

Search for BSM Higgs Signatures

at the LHC

Hale Sert

on behalf of CMS & ATLAS Collaborations

Istanbul University

PIC 2021, Aachen 14-17 September 2021 RWTH Aachen University

Dunger Francisco

- The Higgs boson (H) was discovered in 2012 by the ATLAS and CMS collaborations
- The measured properties have so far been in agreement with the SM predictions

- Have we observed the Higgs boson of the Standard Model?
- What else it could be?
- How to search for the BSM Higgs signatures at the LHC?

Some of Beyond the SM Theories

- The main extension of the SM is the addition of a Higgs doublet! (2HDM, MSSM)
 - In the Standard Model: one complex Higgs doublet => 1 Higgs boson, h
 - In extended models: two complex Higgs doublets => 5 Higgs bosons, h, H, A, H^{\pm}

@2HDM

- It has four types, depending on the way the two $SU(2)_L$ doublets are coupled to the fermion sector:
 - Type I: the $SU(2)_L$ doublets couple to both up- and down-type fermions equally
 - Type II: one doublet couples exclusively to up-type and the other exclusively to down-type fermions

@MSSM (Type II 2HDM)

The Higgs sector of MSSM is determined at tree level by only two parameters

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryResultsHIG

Beyond the SM Higgs Searches

BSM theories predict new additional Higgs bosons that trigger **searches for** those additional bosons

- CP even Higgs boson
- CP odd A boson
- Charged Higgs bosons, H⁺, H⁻

- The self coupling of the Higgs boson is also predicted in the SM. **The double Higgs boson production** is one of the way to search for it. Any deviation from the SM would be an indication of new physics.
 - Non-resonant production
 - Resonant production

- New physics could be also found in searches for exotic decays
 - Lepton Flavour Violating Decays, $H \rightarrow e\tau$
 - Decays to pseudo scalars, $H \rightarrow aa$
 - Decays to invisible particles, $H \rightarrow inv$

Searches for additional Higgs bosons

- CP even Higgs boson
- CP odd A boson
- Charged Higgs bosons, H⁺, H⁻

$A \rightarrow ZH$ Searches in ATLAS $(m_H > 125 \ GeV)$

using the full Run 2 dataset

Eur. Phys. J. C. 81 (2021) 396

- A search is performed with the following mass ranges:
 - $230 < m_A < 800$ GeV and $130 < m_H < 700$ GeV for $H \rightarrow b\bar{b}$, (ggF and b-associated production)
 - $300 < m_A < 800$ GeV and $200 < m_H < 700$ GeV for $H \rightarrow W^+W^-$, W decays hadronically (ggF prod.) when $Z \rightarrow \ell^+ \ell^-$
- $m_{\ell\ell bb}$ and $m_{2\ell 4q}$ distributions are used as final variables to discriminate signal from the backgrounds
- No significant deviation from the SM background predictions
- Observed upper bounds at 95% CL are set on the $\sigma_{prod} \times BR$

The results are interpreted in 2HDM phase spaces!

New: The A \rightarrow ZH \rightarrow WW $\ell\ell$ channel has not been explored previously at the LHC! The mass range of A \to ZH \to $b\bar{b}\ell^+\ell^-$ is extended up to 2 TeV in <u>ATLAS-CONF-2020-043</u>

$A(H) \rightarrow ZH(A)$ Searches in CMS

using the 2016 dataset JHEP 03 (2020) 055

- A H or A boson is searched in the mass range of $120 < m_H(m_A) < 1000$ and $30 < m_A(m_H) < 1000$ GeV, when $\pmb{H}(\pmb{A}) \to \pmb{b}\bar{\pmb{b}}$ and $\pmb{Z} \to \ell\bar{\ell}$ with $\ell=e$, μ
- $m^{inv.}_{\ell^+\ell^-b\bar{b}}$ are used to search for a resonant-like excess of events compatible with the H and A masses
- No significant deviations from the SM expectations are observed
- Model independent upper limits on $\sigma \times BR$ are set, and results are interpreted in type-II of 2HDM scenario
 - The interpretation in the all four type of 2HDM is done in Eur. Phys. J. C 79 (2019) 564

