One-sided type-D vacuum metrics are integrable

Paul Tod
Oxford

27-29 September 2021

Introduction:1

In 1995 Lionel pointed out to me that, for an ASD Einstein solution with a Killing vector K, the SD part of $d K$, once normalised, was an integrable complex structure. From that I showed that such a solution was determined by a solution of the so-called $S U(\infty)$ Toda field equation, called the Toda equation for brevity and also known as the Boyer-Finley equation. I didn't know at the time that Maciej Przanowski had already discovered this but I went a bit beyond him by showing that all such solutions arose this way (see arxiv:hep-th/0609071).

Introduction:2

More recently I found a related result, that one-sided type-D vacuum solutions, ASD or not, necessarily have a symmetry and then are also all determined by the Toda equation (arxiv:2003.03234).
As a corollary, if there is a second symmetry commuting with the first then Richard Ward's trick (Ward 1990) linearises the Toda equation, so that these metrics are determined by an axisymmetric solution of the flat-space Laplacian. This is potentially of interest since, as was pointed out to me by Steffen Aksteiner, the Chen-Teo metric ("A new AF gravitational instanton", arxiv:1107.0763) is type-D and has two commuting symmetries.

ASD Einstein $(\Lambda \neq 0)$ with a Killing vector

To review how the first case works, suppose K^{a} is a KV in an ASD Einstein metric. Decompose $d K$:

$$
\nabla_{a} K_{b}=\phi_{A B} \epsilon_{A^{\prime} B^{\prime}}+\psi_{A^{\prime} B^{\prime}} \epsilon_{A B},
$$

then Lionel (see also Pontecorvo 1992) tells us that the following is an integrable complex structure:

$$
J_{a}^{b}:=\psi^{-1} \delta_{A}^{B} \psi_{A^{\prime}}^{B^{\prime}} \text { when } 2 \psi^{2}=\psi_{A^{\prime} B^{\prime}} \psi^{A^{\prime} B^{\prime}} .
$$

Furthermore

$$
J_{a b} K^{b}=w^{-2} \nabla_{a} w \text { with } w=\Lambda \psi^{-1}
$$

and then introduce P by

$$
\left(P w^{2}\right)^{-1}=g(K, K)=g\left(d w / w^{2}, d w / w^{2}\right)
$$

We're closing in on the metric!

ASD Einstein $(\Lambda \neq 0)$ with a Killing vector, cont.

Follow Claude LeBrun (1991): introduce a 'time'-coordinate τ with $K \tau=1$ and a complex coordinate $\zeta=x+i y$ on the 2-planes orthogonal to K and $J K$, then the metric is

$$
g=\frac{P}{w^{2}}\left(e^{u}\left(d x^{2}+d y^{2}\right)+d w^{2}\right)+\frac{1}{P w^{2}}(d \tau+\theta)^{2}
$$

for some u and θ, after which a glance (!) at the Einstein equations gives u as a solution of the Toda equation, an (integrable) equation for $d \theta$ and the expression

$$
P=\left(w u_{w}-2\right) / 4 \Lambda
$$

and that's it!

One-sided type-D vacuum

In terms of the curvature spinors (assuming Riemannian) by this I mean

$$
\Phi_{A B A^{\prime} B^{\prime}}=0=\Lambda, \quad \Psi_{A B C D}=\Psi_{O_{(A} O_{B} O_{C}^{\dagger} o_{D)}^{\dagger}, ~}
$$

with no condition on $\Psi_{A^{\prime} B^{\prime} C^{\prime} D^{\prime}}$ (or vice versa, interchanging primed and unprimed). Here Ψ is real, and we'll assume it nonzero, and $o_{A} O^{\dagger A}=1$. From Penrose and Walker 1970 (adjusted for conventions) one knows that the following is a real Killing spinor:

$$
\omega_{A B}:=i \Psi^{-1 / 3} O_{(A} O_{B)}^{\dagger}
$$

which therefore defines a real Killing vector K^{a} via

$$
\nabla_{A A^{\prime}} \omega_{B C}=\epsilon_{A(B} K_{C) A^{\prime}}
$$

and from Pontecorvo 1992 again we know that $\omega_{A B}$ defines an integrable complex structure via

$$
J_{a}^{b}:=\chi_{A}^{B} \delta_{A^{\prime}}^{B^{\prime}} \text { when } \chi_{A B}=\Psi^{1 / 3} \omega_{A B} .
$$

Now we play the same game again to get the metric...

One-sided type-D vacuum, cont.

