

Higgs boson production and Decays

Prafulla Kumar Behera (IIT Madras, India) on behalf of CMS and ATLAS Collaborations

The 40th International Symposium on Physics in Collision 2021, 14-17 Sep 2021, RWTH Aachen University, Aachen (Germany)

Prafulla Kumar Behera@PIC2021

Higgs Decay Channels

- Branching fraction fixed by the Higgs mass from LHC Higgs working groups
- Golden channels:
 - H → ZZ (2.6%)
 - Η → γγ (0.23%)
- Other di-boson or third-generation decay channels:
 - H → WW (21.5%)
 - H → ττ (6.3%)
 - H →bb (57.7 %)
- More Challenging decay channels:
 - H →μμ (0.02%)
 - H →CC (2.9%)
 - H → Zγ (0.15%)
 - H → γγ* (0.01%)

Prafulla Kumar Behera@PIC2021

Simplified Template Cross Section (STXS)

- One pathway to further study the Higgs is to perform cross section measurements within multiple phase space regions
- Two complementary approaches are being explored
 - Simplified template cross sections
 - Differential cross sections
- ATLAS, CMS and the theory community have been working together in the LHC Higgs Working Group setup a common framework for Higgs boson measurements in Run2
- STXS targets phase space regions within production modes, using Standard Model kinematics as a template.
 - Categorize each production mode in bins of key (truth) quantities
 - Reduce theory systematics, but more model-dependent.
 - No decay information available in STXS (for the moment).

Current status of Higgs boson

About 7.7 millions Higgs bosons produced during Run 2 by each experiment

Enough data for precision measurements and rare decays

- Main production modes and decay channels studied in detail
 - Decays to bosons and third generations
 - Fiducial, differential and STXS
 - Challenging phase spaces
- Starting the inspection of second generation fermions
 - Evidence for $H \rightarrow \mu\mu$ and searches for $H \rightarrow CC$
- And other rare decays
 - $H \rightarrow \gamma \gamma^*$ or $H \rightarrow Z \gamma$
- Double Higgs production
 - Key to study self coupling and the structure of the scalar Higgs field potential

Prafulla Kumar Behera@PIC2021

Higgs Mass Measurements

Only free parameter, fixes all other properties

- Measured using golden channel
- provides best resolution, exploits key momentum and energy calibration

CMS: Combination of $H \rightarrow ZZ$ and $H \rightarrow \gamma\gamma$ using Run1 and 2016 data

125.38 ± 0.14 GeV

• Systematic uncertainty is ~ 0.1 %

ATLAS: H → ZZ->4l result using full RUN2 dataset

• Improved techniques: per-event error reconstruction and Z mass constraint

 124.92 ± 0.19 (stat.)^{+0.09}_{-0.06} (syst.)

Both measurements are limited by statistics

Prafulla Kumar Behera@PIC2021

15th Sept. 2021

6

Fit for couplings modifiers

Eur. Phys. J. C 79 (2019) 421

Event rate for
$$ii \to H \to ff$$
: $\sigma_i \mathcal{B}^f = \frac{\sigma_i(\vec{\kappa})\Gamma^f(\vec{\kappa})}{\Gamma_H(\vec{\kappa})}$

Fit for six Higgs coupling modifiers: κ_W , κ_Z , κ_t , κ_b , κ_τ , κ_μ Assuming:

- no "new physics" in loop-driven couplings $(H \rightarrow \gamma \gamma, gg \rightarrow H)$
- no BSM decays (invisible, not observed)
- couplings to the 1st/2nd-gen. quarks and electrons are SM-like (i.e., small and hence having a negligible effect on the fit)

Impressive agreement with SM over three orders of magnitude of couplings ! (note: $\pm 5\%$ for ttH coupling)

Prafulla Kumar Behera@PIC2021

H $\rightarrow \gamma \gamma$ Measurements

Large backgrounds due to non-resonant photon pairs but estimated through fit to data