For tan β = 1.5 and cos(β - α) = 0.01,

- with mH > mA, regions in
 - $150 < m_H < 700 \text{ GeV}$
 - $30 < m_A < 295 \text{ GeV}$

alternatively

- with mH < mA, regions in
 - $30 < m_H < 280 \text{ GeV}$
 - $150 < m_A < 700 \text{ GeV}$

are excluded at 95% CL

• A larger region of Type-II 2HDM parameter space is excluded compared to previous searches

$H/A \to \tau \overline{\tau}$ Searches in ATLAS

- A search for H or A bosons over the mass range $0.2 < m_{H/A} < 2.5$ TeV is performed in the $\tau^+\tau^-$ decay with $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$ final state
- Both gluon fusion and b-associated production modes are considered
- m_T^{tot} is used as discriminating variable

using the full Run 2 dataset

- The events are classified in b-tag and b-veto categories
- The data are in good agreement with the SM bkg prediction
- Model independent upper limits are obtained

- The sensitivity and explored mass range are significantly increased, especially in the mass range 0.7–2.5 TeV!
- The results are interpreted in MSSM scenarios

- A heavy Higgs boson is searched in the mass range of $90 < m_\phi < 3200$ GeV in $\varphi \to \tau \bar{\tau}$
 - In the channels of $e\mu$, $e au_h$, μau_h and $au_h au_h$
- Higgs boson production in association with b quarks is considered to enhance sensitivity!
- Discriminating variable: $m_T^{tot} = \sqrt{m_T^2(p_T^{\tau_1}, p_T^{\tau_2}) + m_T^2(p_T^{\tau_1}, p_T^{\tau_{miss}}) + m_T^2(p_T^{\tau_2}, p_T^{\tau_{miss}})}$, where $m_T = \sqrt{2p_Tp_T'[1-\cos(\Delta\phi)]}$
- The events are classified in b-tag and no b-tag categories in general
- No significant deviation has been observed

Model independent limits are set in $\sigma \times BF$ ($\phi \rightarrow \tau \tau$)

- These range from 15 pb to 2.5 fb for production in association with b quarks
- Exclusion regions are determined in tan β – mA plane for specific scenarios

$H \rightarrow W^+W^-$ Searches in ATLAS & CMS

- Mass range of $0.2 < m_H < 5$ TeV
- In evµv final state
- Quark-antiquark annihilation or gluongluon and vector boson fusion processes are studied

Eur. Phys. J. C 78 (2018) 24 m_H [GeV]

- Mass range of $0.2 < m_H < 3$ TeV
- In $2\ell 2\nu$ and $\ell \nu 2q$ final states
- Gluon and vector boson fusion production modes are considered

- The data is consistent with the SM expectation
- Model independent limits are obtained and results are interpreted in 2HDM

Search for $H^{\pm} \to W^{\pm}A \to W^{\pm}\mu\mu$ using the full Run 2 dataset

- A search is performed for $H^{\pm} \to W^{\pm}A$, when $A \to \mu\mu$ in $t\bar{t}$ events.
- The mass ranges are
 - $\bullet \ \ 100 < \ m_{H^\pm} < 160 \ {
 m GeV} \ {
 m and}$
 - $15 < m_A < 75 \text{ GeV}$
- An excess in the $\mu\mu$ invariant mass spectrum is searched
- No excess has been found, upper limits on $\sigma \times BR$ are set

New: The first ATLAS searches in this production and decay channel!

$H^{\pm\pm} o W^\pm\,W^\pm\,$ and $H^\pm o W^\pm$ Z

using the full Run 2 dataset Eur. Phys. J. C (2021) 81:723

- The search is performed for the VBF production of $H^{\pm\pm}$ and H^{\pm} over mass range: $200 < m_{H^{\pm\pm}}/m_{H^{\pm}} < 3000$ GeV in leptonic decays of W^{\pm} W^{\pm} and W^{\pm} Z
- The $W^\pm\,W^\pm$ and $W^\pm Z$ channels are simultaneously studied using the di-boson transverse mass m_T and dijet invariant mass m_{jj} distributions

- No excess of events with respect to the SM background predictions is observed.
- Model independent upper limits at 95% CL are reported on the $\sigma \times BR$ for VBF production of charged Higgs bosons

