

# **Axion Searches**

Stefan Knirck (<u>knirck@fnal.gov</u>) Fermi National Accelerator Laboratory **‡**Fermilab

for the ADMX collaboration



























#### **Selected Review Articles:**

[P. Graham, et al, Ann.Rev.Nucl.Part.Sci. 65 (2015) 485-514] [I. Irastorza, R. Redondo, Prog.Part.Nucl.Phys. 102 (2018) 89-159] [Y. Semertzidis, S. Youn, arXiv:2104.14831] [P. Sikivie, Rev. Mod. Phys.93, 015004 (2021)]

Stefan Knirck | Axion Searches

for image sources see slides of different experiments

| Introduction     | Dark Matter                                | Laboratory                                                         | Astrophysical             | Conclusion |
|------------------|--------------------------------------------|--------------------------------------------------------------------|---------------------------|------------|
| Why Axions? -    | The Strong CF                              | Problem                                                            |                           |            |
| QCD allows term: |                                            |                                                                    |                           |            |
|                  | $\mathcal{L} = -\theta  \frac{\theta}{32}$ | $\frac{d_s}{d\pi^2}G^a_{\mu\nu}\tilde{G}^{\mu\nu}_a,\qquad \theta$ | $\theta = -\pi \dots \pi$ |            |

**Experimentally:**  $|\theta| < 10^{-10}$  (neutron electric dipole moment)



| Introduction   | Dark Matter                                     | Laboratory               | Astrophysical | Conclusion |
|----------------|-------------------------------------------------|--------------------------|---------------|------------|
| Why Axion      | s? - The Strong CP                              | Problem                  |               |            |
| make it a dyna | mic field: $\theta \rightarrow f_a^{-1}a(t; x)$ | c) [Peccei, Quinn, 1977] | ]             |            |

$$\mathcal{L} = -\frac{a}{f_a} \frac{g_s}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a + \frac{1}{2} \partial_\mu a \partial^\mu a$$

**Cosmology:** rolldown to CP conserving limit:





| Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dark Matter                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Laboratory                                                                                                                                                                                                                                          |    |                | Astrophysical                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                              | Conclusion                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e to look? - Models                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                     | [S | lide           | e from Pablo Quíle                                                                                                                                                                                                                                                               | z Lasanta,                                                                                                                                                                                                                   | PATRAS2021]                                                                                               |
| gaγ         Joint Jo | <ul> <li>A) Photophilic/photopho</li> <li>1. Single scalar: Playing with representations</li> <li>"Preferred axion window" "Axion f</li> <li>[Di Luzio, Mescia, Nardi, 16]<br/>[Di Luzio, Mescia, Nardi, 18] [Soke</li> <li>2. Multiple scalars: Alignme</li> <li>"Clockwork axion" "KNP alignment"</li> <li>[Farina et al, 17]<br/>[Coy, Frigerio, 17]<br/>[Kim et al, 04]<br/>[Choi et al, 14 and 16]<br/>[Kaplan et al 16]<br/>[Giudice et al 16]</li> </ul> | Dic axions<br>h fermionic<br>from monopoles"<br>colov, Ringwald, 21]<br>ent in field space<br>"Multi-higgs models"<br>[Di Luzio, Mescia, Nardi, 17]<br>[Di Luzio, Giannotti, Nardi,<br>Visinelli, 16]<br>[Darmé, Di Luzio, Giannotti,<br>Nardi, 20] |    | 3)<br>1.<br>2. | Heavy/even lig<br>Heavy axions: e<br>[Rubakov, 97]<br>[Berezhiani et al ,01]<br>[Fukuda et al, 01]<br>[Hsu et al, 04]<br>[Gianotti, 05]<br>[Hook et al, 14]<br>[Chiang et al, 16]<br>[Khobadize et al,]<br>Even lighter QC<br>[Hook,<br>[Luzio, Gavela, PQ<br>[Luzio, Gavela, PQ | ghter axi<br>extra inst<br>[Dimopoulos e<br>[Gherghetta et<br>[Agrawal et al,<br>[Gaillard, Gave<br>[Fuentes-Martii<br>[Csaki et al, 19]<br>[Gherghetta et<br><b>CD axion</b><br>[8]<br>2, Ringwald, 21]<br>2, Ringwald, 21] | ONS<br>antons<br>antons<br>al, 16j<br>al, 16j<br>17j<br>Ia, Houtz, Rey PQ, 18j<br>n et al, 19j<br>al, 20j |