Both ATLAS and CMS measured inclusive and STXS

Inclusive cross-section measurements are:

ATLAS: \circ ($\sigma \times B_{\gamma\gamma}$)_{obs} = 127 ± 10 fb ($\sigma \times B_{\gamma\gamma}^{SM}$ = 116 ± 5 fb)

CMS:

$$\mu = \sigma / \sigma_{SM} = 1.12^{+0.07}_{-0.06} (stat.) \pm 0.03 (syst.) \pm 0.06 (theo.)$$

Prafulla Kumar Behera@PIC2021

H $\rightarrow \gamma \gamma$ Measurements conti..

AUTE OF TECHNOLOGY MAD

- STXS results for different production mechanism
- ggH,VBF,VH, ttH and tH
- Consistent with Standard Model

ATLAS-CONF-2020-026

Measurement of $H \rightarrow ZZ$

Measurement of $H \rightarrow ZZ$

differential fiducial cross sections can be used to probe possible effects of physics beyond the SM ٠

Double differential cross section is used to probe several BSM scenarios within the framework of pseudo-observables

15th

Sept. 2021

UTE OF TECA

निविभंवति कर्मज

Prafulla Kumar Behera@PIC2021

Measurement of $H \rightarrow ZZ$ conti..

Measurement of different production mechanics in mutually exclusive regions

H → WW measurements

Neutrinos in the final state spoils mass resolution but very clean due to lepton in final states

ATLAS:

- ggH and VBF total cross-sections measurements
 - ggH: $\sigma_{obs} = 12.4 \pm 1.5 \text{ pb} (\sigma_{SM} = 10.4 \pm 0.6 \text{ pb})$
 - VBF: $\sigma_{obs} = 0.79 + 0.19 0.16 \text{ pb}$ ($\sigma_{SM} = 0.81 \pm 0.02 \text{ pb}$)
- STXS in 11 categories

CMS:

- integrated fiducial cross section $\circ \sigma_{fid} = 86.5 \pm 9.5 \text{ fb} \ (\sigma_{fid}^{SM} = 82.5 \pm 4.2 \text{ fb})$
- Prafulla Kumar Behera@PIC2021

$H \rightarrow \tau \tau$

• Final states with at least one hadronically-decaying au lepton

14

Measured in Higgs P_{T} , leading Jet P_{T} and No. of Jets

inclusive fiducial cross-section $\circ ~~\sigma_{fid}$ = 426 ± 102 fb (σ_{fid}^{SM} = 408 ± 27 fb)

Prafulla Kumar Behera@PIC2021

15th Sept. 2021

E OF TEC

Data

Prafulla Kumar Behera@PIC2021

15th Sept. 2021

×10³

Events / 10 GeV

40

30

20

10

0

0.5 0.0

-0.5

ttH

VH

ggF

VBF

Comb.

Data – Bkg

H →µµ/ee

ggH(H →bb)

17

- ggH(H → bb) production is the dominant but large background
- Look at boosted selection
- Measurement focuses on
- Inclusive
- pT differential measurement (STSX)
- fiducial measurement (pT,truth>450 GeV)

H →bb

- Highly boosted two b-jets in the final state. Merged both to one large radius jet
- New DeepDoubleBTag (DDBT) algorithm (1.6x signal efficiency)
- QCD bkg. estimated using CR, populated with events failing DDBT selection.
- Transferred to signal region
- Higgs $p_T(H_{pT}) > 450 \text{ GeV}$

18

- Higgs candidate mass is fitted for signal extraction
- Other processes are fixed to SM prediction:
- Analysis has been validated using $Z \rightarrow bb$
- For differential measurement STXS bins are used; 2.6 local significance PT(H) > 650 GeV

 $\mu_{\rm H} = 3.7 \pm 1.2 \,(\text{stat})^{+0.8}_{-0.7} \,(\text{syst})^{+0.8}_{-0.5} \,(\text{theo}) = 3.7^{+1.6}_{-1.5}$

