

A big thank to the CEvNS community for their support in the preparation of this presentation

Coherent Elastic Neutrino-Nucleus Scattering

Jing Liu University of South Dakota PIC2021, Aachen

What is CEvNS (It's not about apple!)

Neutrino Energy

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

1974 1 MARCH

Coherent effects of a weak neutral current

Daniel Z. Freedman[†]

National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

Why bother

- Particle physics
 - Precision test of SM
 - Beyond SM physics
- Nuclear physics
 - Nuclear form factor
 - Neutron distribution radius
- Astroparticle physics
 - Energy transport in supernovae
 - To detect SN neutrinos
- Applied physics
 - Reactor monitoring
 - Application for non-proliferation

- Bonifazi, TAUP 2021
- Bernstein, Rev. Mod. Phys.
 92 (2020) 011003

Neutron distribution

- Most information about nuclear sizes is from electronnucleus scattering and are sensitive to proton distribution
- CEvNS can be used to probe neutron distribution:

$$\frac{d\sigma_{\nu-N}}{dT} = \frac{G_F^2 M}{4\pi} \left(1 - \frac{MT}{2E_\nu^2}\right) \left[N \mathbf{F}_N(\mathbf{T}, \mathbf{R}_n) - (1 - 4\sin^2\theta_W) Z \mathbf{F}_Z(\mathbf{T}, \mathbf{R}_p)\right]^2$$

Two different form factors, one for the **neutron distribution** and one for the proton.

- $(1 - 4\sin^2 \theta_W) \sim 0.05$ moreover Z<N so the contribution of the proton form factor is negligible!!

Hence, measurements of the process give information on the nuclear neutron form factor which is more difficult to obtain in a model independent way.

[Phys. Rev. **D30**, 2295 (1984); JHEP **0512**, 021 (2005); Phys. Rev. **C86**, 024612 (2012), Phys. Rev. Lett. **120** (2018) 7, 072501; JHEP 1906:141 (2019) ...]

M. Cadeddu, M7s 2020

Non-standard neutrino interaction (NSI)

Sterile neutrino

Accelerator-based dark matter search

Neutrino sources

- The higher the E_{ν} , the easier to detect (But not too high to lose coherence)
- The higher the flux, the more events (but need to watch background)

K. Scholberg, Lomonosov, 2021

https://sites.duke.edu/coherent/detectors/

i

Click to explore this 3D space.

-

NEUTRINO ALLEY

0

ĒŦ

HOT OFF

0000

10)

Zoom Rotate Move Ð 9

•

U

cryocooler system vacuum jacket detector chamber **PMTs** water shield Pb-Cu Shield

Phys. Rev. Lett. 126, 012002 (2021)

COH-Ar-10 single phase LAr scintillator

No-CEvNS rejection	11.6 σ
SM CEvNS prediction	$333 \pm 11(\text{th}) \pm 42(\text{ex})$
Fit CEvNS events	306 ± 20
Fit χ²/dof	82.4/98
CEvNS cross section	$169^{+30}_{-26} imes 10^{-40} m cm^2$
SM cross section	$189 \pm 6 \times 10^{-40} \text{ cm}^2$
Theoretical	Experimental
v Flux	Prelimin
BRN Norm.	

Accelerator-based dark matter search

D. Pershey, ORNL seminar, 2021

https://indico.phy.ornl.gov/event/126/

Coherent CAPTAIN-Mills (CCM) @ LANSCE

Excellent ambient background rejection power due to narrow beam pulses

- Muon neutrino flux: 4.74×10^5 nu/cm²/s @ 20 m
- Light yield: ~0.015 Photoelectrons/keVee

Large!

CCM: 10 ton Liquid Argon (LAr) detector instrumented with 200 8" PMT's, veto region, shielding, fast electronics.

Dark matter search of CCM

arXiv:2105.14020

Compared to the SNS:

- More powerful beam
- Less narrower pulses

- Aim: add a neutrino facility on top of the ESS neutron one
- Add accumulator to compress to 1.3 µs the 2.86 ms proton pulses
- Underground near and far detectors for neutrino oscillations
- Can provide a muon beam for muon collider