| Introductior                     | 1                                                   | Dark Matter                                                                                                                                                        | Labora                                        | atory Astrophy                                                               | vsical Conclusion                                                     |
|----------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Ном                              | v to look?                                          | <b>Disclaimer:</b> This is just experiment or study, but ra                                                                                                        | t a selection. <sup>-</sup><br>ather wants to | This talk is not intended to endor<br>o give a (necessarily incomplete)      | se or advertise any particular<br>high-level overview over the field. |
|                                  | Dark                                                | <b>Matter</b> (Haloscopes)                                                                                                                                         |                                               | Lab Axions                                                                   | Sun & Astrophysics                                                    |
| Electro-<br>Magnetic<br>Coupling | IBS/CA<br>RADES,<br>ORPHEU<br>BREA<br>UF<br>ABRACAE | ADMX, HAYSTAC,<br>PP, CAST/CAPP, QUAX-a<br>ORGAN, MADMAX, DA<br>S, ALPHA, SHUKET, BRA<br>D, TOORAD, LAMPOST,<br>PLOAD-DOWNLOAD<br>DABRA, ADMX-SLIC, SHA<br>DMRadio | aγ<br>ALI,<br>ASS,                            | ALPS, JURA,<br>OSQAR, CROWS,<br>STAX, JURA<br>DANCE<br>SAPPHIRES<br>Collider | CAST, IAXO,<br>TASTE<br>Stellar Energy Loss,                          |
| Other<br>Coupling                | C<br>CASPEr-gra                                     | ASPER-electric,<br>dient, GNOME, QUAX-a                                                                                                                            | ae                                            | ARIADNE<br>Collider                                                          | Transparency; Neutron<br>Stars, Black Hole<br>Superradiance,          |





#### coherent detection



$$P_{\rm sig} = 2 \cdot 10^{-23} \,\mathrm{W} \cdot \left(\frac{B}{7.6 \,\mathrm{T}}\right)^2 \left(\frac{V}{136 \,L}\right) \left(\frac{C}{0.4}\right) \left(\frac{Q}{30,000}\right) \left(\frac{g_{\gamma}}{0.36}\right)^2 \left(\frac{m_a}{3 \,\mu\mathrm{eV}}\right) \left(\frac{\rho_{\rm DM}}{0.45 \,\mathrm{GeV \, cm^{-3}}}\right)$$

Introduction

Dark Matter

Laboratory

Conclusion

# ADMX: <u>Axion</u> <u>Dark</u> <u>Matter</u> e<u>X</u>periment





[T. Braine *et al* (ADMX collab.), PRL 124 (2020) 10, 101303]
[R. Khatiwada *et al* (ADMX collab.), RSI (accepted), arXiv:2010.00169]
[C. Bartram *et al* (ADMX collab.), PRD 103 (2021) 3, 032002]



**Other Checks:** 



**Outside Cavity** 

(last check, never happened for ADMX)

Laboratory

Conclusion



## **ADMX** Collaboration







USTRALIA













This work was supported by the U.S. Department of Energy through Grants No DE-SC0009800, No. DE-SC0009723, No. DE-SC0010296, No. DE-SC0010280, No. DE-SC0011665, No. DEFG02-97ER41029, No. DE-FG02-96ER40956, No. DEAC52-07NA27344, No. DE-C03-76SF00098 and No. DE-SC0017987. Fermilab is a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Additional support was provided by the Heising-Simons Foundation and by the Lawrence Livermore National Laboratory and Pacific Northwest National Laboratory LDRD offices.







