

Outline

- Terrestrial heat power of the Earth and geoneutrinos
- Borexino and KamLAND experiments
- Mantle geoneutrino signals from Borexino experimental data
- Understanding the Earth's heat budget with geoneutrinos
- Perspectives for future detectors

Heat power of the Earth

• Heat power of the Earth **Q [30-49 TW]** is the equivalent of ~ 10⁴ nuclear power plants.

• **Heat flow observations** are sparse, non-uniformly distributed and not reliable in the oceans.

• The quantitative assessment of heat transport by hydrothermal circulation

remains a difficult task.

REFERENCE	Continents	Oceans	Total		
REPERENCE	q _{CT} [mW m ⁻²]	q _{OCS} [mW m ⁻²]	Q (TW)		
Williams et al., 1974	61	92	43 ± 6		
Davies, 1980	55	95 ± 10	41 ± 4		
Sclater et al., 1980	57	99	42		
Pollack et al., 1993	65 ± 2	101 ± 2	44 ± 1		
Hofmeister and Criss, 2005	61	65	31 ± 1		
Jaupart et al., 2015	65	107	46 ± 2		
Davies and Davies, 2010	71	105	47 ± 2		
Davies, 2013	65	96	45		
Lucazeau, 2019	66.7	89.0	44		

Earth's heat budget

Neglecting tidal dissipation and gravitation contraction (<0.5 TW), the two contributions to the total heat loss (Q) are:

- Secular Cooling (C): cooling down caused by the initial hot environment of early formation's stages
- Radiogenic Heat (H) due to naturally occurring decays of Heat Producing Elements (HPEs), i.e. U, Th and K, inside our planet.
- The mass of the lithosphere (~ 2% of the Earth's mass) contains ~ 40% of the total estimated HPEs and it produces H_{LS} ~ 8 TW.
- Radiogenic power of the mantle H_M and the contributions to C from mantle (C_M) and core (C_C) are model dependent.

- H_{CC} = radiogenic power of the continental crust
- H_{CC} = radiogenic power of the continental crust
- H_{CLM} = radiogenic power of the continental lithospheric mantle

	Range [TW]	Adopted [TW]
Н	[10;37]	19.3 ± 2.9
HLS	[6;11]	8.1+1.9
Нм	[0;31]	11.0+3.3
H _c	[0;5]	0

	Range [TW]	Adopted [TW]
С	[8;39]	28 ± 4
CLS	~ 0	0
C _M	[1;29]	17 ± 4
Cc	[5 ; 17]	11 ± 2

 $H_{LS} = H_{CC} + H_{OC} + H_{CLM}$

Geo-neutrinos: anti-neutrinos from the Earth

U, Th and ⁴⁰K in the Earth release heat together with anti-neutrinos, in a well-fixed ratio:

Decay	$T_{1/2}$	$E_{\rm max}$	Q	$arepsilon_{ar{ u}}$	$arepsilon_H$
	$[10^9 \text{ yr}]$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[kg^{-1}s^{-1}]$	$[\mathrm{W/kg}]$
$^{238}\text{U} \rightarrow ^{206}\text{Pb} + 8^{4}\text{He} + 6e + 6\bar{\nu}$	4.47	3.26	51.7	7.46×10^7	0.95×10^{-4}
$^{232}{\rm Th} \rightarrow ^{208}{\rm Pb} + 6 ^{4}{\rm He} + 4e + 4\bar{\nu}$	14.0	2.25	42.7	1.62×10^7	0.27×10^{-4}
$^{40}\text{K} \to ^{40}\text{Ca} + e + \bar{\nu} \ (89\%)$	1.28	1.311	1.311	2.32×10^8	0.22×10^{-4}

- Earth emits (mainly) antineutrinos $\Phi_{\overline{v}} \sim 10^6 \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$ whereas Sun shines in neutrinos
- A fraction of geo-neutrinos from U and Th (not from 40 K) are above threshold for inverse β on protons:

$$\bar{\nu} + p \rightarrow e^+ + n - 1.806 \, MeV$$

- Different components can be distinguished due to different energy spectra: e. g. anti-v with highest energy are from U
- Signal unit: 1 TNU = one event per 10³² free protons/year

Borexino and KamLAND experiments

Borexino

Gran Sasso National Laboratories -1400 m (3800 MWE) 300 ton LS ~2200 8" PMTs

KamLAND

Kamioka mine -1000 m (2700 MWE) 1 kton LS, 1325 17" PMTs and 554 20" PMTs

Borexino and KamLAND geoneutrino results

- Horizontal bars traces the **expected signal** at 1σ C.L.
- In the second decade of the 21st century the results published with greater statistical significance
 highlighted the necessity of geophysical and geological models for understanding geoneutrino signal.

Mantle geoneutrino signals from experimental signal

$$S_{Exp}^{i}(U+Th) = S_{M}^{i}(U+Th) + S_{FFL}^{i}(U+Th) + S_{LOC}^{i}(U+Th)$$

• U and Th distributed in the Local Crust (LOC) (i.e. ~ 500 km within the detector) gives a significant contribution to the signal (~ 50% of the total).

$$S_M^i(U+Th) = S_{Exp}^i(U+Th) - S_{FFL}^i(U+Th) - S_{LOC}^i(U+Th)$$

- The signal of the Far Field Lithosphere (FFL) is modeling based on global reference model.
- The **Local Crust (LOC)** modeling should be built with geochemical and/or geophysical information typical of the local regions.

Borexino geoneutrino spectra

- In 3262.74 days BX measured 154 antineutrinos candidates in the effective exposure, after cuts.
- Estimated constrained **background events:** 8.3 ± 1.0
- In GeoEW [1.8-3.3 MeV] the reconstructed reactor events are 39.5 ± 0.7.