JHEP 02 (2020) 123

Coherent Elastic Neutrino-Nucleus Scattering at the European Spallation Source

D. Baxter,¹ J.I. Collar,¹,^{*} P. Coloma,²,[†] C.E. Dahl,^{3,4} I. Esteban,⁵,[‡] P. Ferrario,^{6,7},[§] J.J. Gomez-Cadenas,^{6,7},[¶] M. C. Gonzalez-Garcia,^{5,8,9},^{**} A.R.L. Kavner,¹ C.M. Lewis,¹ F. Monrobel ⁶,⁷,^{¶†} I. Muñoz Videl ⁶ P. Privitore ¹ K. Percenthen ¹ and I. Perper¹⁰

F. Monrabal,^{6,7,††} J. Muñoz Vidal,⁶ P. Privitera,¹ K. Ramanathan,¹ and J. Renner¹⁰

Detector Technology	Target	Mass	Steady-state	E_{th}	QF	E_{th}	$\Delta E/E$ (%)	E _{max}	$CE\nu NS NR/yr$	
	nucleus	(kg)	background	(keV_{ee})	(%)	(keV_{nr})	at E_{th}	(keV_{nr})	@20m, $>E_{th}$	
Cryogenic scintillator	CsI	22.5	10 ckkd	0.1	~10 71	1	30	46.1	8,405	
Charge-coupled device	Si	1	1 ckkd	$0.007 (2e^{-})$	4-30 97 0.16		60	212.9	80	
High-pressure gaseous TPC	Xe	20	$10 \mathrm{ckkd}$	0.18	20 104	0.9	40	45.6	7,770	
p-type point contact HPGe	Ge	7	$15 \ \mathrm{ckkd}$	0.12	20 118	0.6	15	78.9	1,610	
Scintillating bubble chamber	Ar	10	0.1 c/kg-day	-	-	0.1	~ 40	150.0	1,380	
Standard bubble chamber	$\rm C_3F_8$	10	0.1 c/kg-day	-	-	2	40	329.6	515	

Gaseous detector for Neutrino physics at the ESS (GaNESS)

Reactor CEvNS Efforts Worldwide

Experiment	Technology	Location
CONNIE	Si CCDs	Brazil
CONUS	HPGe	Germany
MINER	Ge/Si cryogenic	USA
νΕΟΝ	Nal(Tl)	Korean
Nu-Cleus	Cryogenic CaWO ₄ , Al ₂ O ₃ calorimeter array	Europe
∿GEN	Ge PPC	Russia
RED-100	LXe dual phase	Russia
Ricochet	Ge, Zn bolometers	France
TEXONO	p-PCGe	Taiwan

K. Scholberg, IPA, 2018

Low $E_{\nu} \rightarrow \text{low } E_{recoil}$ $\rightarrow \text{low threshold!}$ $\rightarrow \text{low threshold!}$ $\rightarrow \text{low threshold!}$

Close to continuously running core → Shielding! → Shielding! → Shielding!

A lot more than stopped pion experiments!

Ionization detector

- HPGe
- Si CCDs
- Liquid noble gas
- Bolometers
- Scintillators
- Bubble chamber

. . .

Comparison of the reactor sites

A. Lubashevskiy, TAUP 2021

Experiment	Location	Neutrino flux v/(cm² s)	Overburden [m w. e.]			
vGeN	KNPP, Russia	>5×10 ¹³	~50			
CONUS	Brokdorf, Germany	2.4×10 ¹³	10-45			
TEXONO	Kuo-Sheng NPP, Taiwan	6.4×10 ¹²	~30			
RED-100	KNPP, Russia	1.7×10 ¹³	>50?			
CONNIE	Angra 2, Brazil	6.8×10 ¹²	0			
RICOCHET	ILL, France	2×10 ¹²	~15			
MINER	Texas A&M, USA	2×10 ¹²	~5			
NUCLEUS	Chooz, France	2×10 ¹²	~3			
Mark-I?	Dresden-II, USA	8.1×10 ¹³	6?			
NEON	Yeonggwang, Korea	$7.1 imes10^{12}$	~20			

Sensitivities of CONUS

Publication in preparation!

Charge-coupled device (CCD), Si

Pixelized Si wafer:

- Lower threshold than Ge
- Particle identification
- Less massive than Ge

CCD achievement

Skipper CCD:

repeatedly sample the same pixel to average out noise

• Single electron sensitivity!

slow

J. Tiffenberg et al, PRL 119 (2017)

CH Faham, Brown

D. Rudik, m7s, 2020

Bolometers (heat detectors at mK)

V. Wagner, TAUP, 2021

Target crystals:

Two 3x3 arrays with a total mass of $6g (CaWO_4) + 4g (Al_2O_3)$

- Threshold: ~20 eV
- Instrumented holding structure

Phys. Rev. D 96, 022009 (2017)

T. Salagnac, m7s, 2020

- Threshold: 55 eV
- 30 g crystals
- Particle identification

R. Mahapatra, m7s, 2020

MINER

- Threshold: ~100 eV
- 1~4 kg Hybrid Ge & HV Si
- Low threshold and/or PID
- Moving reactor core!