$$P_{\rm sig} = 2 \cdot 10^{-23} \,\mathrm{W} \cdot \left(\frac{B}{7.6 \,\mathrm{T}}\right)^2 \left(\frac{V}{136 \,L}\right) \left(\frac{C}{0.4}\right) \left(\frac{Q}{30,000}\right) \left(\frac{g_{\gamma}}{0.36}\right)^2 \left(\frac{m_a}{3 \,\mu\mathrm{eV}}\right) \left(\frac{\rho_{\rm DM}}{0.45 \,\mathrm{GeV \, cm^{-3}}}\right)$$





$$P_{\rm sig} = 2 \cdot 10^{-23} \,\mathrm{W} \cdot \left(\frac{B}{7.6 \,\mathrm{T}}\right)^2 \left(\frac{V}{136 \,L}\right) \left(\frac{C}{0.4}\right) \left(\frac{Q}{30,000}\right) \left(\frac{g_{\gamma}}{0.36}\right)^2 \left(\frac{m_a}{3 \,\mu\mathrm{eV}}\right) \left(\frac{\rho_{\rm DM}}{0.45 \,\mathrm{GeV \, cm^{-3}}}\right)$$







Advanced Proposal using Cavity-State Swapping: CEASEFIRE [K. Wurtz et al., arXiv:2107.04147]



#### Other Recent low GHz Single Photon Detectors:

14 GHz photon counting with current-biased Josephson junction [Kuzmin *et al., IEEE Trans. Appl. Super.* 28 7 (2018)]

...



$$P_{\rm sig} = 2 \cdot 10^{-23} \,\mathrm{W} \cdot \left(\frac{B}{7.6 \,\mathrm{T}}\right)^2 \left(\frac{V}{136 \,L}\right) \left(\frac{C}{0.4}\right) \left(\frac{Q}{30,000}\right) \left(\frac{g_{\gamma}}{0.36}\right)^2 \left(\frac{m_a}{3 \,\mu\mathrm{eV}}\right) \left(\frac{\rho_{\rm DM}}{0.45 \,\mathrm{GeV \, cm^{-3}}}\right)$$

Next ADMX Gen-2: (1.4 - 2.2) GHz Adjustable 1 mm Antennas Fine-Tuning Rods ~ 3ft analog power ~ 1m **Coarse Tuning** combining Rods Site: Univ. Washington Data Taking from 2023 4 cavity array, 85 L

Laboratory

Astrophysical

Stefan Knirck | Axion Searches

Introduction

**Dark Matter** 

Conclusion





RADES



[Döbrich et al., JHEP 07 (2020) 084]

**QUAX-a**γ: [D. Alesini, Nuc. Inst. and Meth. in Phys. Res. A, 985, 2021]

Pizza / Wedge Cavities



ORGAN: [Quiskamp *et al.*, Phys. Rev. Applied 14 (2020) 4] [McAllister *et al.*, Springer Proc. Phys.245 (2020) 37-43]
IBS/CAPP: [Youn *et al.*, Phys. Lett. B 777 (2018) 412-419] [Youn *et al.*, Phys. Rev. Lett. 125, 221302]













| Introduction                | Dark Matter                                                       | Laboratory                                                                                                                                                         | Astrophysical                                                                                                                       | Conclusion                                                                       |
|-----------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Dish                        | Antenna                                                           |                                                                                                                                                                    |                                                                                                                                     |                                                                                  |
| $\checkmark$                | <b>"dísh antenna"</b><br>[Horns <i>et al.</i> , JCAP 04 (2013) 01 | 10 <sup>-8</sup>                                                                                                                                                   | Helioscope                                                                                                                          | s (CAST)                                                                         |
|                             |                                                                   | 10 <sup>-10</sup>                                                                                                                                                  | Horizontal Branch S                                                                                                                 | stars                                                                            |
| axion                       | · · · · · · · · · · · · · · · · · · ·                             | $ \begin{bmatrix} 1 \\ - \\ - \\ 0 \end{bmatrix} \begin{bmatrix} 10^{-12} \\ - \\ - \\ 0 \end{bmatrix} $ Halosce (ADMX and 10^{-14} \\ - \\ 10^{-14} \end{bmatrix} | opes<br>I Others)<br>Heterodyne © SQL<br>Heterodyne © Bolometer<br>NEP = 10-2011<br>NEP = 10-2011<br>NEP = 10-2011<br>NEP = 10-2011 | HZ III                                                                           |
|                             | B×                                                                | DFS                                                                                                                                                                | 2 Single Pri                                                                                                                        | 100 days integration<br>Dish: $A = 10 \text{ m}^2$<br>Magnet: $B = 10 \text{ T}$ |
| √ híg                       | h B-field                                                         | $10^{-16}$ 10 <sup>-6</sup> 10 <sup>-6</sup>                                                                                                                       | <sup>-5</sup> 10 <sup>-4</sup> 10 <sup>-3</sup><br>Axion Mass (eV)                                                                  | $10^{-2}$ $10^{-1}$ $10^{-1}$                                                    |
| FUI                         | NK Tokyo                                                          | SHUKET                                                                                                                                                             | BRASS                                                                                                                               | BREAD                                                                            |
| [A. Andrianavale<br>PRD 102 | omahefa et al.,e.g., [J. Suzuki et al.,(2020)]JCAP 09 (2015) 042] | [P. Brun <i>et al.,</i><br>PRL 122 (2019) 20]                                                                                                                      | [http://wwwiexp.desy.de/groups/astrop<br>article/brass/brassweb.htm]                                                                | [talk at PATRAS2021]                                                             |



