## **Current Status of Search for Sterile Neutrinos**

## Pranava Teja Surukuchi

40<sup>th</sup> International Symposium on Physics in Collisions



Sep 16, 2021









Focus of this talk

- eV scale sterile neutrinos
- Finished or currently running experiments
- Experiments built to search for eV-scale sterile neutrino oscillations

\* I am collaborator on the PROSPECT reactor neutrino experiment





Pranava Teja Surukuchi, Physics in Collisions, Sep 2021

|          | N<br>mass                | v<br>masses | eV v<br>anoma–<br>lies | BAU | DM  | M <sub>H</sub><br>stability | direct<br>search | exp<br>me |
|----------|--------------------------|-------------|------------------------|-----|-----|-----------------------------|------------------|-----------|
| Г<br>aw  | 10–16<br>10 GeV          | YES         | NO                     | YES | NO  | NO                          | NO               | -         |
| B        | <sup>2-3</sup><br>10 GeV | YES         | NO                     | YES | NO  | YES                         | YES              | Lł        |
| М        | keV –<br>GeV             | YES         | NO                     | YES | YES | YES                         | YES              | a'<br>CHA |
| <b>;</b> | eV                       | YES         | YES                    | NO  | NO  | YES                         | YES              | a'<br>LS  |

arXiv: 1301.5516







#### Anomalies drive searches for eV-scale sterile neutrinos



Pranava Teja Surukuchi, Physics in Collisions, Sep 2021

#### Anomalies











Wright aboratory

## LSND Anomaly

Pranava Teja Surukuchi, Physics in Collisions, Sep 2021



## **MiniBooNE** Anomaly







## Reactor Antineutrino Anomaly (RAA)

- Double Chooz initially only had one detector and so an oscillation measurement had to be done by comparing to a model
  - Improvement in reactor neutrino model to make a precise  $\theta_{13}$  measurement
  - Change in neutron lifetime
  - Inclusion of off-equilibrium effects
- Predicted flux higher with improved model
- •~6% global experimental deficit
- Discrepancy is called Reactor Antineutrino Anomaly (RAA)

#### Reactor experiments observe $\sim 3\sigma$ deficit compared to predictions



 $= N_{exp}/N_{cal}$ 

£

#### Improved predictions of reactor antineutrino spectra

Th. A. Mueller, D. Lhuillier, M. Fallot, A. Letourneau, S. Cormon, M. Fechner, L. Giot, T. Lasserre, J. Martino, G. Mention, A. Porta, and F. Yermia Phys. Rev. C 83, 054615 – Published 23 May 2011

(Received 16 June 2011; published 29 August 2011)



Pranava Teja Surukuchi, Physics in Collisions, Sep 2021





#### Radioactive sources



- Solar neutrino experiments GALLEX and SAGE used <sup>51</sup>Cr and <sup>37</sup>Ar as calibration sources
- Measured electron neutrinos lower than predicted

Gallium experiments measure  $\sim 3\sigma$  deficit compared to predictions



## Galium Anomaly











- LSND and MiniBooNE (appearance experiments) see excess
- Reactor and Gallium experiments (disappearance) see deficit
- If interpreted as neutrino oscillations, suggests eVscale neutrinos
- Active neutrino flavors constrained by Z boson invisible decay width measurements at LEP
- Another light neutrino state must be a sterile state

Sterile neutrinos could explain anomalies independently



Pranava Teja Surukuchi, Physics in Collisions, Sep 2021

#### Interpretation of Anomalies





### Sterile Neutrino Refresher

Extended PMNS matrix

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \nu_s \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix} \begin{pmatrix} z \\ z \\ z \\ z \\ z \end{pmatrix}$$

Two oscillation approximation valid for  $\Delta m_{43} >> \Delta m_{21}$ ,  $|\Delta m_{31}|$ 

Appearance  
experiments
$$\nu_{\mu} \rightarrow \nu_{e}$$
:  $\sin^{2} 2\theta_{\mu e} \equiv 4|U_{\mu 4}|^{2}|U_{e 4}|^{2}$  $\nu_{e} \rightarrow \nu_{e}$ :  $\sin^{2} 2\theta_{e e} \equiv 4|U_{e 4}|^{2}(1 - |U_{e 4}|^{2})$ Disappearance  
experiments