Introduce $W=\left(K^{a} K_{a}\right)^{-1}$ and a new coordinate $z:=-\Psi^{-1 / 3}$ for then

$$
J_{a b} K^{b}=\nabla_{a} z
$$

and introduce the complex coordinate $\zeta=x+i y$ as before, then the metric is

$$
g=W\left(e^{u}\left(d x^{2}+d y^{2}\right)+d z^{2}\right)+W^{-1}(d \tau+\theta)^{2}
$$

for some u and θ.
Now it's a bit more work to impose the vacuum equations and obtain that u is a solution of the Toda equation, an (integrable) equation for $d \theta$ and the expression

$$
W=z\left(2-z u_{z}\right) / 2 .
$$

I should say again that Maciej Przanowski and collaborators had these metrics before me $(1984,1987$ and 1991) but this approach clearly gives all of them.

Adding another symmetry to one-sided type-D vacuum

If we add a second symmetry commuting with the first in the case of one-sided type-D vacuum then w.l.o.g. (but w.s.w.) it is $L=\partial / \partial y$ and $L u=0$. Now there is a hodograph-like transformation due to Richard Ward 1990 which linearises the Toda equation: if

$$
u_{x x}+\left(e^{u}\right)_{z z}=0
$$

then eliminate (x, z, u) in favour of (R, Z, V) via

$$
x=V_{Z}, \quad z=\frac{1}{2} R V_{R}, \quad u=\log \left(R^{2} / 4\right)
$$

when

$$
V_{Z Z}+R^{-1}\left(R V_{R}\right)_{R}=0
$$

Thus $u(x, y, z)$ is determined by an axisymmetric, harmonic $V(R, Z)$. Furthermore the metric can be given explicitly in terms of coordinates (τ, y, R, Z) and the function V and its harmonic conjugate.
$g=\left(\begin{array}{ll}d t & d y\end{array}\right)\left(\begin{array}{cc}\widetilde{W} & F \widetilde{W} \\ F \widetilde{W} & F^{2} \widetilde{W}+\frac{1}{4} R^{2} \widetilde{W}^{-1}\end{array}\right)\binom{d t}{d y}+\Omega^{2}\left(d R^{2}+d Z^{2}\right)$ with $V(R, Z)$ harmonic and axisymmetric, H conjugate to V and

$$
\begin{gathered}
\widetilde{W}=\frac{2}{V_{R}}\left(\frac{\left(\left(V_{R z}\right)^{2}+\left(V_{z Z}\right)^{2}\right)}{R\left(\left(V_{R Z}\right)^{2}+\left(V_{z Z}\right)^{2}\right)+V_{R} V_{Z Z}}\right), \\
F=\frac{1}{2}\left(H+\frac{R\left(V_{R}\right)^{2} V_{R Z}-R^{2} V_{Z}\left(\left(V_{R Z}\right)^{2}+\left(V_{z Z}\right)^{2}\right)}{2\left(\left(V_{R z}\right)^{2}+\left(V_{z Z}\right)^{2}\right)}\right), \\
\Omega^{2}=\frac{1}{8} R^{2} V_{R}\left(R\left(\left(V_{R Z}\right)^{2}+\left(V_{Z z}\right)^{2}\right)+V_{R} V_{z Z}\right) .
\end{gathered}
$$

ASD Einstein with two commuting symmetries

These are also determined by a solution of the Toda equation, and w.l.o.g. (but w.s.w.) a second symmetry commuting with the first can be taken to be $L=\partial / \partial y$ with $L u=0$. So this case also linearises.
As a simple example, the axisymmetric harmonic function $V=R^{2}-2 Z^{2}$ leads to the metric

$$
g=\frac{4}{R^{4}}(d \tau-Z d Y)^{2}+\frac{1}{R^{2}}\left(d R^{2}+d Y^{2}+d Z^{2}\right)
$$

which is the Bergman metric (in disguise).

what about one-sided type-D Einstein?

With $\Lambda \neq 0$ and assuming ψ not constant (since that is Einstein-Kähler), this still has a Killing spinor and therefore a Killing vector, an integrable complex structure and the same metric ansatz BUT the function u satisfies a modified Toda equation:

$$
u_{x x}+u_{y y}+\left(e^{u}\right)_{z z}+e^{u}\left(A(z) u_{z}+B(z)\right)=0
$$

with

$$
A=\frac{72 \Lambda z^{2}}{1-12 \Lambda z^{3}}, \quad B=-\frac{144 \wedge z}{1-12 \Lambda z^{3}}
$$

Now this modified Toda is not integrable (see e.g. arXiv:2003.03234 v2; the constants in A, B can be checked by finding the Schwarzschild-de Sitter metric) - allowing nonzero Λ in this case has removed the integrability.

