

Physics in Collision

40th International Symposium on Physics in Collision RWTH Aachen University, Aachen, Germany | September 14-17, 2021

Heavy Ion Physics

Hard probes for QGP at LHC: a selection of recent results

M. Germain

Stages of a heavy ion collision

Hard probes of QGP: experience whole collision, produced in the hard scattering at the early stage of the collision.

- Probe initial state and interaction with medium
 - EW bosons (W, Z, direct photons)
 - Heavy flavour & Quarkonia
 - > Jets

Heavy Ion collisions: Centrality

Centrality characterized by:

- Impact parameter: b
- Number of participants: N_{part}
- Number of binary (nucleon-nucleon) collisions: N_{coll}

Experimentally:

• Glauber models used to estimate them from collision multiplicity observables: multiplicity of collision, transverse energy

LHC with ions

Collider Mode	$\sqrt{S} - \sqrt{S_{NN}}$	
System	Run 1 (2010-2013)	Run2 (2015-2018)
рр	8 TeV 7 TeV 0.9 TeV	13 TeV 5.02 TeV
p-Pb	5.02 TeV	8.16 TeV
Xe Xe		5.44 TeV
Pb-Pb	2.76 TeV	5.02 TeV

Fixed Target at LHCb

Experiments at LHC

Content

- Recent results on Electroweak measurements
- Recent results on Heavy flavour and Quarkonia
 - Energy loss in medium
 - Collectivity: azimuthal anisotropy
- Recent results on Jets
- Summary and outlook

Electroweak measurements

Electroweak Measurements in HIC

W/Z boson productions

- → Predominantly via a quark antiquark pair annihilation : $ud \rightarrow W^+$, $d\bar{u} \rightarrow W^-$, $q\bar{q} \rightarrow Z$
- Sensitive to quark and antiquark content in nucleon / nucleus
- Difference in pp vs p-Pb (Pb-Pb) : nuclear Parton Distribution Function (nPDF)

Prompt direct γ production:

- > Predominantly: qg $\rightarrow \gamma$ q and q⁻q $\rightarrow \gamma$ g
- Constraints on PDF/nPDF

Important to investigate initial condition of the collision.

Eur. Phys. J. C 77, 163 (2017)

In Pb-Pb and p-Pb: calibrated probes for Final state effects & Energy loss

Z,W production in p-Pb at 8.16 TeV

Physics in Collision 2021

Electroweak W/Z bosons in PbPb

- > Indication on no final state effects on W,Z production,
- Consistent with expectation that no modification of boson yield in the QGP
- > Decrease in most peripheral events attributed to bias in centrality selection.

HG-Pythia: arXiv:1412.8393 + JHEP 05, 026 (2006)

Photon production in p-Pb and Pb-Pb

Consistent with expectations: No modification of prompt isolated photon yield in p-Pb and Pb-Pb

JETPHOX: Phys. Rev. D, 73 (2006), 094007 CT14: Phys. Rev. D 93 (2016) 033006 EPS16: EPJC 77 (2017) 163 nCTEQ15: Phys. Rev. D 93, 085037

Heavy Flavour and quarkonia

Heavy Flavour Measurements in HIC

- Heavy quark produced by hard-scattering with cross sections calculable with pQCD
 - > $m_Q >> \Lambda_{QCD}$: early production controlled baseline calculable via pQCD (Q² >> Λ_{QCD})
 - \blacktriangleright m_Q >> T_{QGP}: no thermal production
- Allow to study the quark hadronisation

QGP properties with heavy quarks:

- > Open Heavy flavour energy loss : R_{AA}
 - Collisional & radiative
 - Mass hierarchy (dead cone effect)
- > Quarkonia:
 - Suppression via colour screening
 - > QGP temperature

Hadronisation & Recombination Mechanisms

- Charm vs beauty relative abundances
- In medium hadronization
- In jet heavy hadron fragmentation

Heavy quark diffusion properties:

R_{AA}=1 in case of binary scaling (incoherent superposition of nucleon nucleon collisions)

Azimuthal anisotropies

 $E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}p} = \frac{1}{2\pi}\frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}\left\{1 + \sum_{i=1}^{\infty}v_{\mathrm{n}}\cos[n(\varphi - \Psi_{\mathrm{n}})]\right\}$

Flow harmonic coefficients: $v_n = \langle \cos[n(\varphi - \Psi_n)] \rangle$ Elliptic flow: v_2

Heavy Flavour and quarkonia

Energy loss

Mass hierarchy energy loss in pp

- First direct observation of dead cone effect
- Suppression of radiation in D° tagged jets toward low angles