#### J. Coelho: Neutrino Telescopes

\*Similar situation in inverted ordering





- LSND and MiniBooNE excess in appearance channels could be explained by eV-scale sterile neutrinos
- Both in roughly similar parameter space
- Experiments have different source and detection techniques
- MiniBooNE disappearance shows no evidence of oscillations







## Interpretation of Anomalies: Appearance Experiments

Pranava Teja Surukuchi, Physics in Collisions, Sep 2021



#### Yale Testing LSND and MiniBooNE Anomalies: SBN Program



- SBN program to test both LSND and MiniBooNE anomalies
- Liquid Argon TPC



Pranava Teja Surukuchi, Physics in Collisions, Sep 2021

• Three detectors share same beam line (booster neutrino beam at Fermilab) and uses



## Testing LSND and MiniBooNE Anomalies: SBN Program

# Yale

- 1.5 Neutrino energy: 700 MeV **Oscillation probability (%)** а  $\Delta m_{41}^2 = 0.3 \text{ eV}^2$  $\sin^2 2\theta_{\mu e} = 0.015$ 1.0 MicroBooNE ICARUS SBND 0.5 0.0 200 600 400 800 0 0.3 Neutrino energy: 700 MeV **Oscillation probability (%)**  $\Delta m_{41}^2 = 1.5 \text{ eV}^2$  $\sin^2 2\theta_{\mu e} = 0.002$ 0.2 MicroBooNE ICARUS SBND 0.1 0.0 600 200 400 800 Length of neutrino flight (m)
- Detectors search
- Relative measurements provide significant cancellation of systematic uncertainties
- Test both appearance and disappearance modes





Pranava Teja Surukuchi, Physics in Collisions, Sep 2021

• Detectors baselines optimized for eV-scale sterile neutrino





SBN: a conclusive ve with a direct test of both in appearance data-taking (6.6 10<sup>20</sup> pot).

ICARUS commissioning: neutrinos from BNB and NUMI have been collected since the end of March 2021 to setup the data processing workflow and event reconstruction tools. Beam data with ICARUS will be collected this fall, SBND will be operational late 2022.

ICARUS alone: can confirm or refute in less than one year the results from the Neutrino-4 experiment, which reports  $2.9\sigma$ indications for oscillation consistent with  $\Delta m_{14}^2 = 7.7 \text{ eV}^2$  (*Phys.* Rev. D 104, 032003).

- ICARUS commissioning: neutrinos from BNB and NUMI have been collected since the end of March 2021 to setup the data processing workflow and event reconstruction tools.
- Beam data with ICARUS will be collected this fall, SBND will be operational late 2022.



Wright aboratory



Pranava Teja Surukuchi, Physics in Collisions, Sep 2021









## Testing MiniBooNE Anomaly: MicroBooNE

- SBN and MicroBooNE uses LArTPC detectors
- LArTPC: Ionization drift (energy, tracking) and scintillation (timing)
- MicroBooNE designed to directly test the MiniBooNE anomaly
  - Same beamline
  - Differentiate e/γ type events
- Data since 2015-2020
- Soon to release first low energy excess results





Pranava Teja Surukuchi, Physics in Collisions, Sep 2021





## Testing LSND Anomaly: JSNS<sup>2</sup>

#### 50 ton (17 Gd-loaded + unloaded) LS





- Directly test LSND anomaly
  - DAR 40 MeV  $\nu$ , baseline 24 m (30 m for LSND), Gd-loaded LS
- Data taking: June 5-15, 2020 (10 days) + Jan 12 Jun 23 2021 (6 months)
- Analysis underway
- Plan for a second detector at 48 m



### Interpretation of Anomalies: Disappearance





## Interpretation of Anomalies: Disappearance



- => High frequency oscillations
- => Short distance (preferably at <10 m)