| Introduction | Dark Matter      | Laboratory                 | Astrophysical                                                      | Conclusion                       |
|--------------|------------------|----------------------------|--------------------------------------------------------------------|----------------------------------|
| Lumped E     | lement Resonator | [Tune<br>[P. Sikivie, N. S | d LC Circuit Readout: Cabrera,<br>Sullivan, D. B. Tanner, PRL 112, | Thomas (2010)]<br>131301 (2014)] |
| v hía        | h-Q. resonator   |                            |                                                                    |                                  |



tunable via lumped elements







**Resonance if:**  $\omega_L = 2 \mu B_{ext} = \omega = m_a \rightarrow tunable via B_{ext}$ 

Similar concept using electrons: QUAX [PRL 124 (2020) 17, 171801]















$$P_{\gamma \to a \to \gamma} = 6 \times 10^{-38} \mathcal{F}_{\text{PC}} \mathcal{F}_{\text{RC}} \left(\frac{B}{1\text{T}}\right)^4 \left(\frac{L}{10\text{m}}\right)^4 \left(\frac{g_{a\gamma\gamma}}{10^{-10}\text{GeV}^{-1}}\right)^4$$

| STAX                                                             | CROWS                                                                           | ALPS                                                                                                                                              |                                                                                                                                                                                                              |
|------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [L. Capparelli <i>et al.,</i><br>Phys. Dark Univ. 12, 37 (2016)] | [M. Betz <i>et al.,</i><br>PRD 88, 075014 (2013)]                               | [next slide]                                                                                                                                      | •••                                                                                                                                                                                                          |
|                                                                  | <b>STAX</b><br>[L. Capparelli <i>et al.,</i><br>Phys. Dark Univ. 12, 37 (2016)] | STAX         CROWS           [L. Capparelli <i>et al.,</i> [M. Betz <i>et al.,</i> Phys. Dark Univ. 12, 37 (2016)]         PRD 88, 075014 (2013)] | STAX         CROWS         ALPS           [L. Capparelli et al.,         [M. Betz et al.,         [next slide]           Phys. Dark Univ. 12, 37 (2016)]         PRD 88, 075014 (2013)]         [next slide] |

| Introduction                               | Dark Matter                                | Laboratory                      | Astrophysical                                  | Conclusion              |
|--------------------------------------------|--------------------------------------------|---------------------------------|------------------------------------------------|-------------------------|
| ALPS: <u>A</u> ny                          | <u>L</u> ight <u>P</u> article <u>S</u> ea | rch                             |                                                |                         |
| ALPS                                       | S-II [Li-Wei Wei, talk at PATRA            | S2021]                          | first physics run expe                         | ected early 2022        |
|                                            |                                            |                                 | Sensitivity Estimate (ALPS                     | -IIc):                  |
|                                            | C C C C C C C C C C C C C C C C C C C      |                                 | 10 <sup>-5</sup><br>20 10 <sup>-6</sup> ALPS-I |                         |
|                                            |                                            |                                 | . <sup>II</sup> 10 <sup>-7</sup>               |                         |
| Cryogenics transfer line<br>from DESY site |                                            | return box                      | 10 <sup>-8</sup> ALPS-lic                      |                         |
| feed box                                   | 20 m optics ~120                           | m for current<br>and cryogenics | Builduc 10 <sup>-10</sup>                      |                         |
| optics                                     |                                            | optics                          | Ŭ 10 <sup>-11</sup>                            | [fig. arXiv:1710.04209] |

hut

 $L \sim 100m, B \sim 5T, \mathcal{F} \sim 16,000$ 

By-pass line for

current and

cryogenics

12 dipoles

[Z. R. Bush *et al.*, PRD 99 (2019) 2]