Borexino geoneutrino spectra

- In 3262.74 days BX measured 154 antineutrinos candidates in the effective exposure, after cuts.
- Estimated constrained **background events:** 8.3 ± 1.0
- In GeoEW [1.8-3.3 MeV] the reconstructed reactor events are 39.5 ± 0.7.
- Assuming a Th/U = 3.9, the **geoneutrino events** are $52.6^{+9.6}_{-9.0}$
- Considering the effective exposure $\varepsilon' = 1.12 \ 10^{32}$ free protons x yr, one can calculate the signal in TNU:

$$S [TNU] = N_{Fve} * (10^{32}/ \epsilon')$$

$$S (U+Th) = 47.0^{+8.4}_{-7.7} (Stat)^{+2.4}_{-1.9} (Sys) TNU$$

Borexino geoneutrino spectra

- In 3262.74 days BX measured 154 antineutrinos candidates in the effective exposure, after cuts.
- Estimated constrained **background events:** 8.3 ± 1.0
- In GeoEW [1.8-3.3 MeV] the reconstructed reactor events are 39.5 ± 0.7.
- Assuming a Th/U = 3.9, the **geoneutrino events** are $52.6^{+9.6}_{-9.0}$
- Considering the effective exposure $\varepsilon' = 1.12 \ 10^{32}$ free protons x yr, one can calculate the signal in TNU:

S [TNU] =
$$N_{Eve}$$
 * (10³²/ ϵ')

 $S (U+Th) = 47.0^{+8.4}_{-7.7} (Stat)^{+2.4}_{-1.9} (Sys) TNU$

• Constraining the contribution from the **bulk lithosphere** (28.8 ± 5.6 events), the **extracted mantle** events are $23.7^{+10.7}_{-10.1} \longrightarrow S_M(U + Th) = 21.2^{+9.5}_{-9.0} (Stat) ^{+1.1}_{-0.9} (Sys) TNU)$

Measurements vs models

The **Bulk Silicate Earth** (**BSE**) describes the primordial non-metallic Earth condition that followed planetary accretion and core separation, prior to its differentiation into a mantle and crust.

BSE models according to different authors:

J = M. Javoy et al., EPSL 293, (2010).

L&K = T. Lyubetskaya and J. Korenaga, J.

Geoph. Res. Sol. Earth, 112 (2007)

T = S. Taylor, Proc. Lunar Planet. Sci. Conf. 11, 333 (1980)

M&S = W. F. McDonough and S. Sun, Chem.

Geol. 120, (1995)

A = D. L. Anderson, Cambridge University Press, (2007)

W = H. S. Wang et al., Icarus 299, (2018)

P&O = H. Palme and H. O'Neill, Treatise of Geochemistry, (2003)

T&S = D. L. Turcotte and G. Schubert, Cambridge University Press, (2002)

The Borexino observations favor geological models that predict a relatively **high concentration of radioactive elements** in the mantle.

Mantle radiogenic power

Cosmochemical Model (CC)

- Enstatitic meteorites
- $H_{Mantle}(K, Th, U) = 0.7 3.8 TW$

Geochemical Model (GC)

- Carbonaceous meteorites
- $H_{Mantle}(K, Th, U) = 7.5 10.9 TW$

Geodynamical Model (GD)

- Earth dynamics
- $H_{Mantle}(K, Th, U) = 19.8 23.3 TW$

Fully radiogenic (FR)

- Terrestrial heat is fully accounted by radiogenic production
- $H_{Mantle}(K, Th, U) = 30.5 34.0 TW$

$$S_{Mantle}$$
 (U+Th) = 21.2 +9.6 -9.0 TNU

$$H_{Mantle}$$
 (U+Th) = 24.6 +11.1 TW
 H_{Mantle} (U+Th+ K) = 30.0 +13.5 TW

Earth's heat power

$$H_{LS} (U+Th+K) = 8.1^{+1.9}_{-1.4} TW$$

• Borexino estimates a high probability (~ 88 %) that the radioactive decays produce more than half of the total Earth's heat.

Expected geoneutrino signal at SNO+

- Deepest underground detector (~ 5800 MWE)
- 780 tons of LS detector with ~ 9300 PMTs
- Expected react- ν in [1.8-3.3 MeV] = 48.5^{+1.8}_{-1.5} TNU (S_{rea} / S_{geo} ~ 1.2)

	S(U+Th) [TNU]
	50.2 ^{+9.7} _{-8.1}
Wipperfurth et al., 2020 (using global crustal models)	46.2+9.3
(daining global crastal models)	46.8+9.3 _{-7.8}
Strati et al., 2017 (combining global crustal model and local geological data)	41.8+9.6 _{-6.2}

Expected geoneutrino signal at JUNO

- JUNO is a 20 kton LS detector surrounded by ~18.000 20" PMT
- Expected geo- $v \sim 400$ events/year (~ 40 TNU)
- Expected react-v in [1.8-3.3 MeV] $\sim 260 \text{ TNU } (S_{rea} / S_{geo} \sim 7)$

	N° of cores	Thermal power/core
Yangjiang	6	2.9 GW
Taishan	2	4.6 GW

	S(U+Th) [TNU]
Strati et al., 2015 (using global crustal model)	39.7 ^{+6.5} -5.2
	41.3+7.5
Wipperfurth et al., 2020 (using global crustal models)	41.2+7.6 -6.4
(asing grobal crastal models)	40.0+7.4 -6.2
Gao et al., 2020 (*) (combining global crustal model and local geological data)	49.1+5.6 _{-5.0}