Charm and beauty energy loss in Pb-Pb

Physics in Collision 2021

Charm vs beauty energy loss

gluon radiation suppressed at small angles θ < m/E

Open heavy flavour with strangeness: Beauty

- $ightarrow R_{AA}(D_s^+)/R_{AA}(D^\circ)$ ratio for non-prompt larger than one at low p_T
 - \blacktriangleright about 50% of non prompt D_s⁺ mesons originate from B_s^o meson decays
 - B_s^o production expected by beauty hadronisation via coalescence
- Larger R_{AA}(B_s^o)/R_{AA}(B⁺) ratio wrt non-prompt D
 - D_s⁺ from non-strange B-meson decays
 - B to D decay kinematics
- TAMU model (including supression and regeneration) describes the observed trend

Physics in Collision 2021

TAMU: PLB 735 (2014)445

Open heavy flavour with strangeness/charm: Beauty

CMS-PAS-HIN-20-004

Beauty measured in several states by several detectors Sensiblity of Bs' to hadronization mechanism Eloss hierarchy at low/moderate p_T and convergence at high p_T

Physics in Collision 2021

System size dependence of Heavy Flavor muons

MC@sHQ+EPOS: <u>PRC 89, 014905 (2014)</u> PHSD: PRC 93, 034906 (2016)

> Similar RAA for HF μ in Pb-Pb and Xe-Xe at similar $\langle dN_{ch}/d\eta \rangle$

Results well described by models with collisional+ radiative energy loss

Physics in Collision 2021

Charmonia measurements in p-Pb

J/ψ and ψ (2S) in pPb

suppression at low p_T in p-Pb, described by models, with modified nuclear PDFs and also including energy loss

Helac-OniaarXiv.1212.5293

Charmonia in Pb-Pb

ALICE: <u>Phys. Lett. B 766 (2017) 212-224</u> PHENIX: <u>Phys. Rev. C84(2011)054912</u>

Important contribution from regeneration at LHC

X(3872) in PbPb

X to ψ (2s) ratio

- \blacktriangleright pp: X(3872) suppressed more than ψ (2S) at both mid and forward rapidities
- > PbPb: Hint of reduced suppression for X compared to $\psi(2s)$

Bottomonium in small system

- Agreement and complementarity within the different experiments
- > Data in agreement with mild degree of suppression as described by FONLL
- ➢ Fair description of R_{PPb} at forward rapidities by models including nuclear shadowing, energy loss or interaction with comovers while overestimation at backward.

Bottomonium $\Upsilon(1S)$, $\Upsilon(2S)$ in Pb –Pb

- Consistent and complementary results within LHC experiments
- \succ Υ (1S) at most forward rapidities at the limit of the models
- > Sequential suppression observed $R_{AA}(\Upsilon(1S))>R_{AA}(\Upsilon(2S))$

Heavy Flavour and quarkonia Azimuthal anisotropy: elliptic flow

Charm and beauty elliptic flow

DREENA-B <u>arXiv:1805.04786</u>

(dynamic energy loss in 1+1D expanding QCD medium)

v2(charm) > v2(open beauty) > v2(hidden beauty)~o

Beauty smaller than charm flow but non zero Different medium effect for charmonia and bottomonia

Physics in Collision 2021

Heavy flavour elliptic flow

$p_{\rm T}$ < 3 GeV/c

> $v_2(J/\psi) < v_2(D) < v_2(\pi)$ consistent with hydrodynamics

 $3 < p_T < 6 \text{ GeV/c}$

 \succ V₂(J/ψ) < V₂(D) ~ V₂(π)

heavy quark hadronization via coalescence with flowing light quark

p_T > 6-8 GeV/c

> $v_2(J/\psi) \sim v_2(D) \sim v_2(\pi)$ Similar path-length energy loss for heavy and light quark

No flow for Υ : expected from smaller regeneration contribution

Jet and high p_T hadrons

Jet and high p_{T} in heavy ion collisions

Jet quenching: parton interact with the medium

- Suppression of high p_T particle yield
- Jet energy loss: suppression of high p_T jet yield

- Jet sub-structure modifications:
 - angular deflection and path length dependence through jet correlation
 - Intra-jet modifications (jet structure/substructure)

Physics in Collision 2021

Depends on the path travelled in mediumFlavour dependence

Jet suppression at LHC

ALICE @ 5.02 TeV Phys. Rev. C 101 (2020) 034911 ATLAS: 5.02 TeV: PLB790(2019)108 ATLAS @ 2.76 TeV: PRL114(2015)072302 CMS @ 2.76 TeV: PRC96(2017)015202

Jet suppression at low p_T

- Machine Learning (ML) background estimator Phys. Rev. C 99, 064904 (2019)
- ML allow to extend down to p_T 40 GeV/c
- ML based and area based methods consistent (fragmentation bias explored)
- New contraints for models at low p_T

JEWEL: arXiV: 1311.0048 SCETG:PRD 80 (2009) 054022 Hybrid Model: PRL 124 (2020) 052301 LBT: PRC 99 (2019) 054911

Jet suppression at high p_T : R dependence

MARTINI: <u>Phys. Rev. C 80 (2009) 054913</u> Hybrid: <u>PRL124 (2020)052301</u> LBT: Phys. Rev. C 99 (2019) 054911

Large R:

□ Recovery of out of cone radiation ?

