathcal{Y}_{\mathbb{S}}^{(g)}=\ell_{\mu}^{I} \mathcal{Y}_{I}^{\mu}+\frac{\mathcal{Y}_{0}}{2 \pi i}
$$

- Construction of Ansatz

Requirements:

- $\bmod \left(\mathcal{Y}_{\mathbb{S}}^{(g)}\right)=g-4$
- one-form in z_{i}
- $\left.\mathcal{Y}_{\mathbb{S}}^{(3)}\right|_{\text {nodal }}=\mathcal{Y}^{(3)}$

Genus-3 tools:

- $\Delta_{i_{1} i_{2} i_{3}}^{(3)}=\operatorname{det} \omega_{I}\left(z_{i_{J}}\right)$
- ring of mod forms

34 generators [Tsuyumine '86]

- chiral measure $\Xi_{8}[\delta] / \Psi_{9}$
[Cacciatori, Dalla Piazza, van Geemen '08]
- Result

$$
\begin{gathered}
\mathcal{Y}_{I}^{\mu}=\frac{2}{3}\left(\alpha_{1}^{\mu} \omega_{I}\left(z_{1}\right) \Delta_{234}^{(3)}+\operatorname{cyc}(1234)\right) \\
\bullet \alpha_{1}^{\mu}=k_{2}^{\mu}\left(k_{3}-k_{4}\right) \cdot k_{1}+\operatorname{cyc}(234)
\end{gathered}
$$

$$
\mathcal{Y}_{0}=s_{13} s_{14}\left(\mathcal{D}_{12,34}-\mathcal{S}_{12,34}\right)+\operatorname{cyc}(234)
$$

$$
\mathcal{Y}_{\mathbb{S}}^{(g)}=\ell_{\mu}^{I} \mathcal{Y}_{I}^{\mu}+\frac{\mathcal{Y}_{0}}{2 \pi i}
$$

- Construction of Ansatz

Requirements:

- $\bmod \left(\mathcal{Y}_{\mathbb{S}}^{(g)}\right)=g-4$
- one-form in z_{i}
- $\left.\mathcal{Y}_{\mathbb{S}}^{(3)}\right|_{\text {nodal }}=\mathcal{Y}^{(3)}$

Genus-3 tools:

- $\Delta_{i_{1} i_{2} i_{3}}^{(3)}=\operatorname{det} \omega_{I}\left(z_{i_{J}}\right)$
- ring of mod forms

34 generators [Tsuyumine '86]

- chiral measure $\Xi_{8}[\delta] / \Psi_{9}$
[Cacciatori, Dalla Piazza, van Geemen '08]
- Result

$$
\begin{aligned}
& \mathcal{Y}_{I}^{\mu}=\frac{2}{3}\left(\alpha_{1}^{\mu} \omega_{I}\left(z_{1}\right) \Delta_{234}^{(3)}+\operatorname{cyc}(1234)\right) \\
& \bullet \alpha_{1}^{\mu}=k_{2}^{\mu}\left(k_{3}-k_{4}\right) \cdot k_{1}+\operatorname{cyc}(234)
\end{aligned}
$$

$$
\mathcal{Y}_{0}=s_{13} s_{14}\left(\mathcal{D}_{12,34}-\mathcal{S}_{12,34}\right)+\operatorname{cyc}(234)
$$

$$
\mathcal{Y}_{\mathbb{S}}^{(g)}=\ell_{\mu}^{I} \mathcal{Y}_{I}^{\mu}+\frac{\mathcal{Y}_{0}}{2 \pi i}
$$

- Construction of Ansatz

Requirements:

- $\bmod \left(\mathcal{Y}_{\mathbb{S}}^{(g)}\right)=g-4$
- one-form in z_{i}
- $\left.\mathcal{Y}_{\mathbb{S}}^{(3)}\right|_{\text {nodal }}=\mathcal{Y}^{(3)}$

Genus-3 tools:

- $\Delta_{i_{1} i_{2} i_{3}}^{(3)}=\operatorname{det} \omega_{I}\left(z_{i_{J}}\right)$
- ring of mod forms

34 generators [Tsuyumine '86]

- chiral measure $\Xi_{8}[\delta] / \Psi_{9}$
[Cacciatori, Dalla Piazza, van Geemen '08]
- Result

$$
\mathcal{Y}_{I}^{\mu}=\frac{2}{3}\left(\alpha_{1}^{\mu} \omega_{I}\left(z_{1}\right) \Delta_{234}^{(3)}+\operatorname{cyc}(1234)\right)
$$

$$
\mathcal{Y}_{0}=s_{13} s_{14}\left(\mathcal{D}_{12,34}-\mathcal{S}_{12,34}\right)+\operatorname{cyc}(234)
$$