- COSINE + NEOS
- 15 kg Nal(Tl)
- light yield: 20~24 photoelectrons (PE)/keV \rightarrow threshold: ~0.22 keV visible energy (5 PE)
- Liquid scintillator active shielding
- Physics run from Nov. 2020
 - ~ 4 months Reactor on data
 - ~ 1 week (190 hours) Reactor off data

		2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030's
	Reactor Neutrino Sou	rces													
	Hartlepool Site				BG studie	S									
CLVINJ	Angra Site				location &	t shielding	upgrades								
	CHOOZ Site		BG studie	s	Site	Prep	Operation	S							
timeline	CONNIE	40 g			10 g skipp	100g skip	per	1 kg skipp	ber		10kg skip	per			
	CONUS														
	MINER														
N /	RED-100														
iviay not	TEXONO			PIRI	E R&D										
be up to date	NUCLEUS						10g CaW	D4 & Al2C	kg-scale11	kg: Ge+ Si					
9. inclusival	NUXE			_	Deve	elopment		50 kg ope	ration						
& inclusive!	NEWSG			Fe	easability S	studies									
	RICOCHET			-											
	LAr			D	etector R&	D									
Demonstration	Spallation Neutrino S	ources			-				P 140	1					
of community	SNS FIS	1.1 MW	1.4	4 MW upg	rade		1.7 MW u	pgrade	Ep=1.3 G	ev Upgrad	le		2.0 MW u	pgrade	
offort	SNS SIS							20 ng Ling	-						
effort	Lujan Center Ess							so ns opg							
	LSS COUEDENT Cel		Observatio												
		20 k	eV threshol	d	X = Oh				750 kg				10 T		
Big picture	- Ge	20 K		i.u			18 ko		100 kg						
of the future	- NaI						2.5 T		100 mg	Crvo NaI					
of CE. NC	XENON@SNS							100 kg							
OT CEVINS	CCM - 1st detector														
	- 2nd detector														
	8B Solar Neutrinos														
Thanks to	XENONnT														
Phil Barheau	LZ														
	SuperCDMS														
	Darkside-LM														
	Atmospheric and Diff	use Supern	ova Neutri	no Backgro	ouind										
	DARWIN														10
	Galactic Supernova N	leutrinos C	Dnly												
	Darkside-20k														
	AKGO					1									

Mini Magnificent CEvNS 2021

- Cyberspace
- Morning, US time on Oct. 6 & 7
- Contact organizing committee if you are interested in giving talks:
 - Phil Barbeau
 - Matt Green
 - Diane Markoff
 - Grayson Rich
 - Kate Scholberg
 - Raimund Strauss
 - Louis Strigari
 - Victoria Wagner

http://magnificentcevns.org/

000

$$\begin{array}{l} \mathsf{Backups} & g_V^p = \rho_{\nu N}^{NC} \left(\frac{1}{2} - 2\hat{\kappa}_{\nu N} \hat{s}_Z^2\right) + 2\lambda^{uL} + 2\lambda^{uR} + \lambda^{dL} + \lambda^{dR}, \\ g_V^n = -\frac{1}{2}\rho_{\nu N}^{NC} + \lambda^{uL} + \lambda^{uR} + 2\lambda^{dL} + 2\lambda^{dR} \\ \mathsf{Here} \ \hat{s}_Z^2 = \sin^2 \theta_W = 0.23120, \ \rho_{\nu N}^{NC} = 1.0086, \ \hat{\kappa}_{\nu N} = 0.9978, \ \lambda^{uL} = -0.0031, \ \lambda^{dL} = -0.0025 \ \text{and} \ \lambda^{dR} = 2\lambda^{uR} = 7.5 \times 10^{-5} \ \text{are the radiative corrections given by the PDG} \end{array}$$

A new method for measuring the weak mixing angle at Q~0.04 GeV

$$\sigma \propto Q_W^2 \propto (N - (1 - 4\sin^2\theta_W)Z)^2$$

MOLLER collaboration, arXiv:1411.4088

Other new physics results in a *distortion of the recoil spectrum* (Q dependence)

And squeezing down the possibilities for new physics...