## **(ale**



- Depends on the predicted flux
- •At reactor neutrino energies (~I—8 MeV), baselines < 10m



## Testing RAA





## Testing RAA: Short Baseline Reactor Experiments

| Experiment | Baseline(m) | Reactor type | Reactor<br>power (MW <sub>th</sub> ) | Mass                | Target            | Search<br>strategy      |
|------------|-------------|--------------|--------------------------------------|---------------------|-------------------|-------------------------|
| DANSS      | 11-13 m     | LEU          | 3000                                 | ~1 m³               | PS +Gd<br>coating | Movable                 |
| NEOS       | 24 m        | LEU          | 2800                                 | ~1 m³               | GdLS              | Relative to<br>Daya Bay |
| Neutrino-4 | 6-12        | HEU          | 100                                  | ~1.8 m³             | GdLS              | Movable                 |
| PROSPECT   | 7-9 m       | HEU          | 85                                   | ~4 ton              | <sup>6</sup> LiLS | 2D<br>Segmentation      |
| STEREO     | 9-11 m      | HEU          | 57                                   | ~2.4 m <sup>3</sup> | GdLS              | 2D<br>Segmentation      |

\* Other reactor neutrino SBL experiments that haven't performed oscillation search not included





## **PROSPECT** Experiment

- Phase-II detector planned



| Experime | nt Baseline(m) | Reactor type | Reactor<br>power (MW <sub>th</sub> ) | Mass   | Target            | Se<br>stra |
|----------|----------------|--------------|--------------------------------------|--------|-------------------|------------|
| PROSPEC  | T 7-9 m        | HEU          | 85                                   | ~4 ton | <sup>6</sup> LiLS | :<br>Segme |



Wright

aboratory













## **STEREO Experiment**

# Yale

| Reactor<br>pool | Experiment | Baseline(m)                                                               | Reactor type                                           | Reactor<br>power (MW <sub>th</sub> ) | Mass                                                               | Target                                                                                      | Se<br>stra   |
|-----------------|------------|---------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------|
| Water Channe,   | STEREO     | 9-11 m                                                                    | HEU                                                    | 57                                   | ~2.4 m³                                                            | GdLS                                                                                        | 2<br>Segme   |
|                 |            | 334 (543) rx<br>Segmentation<br>Daselines<br>Excluded RA<br>Data taking e | -on (rx-off) o<br>n provides<br>A best-fit at<br>ended | days $\sqrt[3]{4}^{1}(e^{N_{2}})$    | 0 <sup>1</sup> Prelimin I CLs me                                   | ary<br>ary<br>thod                                                                          | RA/<br>* RA/ |
|                 |            |                                                                           |                                                        | 10-                                  | STEREO (334 days<br>Exclusion s<br>Exclusion s<br>10 <sup>-2</sup> | reactor-on):<br>Sensitivity CLs 95% C.L.<br>95% C.L.<br>$10^{-1}$<br>$\sin^2(2\theta_{ee})$ |              |













Pranava Teja Surukuchi, Physics in Collisions, Sep 2021

### **NEOS Experiment**

| Reactor type | Reactor<br>power (MW <sub>th</sub> ) | Mass  | Target | Se<br>stra  |
|--------------|--------------------------------------|-------|--------|-------------|
| LEU          | 2800                                 | ~1 m³ | GdLS   | Rela<br>Day |







Wright

aboratory

| Experiment | Baseline(m) | Reactor type | Reactor<br>power (MW <sub>th</sub> ) | Mass  | Target            | Se<br>stra |
|------------|-------------|--------------|--------------------------------------|-------|-------------------|------------|
| DANSS      | 11-13 m     | LEU          | 3000                                 | ~1 m³ | PS +Gd<br>coating | Мо         |

- 5 years of data: 5.5 million events
- Excluded RAA best-fit at  $>5\sigma$
- Detector upgrade underway



## **DANSS** Experiment







## Neutrino-4 Experiment: Claim



| Experiment | Baseline(m) | Reactor type | Reactor<br>power (MW <sub>th</sub> ) | Mass    | Target | Se<br>stra |
|------------|-------------|--------------|--------------------------------------|---------|--------|------------|
| Neutrino-4 | 6-12        | HEU          | 100                                  | ~1.8 m³ | GdLS   | Mo         |