$H^{\pm\pm} o W^\pm\,W^\pm\,$ and $H^\pm o W^\pm$ Z

The search is performed in the mass range of $200 < m_{H^{\pm\pm}} < 600 \text{ GeV}$

• In final states of two same charge leptons (SC) ($2\ell^{SC}$), three leptons (3ℓ) or four leptons (4ℓ)

New: The associated production of $H^{\pm\pm}$ and H^{\pm} bosons is explored!

using the full Run 2 dataset

- No significant deviation from the SM predictions was observed
- $H^{\pm\pm}$ bosons are excluded at 95% CL up to 230 GeV for the associated production mode
- The limit on the $H^{\pm\pm}$ boson mass implies a constraint on the H^\pm boson mass
 - which is at most 5 GeV different from the $H^{\pm\pm}$ mass
- Upper limits on the associated production $\sigma \times BR$ range from 40 to 10 fb

Searches for double Higgs boson production

- Non-resonant production
- Resonant production

Double Higgs Boson Production Searches

Both ATLAS and CMS have single-channel analyses that are performing significantly better than the 2016 combined result!

Non-resonant HH production cross-section to the Standard Model prediction

Non-resonant Double Higgs Production

Non-resonant analyses are used to set limits on predicted couplings $(\kappa_{\lambda}, \kappa_{2V})$

Resonant Double Higgs Production

The resonant production of double Higgs searches are also ongoing!

Searches for Exotic Decays

- Lepton Flavour Violating Decays, $H \rightarrow e \tau$
- Decays to pseudo scalars, $H \rightarrow aa$
- Decays to invisible particles, $H \rightarrow inv$

Lepton Flavour Violation Searches

using 2016 dataset

- LFV is searched in $H \to \mu \tau$ and $H \to e \tau$
- BDT scores are used as final variables
- VBF and non-VBF categorizations

Phys. Lett. B 800 (2020) 135069

- LFV is searched in $H \to \mu \tau$ and $H \to e \tau$
- Collinear mass distributions are used as discriminating variable
 - $M_{col} = M_{vis} / \sqrt{x_{\tau}^{vis}}$, where x is the fraction of momentum carried by the visible decay products

- No excess is observed
- Upper limits on branching ratios and $\sigma \times BR$ are set
- Yukawa couplings are constrained

- Many Higgs searches are ongoing in beyond the SM theories
- Only a few representative results presented here see the ATLAS and CMS public results pages for the full set:
 - ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HDBSPublicResults
 - CMS: http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG/EXO.html
- Both CMS and ATLAS results are in agreement
- No excess has been found yet
- Parameter spaces are constrained
- Run3 and Phase2 could be promising for BSM Higgs searches
 - An exciting area is upcoming at the LHC!

Beyond the SM Theories

@2HDM

- Free parameters of 2HDM
 - $m_h, m_H, m_A, m_{H^+}, \alpha, \tan \beta, m_{12} (\text{soft } Z_2 \text{ symmetry (H1} \rightarrow H1, H2 \rightarrow -H2) \text{ breaking parameter)}$
 - The two angles α and θ can be substituted by $\cos(\theta \alpha)$ and $\tan \theta$ without loss of generality.
- It has four special types, depending on the way the two SU(2)L doublets are coupled to the fermion sector:
 - Type I: the SU(2)L doublets couple to both up- and down-type fermions equally
 - Type II: one doublet couples exclusively to up-type and the other exclusively to down-type fermions
 - Lepton specific: the quarks couple to one of the Higgs doublets and the leptons couple to the other
 - Flipped, with $\cos(\beta \alpha) = 0$: the up-type quarks and leptons couple to one of the Higgs doublets, while the down-type quarks couple to the other

@MSSM

- There are many benchmark scenarios
 - hMSSM and M_h^{mod} benchmark scenarios
 - $M_{\rm h}^{125}$ benchmarks proposed in 2019 to be compatible with the Run 2 results are commonly used scenarios

@NMSSM: Next to MSSSM

- The theories can be further extended by a scalar
 - NMSSM: two complex Higgs doublets + one scalar complex singlet => 7 Higgs bosons $h_1H_1, H_2, A_1, A_2, H^{\pm}$