- $\alpha_{1}^{\mu}=k_{2}^{\mu}\left(k_{3}-k_{4}\right) \cdot k_{1}+\operatorname{cyc}(234)$
- $\mathcal{D}_{12,34}=\frac{1}{3}\left(\omega_{34}\left(z_{1}\right) \Delta_{234}^{(3)}+(1 \leftrightarrow 2)\right)+(12 \leftrightarrow 34)$

3 loops (iii): higher genus

$$
\mathcal{Y}_{\mathbb{S}}^{(g)}=\ell_{\mu}^{I} \mathcal{Y}_{I}^{\mu}+\frac{\mathcal{Y}_{0}}{2 \pi i}
$$

- Construction of Ansatz

Requirements:

- $\bmod \left(\mathcal{Y}_{\mathbb{S}}^{(g)}\right)=g-4$
- one-form in z_{i}
- $\left.\mathcal{Y}_{\mathbb{S}}^{(3)}\right|_{\text {nodal }}=\mathcal{Y}^{(3)}$

Genus-3 tools:

- $\Delta_{i_{1} i_{2} i_{3}}^{(3)}=\operatorname{det} \omega_{I}\left(z_{i_{J}}\right)$
- ring of mod forms

34 generators [Tsuyumine '86]

- chiral measure $\Xi_{8}[\delta] / \Psi_{9}$
[Cacciatori, Dalla Piazza, van Geemen '08]
- Result

$$
\mathcal{Y}_{I}^{\mu}=\frac{2}{3}\left(\alpha_{1}^{\mu} \omega_{I}\left(z_{1}\right) \Delta_{234}^{(3)}+\operatorname{cyc}(1234)\right)
$$

$$
\mathcal{Y}_{0}=s_{13} s_{14}\left(\mathcal{D}_{12,34}-\mathcal{S}_{12,34}\right)+\operatorname{cyc}(234)
$$

- $\alpha_{1}^{\mu}=k_{2}^{\mu}\left(k_{3}-k_{4}\right) \cdot k_{1}+\operatorname{cyc}(234)$
- $\mathcal{D}_{12,34}=\frac{1}{3}\left(\omega_{34}\left(z_{1}\right) \Delta_{234}^{(3)}+(1 \leftrightarrow 2)\right)+(12 \leftrightarrow 34)$
- $\mathcal{S}_{12,34}=\frac{1}{15}\left(\sum_{\delta} \frac{\Xi_{8}[\delta]}{\Psi_{9}}\left(S_{12}^{\delta} S_{23}^{\delta} S_{34}^{\delta} S_{41}^{\delta}-\frac{1}{16}\left(S_{12}^{\delta}\right)^{2}\left(S_{34}^{\delta}\right)^{2}\right)+(1 \leftrightarrow 2)\right)$
- sum over 36 even spin structures δ
- chiral measure $\Xi_{8}[\delta] / \Psi_{9}$ [c,DP,vG 08]

Proposal for 3-loop 4-pt superstring integrand

$$
\mathcal{Y}_{I}^{\mu}=\frac{2}{3}\left(\alpha_{1}^{\mu} \omega_{I}^{(g)}=\ell_{\mu}^{I} \mathcal{Y}_{I}^{\mu}+\frac{\mathcal{Y}_{0}}{2 \pi i} \Delta_{234}^{(3)}+\operatorname{cyc}(1234)\right) \quad \mathcal{Y}_{0}=s_{13} s_{14}\left(\mathcal{D}_{12,34}-\mathcal{S}_{12,34}\right)+\operatorname{cyc}(234)
$$

Proposal for 3-loop 4-pt superstring integrand

$$
\mathcal{Y}_{I}^{\mu}=\frac{2}{3}\left(\alpha_{1}^{\mu} \omega_{I}^{(g)}=\ell_{\mu}^{I} \mathcal{Y}_{I}^{\mu}+\frac{\mathcal{Y}_{0}}{2 \pi i} \Delta_{234}^{(3)}+\operatorname{cyc}(1234)\right) \quad \mathcal{Y}_{0}=s_{13} s_{14}\left(\mathcal{D}_{12,34}-\mathcal{S}_{12,34}\right)+\operatorname{cyc}(234)
$$