JHEP12 (2020) 085

H →bb

- Fit QCD with smooth function
- extensively validated in 0-btag region
- W/Z + jets
 - Shape from simulation
 - Fully floating during fit (standard candle)
 - Mostly Z+jets after b-tagging
- ttbar:

19

- Shape from simulation
- CRttbar for normalization

Prafulla Kumar Behera@PIC2021

 1.0 ± 29.0

 26 ± 31

 1.0 ± 1.6

 $\sigma_{\rm obs}~({\rm p_T(Higgs)}>450~{\rm GeV})=13\pm57~{\rm (stat)}\pm22~{\rm (syst)}\pm3$ (theo) fb

 2.4 ± 1.7

> 1 TeV

15th Sept. 2021

 0.51 ± 0.19

 1.0 ± 0.3

Higgs couplings to 2nd gen quarks

- Test of Yukawa interactions with 2nd generation fermions: evidence for leptons only
- Search for $\mathbf{H} \rightarrow \mathbf{cc}$ in associated production
- Dedicated charm tagging

Higgs coupling to Charm quarks

earch for $H \rightarrow cc$: VH production mode • 0-lepton: $Z(\rightarrow \nu \nu) H(\rightarrow cc)$

- 1-lepton: W(l[±]ν)H(→cc), l=e,μ
- 2-lepton: $Z(I^+I^-)H(\rightarrow cc)$, $I=e,\mu$

Н→сс

- Use of multivariable analysis techniques to identify jets produced by c quarks
- Targeting VH associate production to suppress backgrounds
 - ZH $\rightarrow \nu\nu\nu$ cc, WH $\rightarrow l\nu$ cc and ZH $\rightarrow llcc$
 - At least one c tagged jet
- Analysis strategy validated in VW(cq) and ZW(cc) channels Good agreement with SM
- Diboson fit results: validation of the analysis
 - •VZ(cc): 2.6σ observed (2.2 expected)
 - VW(cq): 3.8σ observed (4.6 expected)
 - First measurement of VZ(cc) and VW(cq) using c-tagging!

Upper limits:

- ATLAS: 26 (31_{-8}^{+12}) SM at 95% CL (full Run 2 data)
- CMS: 70 (37^{+16}_{-11}) SM at 95% CL (2016 data only)

21

Prafulla Kumar Behera@PIC2021

15th Sept. 2021

E OF TECH

$H \rightarrow \gamma^*(II)\gamma$

- The Higgs boson can decay to a lepton pair and a photon in three main ways:
 - the leptons can be produced via an intermediate Z boson $(H \rightarrow Z\gamma \rightarrow ll\gamma)$
 - or a virtual photon $(H \rightarrow \gamma^* \gamma \rightarrow ll \gamma)$, or two leptons $(H \rightarrow ll)$ with one lepton radiating a final-state photon.
- Target the decay mediated by the virtual photon.
 - focus on events where the dilepton mass (mll) is less than 30 GeV,
 - Due to the low mass of the dilepton pair they are often very collimated
- Limited spatial resolution of the detector
 - Merged electron + Photon / 2 electrons + Photon
 - Not an issue for muons

Prafulla Kumar Behera@PIC2021

$H \rightarrow H\gamma$

- Fit to $ll \boldsymbol{\gamma}$ invariant mass with a wellbehaved combinatorial background
- dedicated trigger for close by electron
- Select low- m_{11} events (< 30 GeV)

Higgs decays to invisibles particles

 Reinterpretation in terms of Higgs couplings with Dark Matter or Higgs exotic decays

Latest results:

• ZH \rightarrow ll + E_T miss

Results:

- ZH: B(H \rightarrow inv) < 18% obs (18% exp) at 95% CL
- combination of previous ATLAS analyses (VBF and ttH): B(H \rightarrow inv) < 11% obs. (11% exp.) at 95% CL