Mass  $m_a$  in eV

10<sup>-4</sup>

10<sup>-5</sup>

12 dipoles

Cables to power

supply in HERA hall

hut

10<sup>-3</sup>





#### CAST, IAXO: [next slide]

**TASTE:** [JINST 12 (2017) 11, P11019]



Fig. IAXO collab., Phys.Conf.Ser. 1342 (2020) 1, 012070]



Other 'classics': g<sub>aγ</sub> < 6.6x10<sup>-11</sup> GeV<sup>-1</sup> [A. Ayala *et al.*, PRL 113, 19, 191302 (2014)] Abell Galaxy Clusters ( $2\gamma$  Decay)  $g_{a\gamma} < 10^{-11} \text{ GeV}^{-1} @ m_a = 5...7 \text{ eV}$ [D. Grin *et al.*, PRD 75, 105018 (2007)] **SN1987A (Gamma Rays)** g<sub>aγ</sub> < 6x10<sup>-12</sup> GeV<sup>-1</sup> @ m<sub>a</sub> < 4x10<sup>-10</sup> eV [A. Payez *et al.*, JCAP 1502 (2015) 006]

. .

| Introduction | Dark Matter | Laboratory | Astrophysical | Conclusion |
|--------------|-------------|------------|---------------|------------|
| So Much M    | lore        |            |               |            |

## Theory

- Axion Mass-Predictions and Axion Cosmology

   e.g., [V. B. Klaer and G. D. Moore, JCAP 11, 049 (2017)], [A. Vaquero, J. Redondo, and J. Stadler, JCAP 04, 012 (2019)],
   [M. Buschmann et al., arXiv:2108.05368], [IAXO collab., JCAP 06 (2019) 047], ...
- Non-Standard-Halo-Models, Substructure e.g., [S. S. Chakrabarty *et al.*, Phys. Dark Univ., 33 (2021) 100838], [C. A.J. O'Hare, PRD98 (2018) 10, 103006], ...

## Experiments

• High-Field Magnets e.g., [M. D. Bird, Springer Proc.Phys. 245 (2020) 9-16], [N. Bykovskiy *et al.*, IEEE Trans.Appl.Supercond. 31 (2021) 5, 4500305], ...

#### Superconducting Cavities

e.g., [D. Alesini et al., Phys. Rev. D 99, 101101 (2019)], [D. Ahn et al., arXiv:1904.05111], ...

• XENON1T Result e.g., [Phys. Rev. D 102, 072004 (2020)]

## • Other new Detection Ideas, e.g.,

axion "echo" [Arza *et al.*, arXiv:2108.00195] UPLOAD-DOWNLOAD [C. A. Thomson *et al.*, PRL 126, 081803 (2021)], heterodyne axion detection [A. Berlin et al., arXiv:2007.15656]

#### Indirect Detection

e.g., [Raffelt, Day, McDonald, Sigl, talks at MIAPP2020], ...

 $\bullet$   $\bullet$   $\bullet$ 





#### S. 28: [Döbrich *et al.*, JHEP 07 (2020) 084] **Scalable haloscopes for axion dark matter detection in the 30\$\mu\$eV range with RADES** A. Álvarez Melcón (<u>Cartagena Politecnica U.</u>), S. Arguedas Cuendis (<u>CERN</u>), C. Cogollos (<u>ICC, Barcelona U.</u>), A. Díaz-Morcillo (<u>Cartagena Politecnica U.</u>), <u>B.</u> Döbrich (<u>CERN</u>) et al. e-Print: <u>2002.07639</u> [hep-ex] DOI: <u>10.1007/JHEP07(2020)084</u> Published in: JHEP 07 (2020), 084

Figures from other collaborations or authors were adapted with permission.