- Properties
- modular invariance \quad field theory limit $\left.\left.\mathcal{Y}_{\mathbb{S}}^{(3)}\right|_{\text {nodal }}=\mathcal{Y}^{(3)}\right\}$ by construction

$$
\mathcal{Y}_{I}^{\mu}=\frac{2}{3}\left(\alpha_{1}^{\mu} \omega_{I}^{(g)}=\ell_{\mu}^{I} \mathcal{Y}_{I}^{\mu}+\frac{\mathcal{Y}_{0}}{2 \pi i} \Delta_{234}^{(3)}+\operatorname{cyc}(1234)\right) \quad \mathcal{Y}_{0}=s_{13} s_{14}\left(\mathcal{D}_{12,34}-\mathcal{S}_{12,34}\right)+\operatorname{cyc}(234)
$$

- Properties
- modular invariance
- field theory limit $\left.\left.\mathcal{Y}_{\mathbb{S}}^{(3)}\right|_{\text {nodal }}=\mathcal{Y}^{(3)}\right\}$ by construction
- homology invariance [D'Hoker,Mafra, Pioline,Schlotterer '20]
- move z_{l} around \mathfrak{B}_{L} cycle:

$$
z_{i} \rightarrow z_{i}+\delta_{i l} \mathfrak{B}_{L} \quad \ell^{I} \rightarrow \ell^{I}-\delta_{L}^{I} k_{l}
$$

- invariance from interplay of \mathcal{Y}_{I}^{μ} and $\mathcal{D}_{12,34}$

$$
\left.\mathcal{Y}_{I}^{\mu}=\frac{2}{3}\left(\alpha_{1}^{\mu} \omega_{I}^{(g)}=\ell_{\mu}^{I} \mathcal{Y}_{I}^{\mu}\right) \Delta_{234}^{(3)}+\frac{\mathcal{Y}_{0}}{2 \pi i}+\operatorname{cyc}(1234)\right) \quad \mathcal{Y}_{0}=s_{13} s_{14}\left(\mathcal{D}_{12,34}-\mathcal{S}_{12,34}\right)+\operatorname{cyc}(234)
$$

- Properties
- modular invariance
- field theory limit $\left.\left.\mathcal{Y}_{\mathbb{S}}^{(3)}\right|_{\text {nodal }}=\mathcal{Y}^{(3)}\right\}$ by construction
- homology invariance [D'Hoker,Mafra, Pioline,Schlotterer '20]
- move z_{l} around \mathfrak{B}_{L} cycle:

$$
z_{i} \rightarrow z_{i}+\delta_{i l} \mathfrak{B}_{L} \quad \ell^{I} \rightarrow \ell^{I}-\delta_{L}^{I} k_{l}
$$

- invariance from interplay of \mathcal{Y}_{I}^{μ} and $\mathcal{D}_{12,34}$
- Questions
- simplification of $\mathcal{S}_{12,34}$
- RNS origin of measure unclear [Witten '15]
- Functional basis? \leftrightarrow Uniqueness?

$$
\left.\mathcal{Y}_{I}^{\mu}=\frac{2}{3}\left(\alpha_{1}^{\mu} \omega_{I}^{(g)}=\ell_{\mu}^{I} \mathcal{Y}_{I}^{\mu}\right) \Delta_{234}^{(3)}+\frac{\mathcal{Y}_{0}}{2 \pi i}+\operatorname{cyc}(1234)\right) \quad \mathcal{Y}_{0}=s_{13} s_{14}\left(\mathcal{D}_{12,34}-\mathcal{S}_{12,34}\right)+\operatorname{cyc}(234)
$$

- Properties
- modular invariance
- field theory limit $\left.\left.\mathcal{Y}_{\mathbb{S}}^{(3)}\right|_{\text {nodal }}=\mathcal{Y}^{(3)}\right\}$ by construction
- homology invariance [D'Hoker,Mafra, Pioline,Schlotterer '20]
- move z_{l} around \mathfrak{B}_{L} cycle:

$$
z_{i} \rightarrow z_{i}+\delta_{i l} \mathfrak{B}_{L} \quad \ell^{I} \rightarrow \ell^{I}-\delta_{L}^{I} k_{l}
$$

- invariance from interplay of \mathcal{Y}_{I}^{μ} and $\mathcal{D}_{12,34}$
- Questions
- simplification of $\mathcal{S}_{12,34}$
- RNS origin of measure unclear [Witten '15]
- Functional basis? \leftrightarrow Uniqueness?

Outlook

Outlook

Outlook

Outlook

- Outlook
- better understanding strings vs. ambitwistor strings
- stronger evidence for 3-loop 4-pt superstring proposal
- higher loops?

Happy Birthday Lionel!