- 5 years of data
- Oscillation search using movable detector
- Claim oscillation:  $\bullet$ 
  - $(\Delta m^2 = 7.3, \sin 22\theta = 0.36)$  @ 2.90
- Detector upgrade underway





125, 250, 500 keV.  $\sigma = \pm 250$  energy resolution. 2 cycles.  $\Delta m = 7.3 \text{eV}^2$ ,  $\sin^2 2\theta = 0.36$ . 2.9 $\sigma$  CL

Pranava Teja Surukuchi, Physics in Collisions, Sep 2021





## Neutrino-4 Experiment: Questions



| Experiment | Baseline(m) | Reactor type | Reactor<br>power (MW <sub>th</sub> ) | Mass    | Target | Se<br>stra |
|------------|-------------|--------------|--------------------------------------|---------|--------|------------|
| Neutrino-4 | 6-12        | HEU          | 100                                  | ~1.8 m³ | GdLS   | Mo         |

- 5 years of data
- Oscillation search using movable detector
- Claim oscillation:
  - $(\Delta m^2 = 7.3, \sin 22\theta = 0.36)$  @ 2.90

! Several questions raised:

- Detector upgrade underway
- \* Statistical approach to oscillation search (arXiv:2006.13147; EPJC.81,2; PLB.136214)
- \* Inclusion of systematics in the analysis (arXiv:2006.13147, JETP Lett 112, 452–454)
- \* Impact of backgrounds on the results (JETP Lett 12, 452–454)









- Experiments designed to measure  $\theta_{13}$  also searched for sterile neutrinos
- Sensitivity at low  $\Delta m^2$  values
- Exclude portions of suggested parameter space





#### Other Reactor Expts

### Details in P. Soldin's talk

Pranava Teja Surukuchi, Physics in Collisions, Sep 2021



- Reactor Antineutrino Anomaly: Flux predictions disagree with measurements
- Could the flux predictions be wrong ?





### More Reactor Neutrino Context

Pranava Teja Surukuchi, Physics in Collisions, Sep 2021



## le

### **Reactor Neutrino Predictions**



#### ab initio approach

- Use existing databases and sum the spectra from all the beta decay branches
- 1000s of branches; Databases are incomplete/wrong

#### **Conversion method**

- Measure beta spectrum and fit it to virtual branches to convert to neutrino spectrum
- Is all relevant physics captured by virtual beta branches

#### Reactor antineutrino predictions are very complicated



Wright .aboratory







- •Spectra shapes measured by  $\theta_{13}$  experiments at LEU reactors disagree with state-of-the art models
- Sterile neutrinos cannot explain this anomaly
- Points towards reactor models being wrong



Pranava Teja Surukuchi, Physics in Collisions, Sep 2021

### More Reactor Neutrino Context

LEU Reactors: <sup>235</sup>U ~ 45-65% <sup>239</sup>Pu ~ 25-35%  $^{238}U,^{241}Pu < 10\%$  each





### Even More Reactor Neutrino Context

- Daya Bay measures neutrino flux as a function of fission fractions of <sup>235</sup>U/<sup>239</sup>Pu
- One can extract the contribution (IBD yield) of single isotope to the measured flux
- Measured <sup>235</sup>U disagrees but <sup>239</sup>Pu agrees well with the predictions
- Similar results from RENO
- <sup>235</sup>U seems like the problematic isotope











- Conversion method is reliant on the  $\beta$ -decay measurements done at ILL, France in 1980s
- Recent claim: Issue with calibration for the original ILL  $\beta$ -decay measurements
- Kopeikin et.al., (arXiv 2103.01684) performed a measurement of <sup>235</sup>U/ <sup>239</sup>Pu  $\beta$ -decay spectra
- Shows that <sup>235</sup>U normalization was overestimated (assuming <sup>239</sup>Pu normalization is correct)
- No systematic uncertainties presented and peer-reviewed results not yet published