CMS results (2016 data only): Phys. Lett. B 793 (2019) 520

Prafulla Kumar Behera@PIC2021

Charged Lepton Flavor Violation in decays: $H \to \mu \tau, H \to e \tau \ , \ H \to e \mu$

ATLAS

μτ_{_} VBF

1.64 (exp) 1.08 (obs)

μτ_ VBF

0.96 (exp) 0.94 (obs) μτ_ non-VBF

0.72 (exp) 0.57 (obs)

0.66 (exp) 0.44 (obs)

μτ non-VBF 0.57 (exp) 0.49 (obs) √s = 13 TeV. 36.1 fb⁻¹

Channels used:

- $\mu \tau_{\rm h}, \mu \tau_{\rm e}$
- $e \boldsymbol{\tau}_{h}, e \boldsymbol{\tau}_{\mu}$

Very similar to the "nominal" $H \rightarrow \tau \tau$ analysis, except that μ and e

- are prompt
- tend to have larger momenta

BDT is used to separate signal from $\frac{1}{120}$ non-Higgs bkg and $H \rightarrow \tau\tau$

B(H $\rightarrow \mu \tau$) < 0.15% (CMS) B(H $\rightarrow \mu \tau$) < 0.28% (ATLAS)

 $H \rightarrow e\mu$) < 0.006% (ATLAS)

 $B(H \rightarrow e\tau) < 0.22\%$ (CMS)

 $B(H \rightarrow e\tau) < 0.47\%$ (ATLAS)

<u>JHEP 03 (2020) 103</u>

ATLAS-CONF-2019-037 and Phys. Lett. B 800 (2020) 135069

most sensitive final state in $H \rightarrow \mu \tau$ search, $\mu \tau_h + 2$ -jet VBF tag

Observed

Expected \pm 1 σ Expected \pm 2 σ

 $\hat{\mu} = -1.28^{+0.89}_{-0.89}$

 $\widehat{\mu} = -0.09^{+0.58}_{-0.58}$

 $\hat{\mu} = -0.24^{+0.35}_{-0.35}$

 $\widehat{\mu} = -0.21^{+0.31}_{-0.32}$

 $\widehat{\mu} = -0.38^{+0.31}_{-0.31}$

Limits on off-diagonal Yukawa couplings $Y_{\mu\tau}$

Prafulla Kumar Behera@PIC2021

The Higgs boson and its self-coupling

- Higgs boson mass measurement getting very precise
- Interaction with fermions and vector boson well established by now...
- Time to measure the Higgs boson self-coupling experimentally

Searches for di-Higgs production

- Measuring production will gives us access to the triple Higgs coupling (self coupling) λ_3 , which gives information of the shape of the Higgs potential:
- V(H) = $1/2 \text{ m}_{\text{H}}^2 \text{ H}^2 + \lambda_3 \nu \text{H}^3 + 1/4 \lambda_4 \nu \text{H}^4 + \text{O}(\text{H}^5)$
- shape of the Higgs potential linked to a wide range of open questions in particle physics ==> characterizing it is a major goal of HL-LHC
- The leading production mode is gluon gluon fusion (ggF):
- The coupling modifier κ_{λ} controls the strength of the Higgs self

- coupling with respect to SM: $\kappa_{\lambda} = \lambda_3 / \lambda_3$ SM (any change will enhance cross-section significantly)
- Destructive interference between the two diagrams results in a very small SM cross section of σ^{HH}_{ggF} =31.05 fb at 13 TeV.

Double-Higgs search

Possibility to directly inspect the Higgs coupling and shape of the potential
Cross-section values at 13 TeV

28

HH→ bbbb

- HH candidates reconstructed from 4 jets and $\chi = (m_{H1} 125)^2 + (m_{H2} 120)^2$ is used to divide events in SR and CR
- VBF candidates are selected by requiring 2 additional non b- jets and a VBF-vs-ggF BDT is used to reduce mis- classification of ggF events.
- VBF-vs-ggF BDT or a dedicated ggF BDT are used to enhance sensitivity to both SM and BSM scenarios, resulting in a total of 4 SRs.
- The large multi-jet background is estimated from data and a maximum likelihood binned fit is simultaneously performed in all SRs.