@Heavy vector triplet (HVT) model

- which is a simplified model providing a broad phenomenological framework for heavy resonances coupling to SM fermions and bosons
- This model introduces heavy spin-1 particles, referred to as W' and Z'.
- @ Technicolor, little Higgs, a more complex Higgs sector, warped extra dimensions
 - predict the existence of heavy resonances that predominantly decay into pairs of bosons, including WH and ZH.
- @ type-II see saw model,
 - Predict 7 scalar bosons, $H^{\pm\pm}$, H^{\pm} , A^0 , H^0 and h^0 after EWSB

Mass Hierarchies in 2HDM (JHEP03(2020)055)

Conventional,

 where A is degenerate in mass with the charged scalars; and

Twisted,

 where H is degenerate in mass with the charged scalars.

In both scenarios, the lighter of the A and H bosons can be either heavier or lighter than the observed Higgs boson h(125).

$H/A \to \tau \overline{\tau}$ Searches in CMS

• The classification:

_	No b-tag					b-tag				
${\rm H} \to \tau\tau \to {\rm e}\mu$	Low- D_{ζ}	Mediu	$\mathrm{im} ext{-}D_{\zeta}$	$\operatorname{High-}D_{\zeta}$		$\text{Low-}D_{\zeta}$	Mediu	ım- D_{ζ}	$\text{High-}D_{\zeta}$	
$H \to \tau\tau \to e\tau_h$	Loose- $m_{ m T}$		Tight-	$m_{ m T}$		Loose- $m_{ m T}$		Tight	$-m_{ m T}$	
$H \to \tau\tau \to \mu\tau_h$	Loose- $m_{ m T}$		Tight-	$m_{ m T}$		Loose- $m_{ m T}$		Tight	$-m_{ m T}$	
$H \to \tau\tau \to \tau_h\tau_h$										
$Z \to \mu\mu$										
${ m tar{t}}({ m e}\mu)$										
	Signal region (SR)									
		Con	ntrol	region						

Charged Higgs Boson Searches

ATLAS

• $H^{\pm\pm}$ is proposed in type-II see saw model.

• CMS

 The charged bosons are produced via VBF in the Georgi—Machacek (GM) model

$H^{\pm\pm} \rightarrow W^{\pm} W^{\pm}$ and $H^{\pm} \rightarrow W^{\pm} Z$ using the full Run 2 dataset

Variable	$W^\pm W^\pm$	WZ				
Leptons	2 leptons, $p_T > 25/20 \text{GeV}$	3 leptons, $p_{\rm T} > 25/10/20 {\rm GeV}$				
$p_{\mathrm{T}}^{\mathrm{j}}$	>50/30 GeV	>50/30 GeV				
$ \mathbf{m}_{\ell\ell} - m_{\mathbf{Z}} $	>15 GeV (ee)	<15 GeV				
$\mathrm{m}_{\ell\ell}$	>20 GeV	_				
$m_{\ell\ell\ell}$	_	>100 GeV				
$p_{ m T}^{ m miss}$	>30 GeV	>30 GeV				
b jet veto	Required	Required				
$\tau_{\rm h}$ veto	Required	Required				
$\max(z_\ell^*)$	< 0.75	<1.0				
$m_{\rm ii}$	>500 GeV	>500 GeV				
$- \mathring{\Delta\eta_{ m jj}} $	>2.5	>2.5				

- The Georgi—Machacek (GM) model, includes both real and complex triplets, that preserves a global symmetry SU(2)L ×SU(2)R, which is broken by the Higgs VEV to the diagonal subgroup SU(2)L+R.
- Thus, the tree-level ratio of the W and Z boson masses is protected against large radiative corrections.
- In this model, singly (doubly) charged Higgs bosons that decay to W and Z bosons (same-sign W boson pairs) are produced via vector boson fusion (VBF).
- The charged Higgs bosons H± and H±± in the GM model are degenerate in mass (denoted as mH5) at tree level
- Production and decays of the H5 states depend on the two parameters mH5 and sH, where s2H characterizes the fraction of the W boson mass squared generated by the vacuum expectation value of the triplet fields.