#### Even More Reactor Neutrino Context



Pranava Teja Surukuchi, Physics in Collisions, Sep 2021







## Testing Galium Anomaly: BEST Experiment

- BEST: Gallium source experiment similar to GALLEX and SAGE
- Source: 3 MCi of <sup>51</sup>Cr source
- Two zones for flux cross-checks
- Data taking July Nov 2019; Data processing Dec Nov 2020
- Results to be out soon  $\Delta m^2 (eV^2)$ 2σ 1σ ONLY BEST (1,1) 0,1 0,01 0,1 PRD 99, 111702 sin<sup>2</sup>(2ϑ)

Wright Laboratory





- KATRIN is a direct neutrino mass measurement using beta decay of tritium
- Also sensitive to sterile neutrino oscillations at high  $\Delta m^2$
- No oscillation signature found
- Projected sensitivity to cover a significant portion of suggested parameter space





Pranava Teja Surukuchi, Physics in Collisions, Sep 2021

### **Other Negative Results : KATRIN**





.aboratory

## Other Negative Results : $v_{\mu}$ Disappearance



Pranava Teja Surukuchi, Physics in Collisions, Sep 2021

• Several disappearance searches don't find any evidence of sterile neutrino oscillations

• Rules out most of the 3+1 suggested parameter space by LSND and MiniBooNE anomalies





# (ale

- Suggested parameter space under eV-scale sterile interpretation appearance and disappearance experiments disagree
- 4.7  $\sigma$  tension between the data sets
- All the existing anomalies can't simply be explained by eV-scale sterile neutrinos
- Other non-minimal BSMs may need to be invoked



## **Global Context**



\*Some new data since, but the qualitative picture remains



- Several appearance and disappearance experiments observed anomalous results
- eV-scale sterile neutrinos invoked as a solution to the anomalies
- Experiments very diverse; different sources and detector technologies
- Several experiments already exclude regions of parameters space
- Awaiting more results and experiments
- Need to invoke more complicated models if anomalies persist

| <b>Oscillation channel</b>     | Source                      | Anomalies                         | Status                                                                           |
|--------------------------------|-----------------------------|-----------------------------------|----------------------------------------------------------------------------------|
| $ u_{\mu}  ightarrow  u_{e}$   | Accelerator                 | LSND (3.8 σ)<br>MiniBooNE (4.8 σ) | Unresolved; awaiting results                                                     |
| $ u_{\mu}  ightarrow  u_{\mu}$ | Accelerator,<br>atmospheric | No anomalies                      | N/A                                                                              |
| $\nu_e \to \nu_e$              | Reactor, source             | Reactor (~3σ)<br>Source (~3σ)     | Significant parameter space<br>covered; awaiting more<br>experiments and results |



Pranava Teja Surukuchi, Physics in Collisions, Sep 2021

#### Conclusion



- Several appearance and disappearance experiments observed anomalous results
- eV-scale sterile neutrinos invoked as a solution to the anomalies
- Experiments very diverse; different sources and detector technologies
- Several experiments already exclude regions of parameters space
- Awaiting more results and experiments
- Need to invoke more complicated models if anomalies persist

| <b>Oscillation channel</b>     | Source                      | Anomalies                         | Status                                                                           |
|--------------------------------|-----------------------------|-----------------------------------|----------------------------------------------------------------------------------|
| $ u_{\mu}  ightarrow  u_{e}$   | Accelerator                 | LSND (3.8 σ)<br>MiniBooNE (4.8 σ) | Unresolved; awaiting results                                                     |
| $ u_{\mu}  ightarrow  u_{\mu}$ | Accelerator,<br>atmospheric | No anomalies                      | N/A                                                                              |
| $ u_e  ightarrow  u_e$         | Reactor, source             | Reactor (~3σ)<br>Source (~3σ)     | Significant parameter space<br>covered; awaiting more<br>experiments and results |



Pranava Teja Surukuchi, Physics in Collisions, Sep 2021

#### Conclusion

Thanks for your attention