138 fb⁻¹ (13 TeV)

HH → bbbb

μ_{ggF}=1

All categories

3

κ_{2V}

• $\sigma(pp \rightarrow HH \rightarrow 4b) < 3.6 (7.3) \times SM \text{ obs (exp)}$

- $-2.3 < \kappa_{\lambda} < 9.4 \ (-5.0 < \kappa_{\lambda} < 12.0)$
- $-0.1 < \kappa_{2V}^{2} < 2.2 \ (-0.4 < \kappa_{2V}^{2} < 2.5)$

Prafulla Kumar Behera@PIC2021

2

HH→ bbbb

ALLE OF TECHNOLOGY MADO

- New production mode : VBF HH
- Sensitive to c_{2V} coupling unique to HH
- Distinct VBF signature: two high p_T jets with large rapidity gap and invariant mass
- 4 b jets final state : M(bb) energy resolution improved by 25% with BDT energy regression
- Main challenge multijet background, estimated from data events with lower b-jet multiplicity
- Fit m4b to extract presence of signal

HH → bbbb (boosted)

Targets non-resonant VBF HH production to measure κ_{2V}

Boosted topology:

- each $H \rightarrow bb$ candidate reconstructed as a large-radius jet
- multivariate classifier based on graph convolutional networks and mass regression to identify signal events

Leading top and QCD backgrounds estimated in control regions $K_{yy}=0$ is shown in red

Very sensitive to search!

Prafulla Kumar Behera@PIC2021

Results:

• 0.6 < κ_{2V} < 1.4 (obs and exp) at 95% CL

Assuming $k_t = k_v = 1$, $k_{vv} = 0$ is excluded at a CL higher than 99.99 %

$HH \rightarrow bb\gamma\gamma$

- Two different BDTs are used for events with high/low Mx masses to discriminate $\kappa_{\lambda} = 1$ or $\kappa_{\lambda} = 10$ against background. A total of 4 regions are defined from cuts on the score of the BDTs.
- The analysis is optimised for ggF HH ==> VBF events are also considered as signal.
- The SB are fit to estimate the non-resonant background with data.

Results:4.1 (5.5) x SM *σHH*

5x improvement wrt previous result, \sim 3x due to analysis techniques driven by mHH categorization & MVA as well as b-jet corrections

$HH \rightarrow bb\gamma\gamma$

137 fb⁻¹ (13 TeV)

All Categories

S/(S+B) weighted Data

- A ggF and VBF BDT are used to discriminate the HH signals against background + a DNN is also used to further discriminate against ttH
- M(bb) energy resolution improved by 25% with DNN-based b jet energy regression
- A 2D fit to $m\gamma\gamma$ and mjj side bands is performed in
- all regions to estimate the non-resonant backgrounds with data.

JHEP03 (2021) 257

CMS

25 F

HH→γγbb

m_H = 125 GeV

$HH \rightarrow bb\tau\tau$

AUTE OF TECHNOLOGY MAD

Compromise between BR and background contamination

Search is optimised for maximum sensitivity to cross-section measurement

At least one $\tau_{_{had}}$ in each event

Signal extracted from fits to multivariate discriminants

Results:

 σ(HH → bbττ) < 4.7 (3.9) × SM obs (exp) at 95% CL

CMS results (2016 data only): Phys. Lett. B 778 (2018) 101

Prafulla Kumar Behera@PIC2021

Conclusions

- Recent Higgs results from ATLAS and CMS using full Run2 data
- Golden channels, vector bosons, and third generation fermions established
- Effort to explore decays to second generation fermions and rare final states
- Inclusive, fiducial, and Differential STXS measurements
- Limits on HH measurements are more stringent and already close to SM expectation
- The forthcoming Run3 will help improving current measurement and prepare for the high luminosity phase