Difference in modification for larger jets?

Jet correlations : Dijet asymmetry

The 2 jets loose different energy

- travel different path
- jet-by jet fluctuations of energy loss
- ➤ Low p_T dijets:
 - Significant asymmetry for Pb-Pb
 - Large difference between pp and Pb-Pb
- \succ High p_T :
 - Less difference between pp and Pb-Pb: same amount of Energy loss?

Z-tagged particles

Boson-jet dominated by quark jets.

Boson tag provide initial jet momentum

Z-tag: lower momentum than photon-tag (less background)

arXiv:2103.04377

Phys. Rev. Lett. 126 (2021) 072301

momentum broadening)

$\sqrt{s_{NN}} = 5.02 \text{ TeV}, \text{ PbPb } 1.7 \text{ nb}^{-1}, \text{ pp } 304 \text{ pb}^{-1}$ CMS I_{AA} = recoil charged particle yield in PbPb /pp Cent. 0-30% Cent. 0-30% PbPb $I_{\rm AA} (p_{\rm T}^{\rm ch})$ $\frac{dN_{trk,Z}}{d\Delta \phi_{trk,Z}}$ (1/rad) (1 / GeV/c) ATLAS o pp 5 $pp, \sqrt{s} = 5.02 \text{ TeV}, 260 \text{ pb}^{-1}$ 4 Pb+Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, 1.4-1.7 nb⁻¹ 3 10 → ATLAS 0-10%, 30 < p_x^Z < 60 GeV ر) ^T db 10-10-10-Hybrid Model CoLBT-hydro 2 $SCET_{G} (g = 2.0 \pm 0.2)$ JEWEL 1.8 Hybrid SCET Hybrid CoLBT 0.7 💹 w/o wake w/o wake CoLBT PbPb / pp 1.4 🔍 w/ wake w/ wake 0.5 dd - dddc 1.2 0.4 0.3 0.8 0.2 0.6 3 4 5 6 7 2 10 20 30 STET_G: <u>Phys. Rev. D 93,(2016)074030</u> *p*_T^{ch} [GeV] 1.5 2 2.5 15 20 25 30 5 10 0.5 1 Hybrid: JHEP03(2016)053 p_trk (GeV/c) $\Delta \phi_{\text{trk},Z}$ (rad) ColBT-hydro: Phys. Lett. B 777, 86(2018). JEWEL: EPJC 76, 695 (2016)

- Enhancement of soft particles similar in photon-jet and inclusive jet
- \blacktriangleright Excess of charged particles at all $\Delta \varphi$: medium or MPI? (away side expected from
- M. Germain

Physics in Collision 2021

Jet Splitting: R_a

Remove soft wide angle radiation in order to access hard parton splitting inside jet. In HI

does the medium modifies hard sub structure of jet?

 $p_{\mathrm{T,subleading}}$

 $p_{\text{T,leading}} + p_{\text{T,subleading}}$

Soft Drop grooming algorithm

carries at least 10% of the

combined transverse momentum are accepted.

JHEP. 05 (2014)146

 $\theta_{\rm g} \equiv \frac{R_{\rm g}}{R} \equiv \frac{\sqrt{\Delta y^2 + \Delta \varphi^2}}{R}$

Does jet loose energy coherently?

Jetscape: arXiv:1903.0770 Caucal: J.HEP 10 (2019) 273

arXiv:2107.12984

Narrower θ_{q} in Pb-Pb

Sensitive to role of colour coherence

R

Jet Splitting: large R

ATLAS-CONF-2019-056

 $\sqrt{d_{12}}$ is evaluated from the last clustering step in the k_T jet finding algorithm, corresponding to the hardest splitting in the jet. It characterizes the jet substructure scale.

Jet with a substructure more suppressed than jets without (Single sub Jet (SSJ))

Summary: Hard probes in HI collisions

Initial state and cold nuclear effects:

- New precise measurements of **electroweak bosons** $W/Z/\gamma$ will constrain the nPDF and indicates no modification in medium.
- Heavy flavours: charm and beauty production well described by models including nPDF and energy loss in nuclear matter or comovers.

Energy loss and medium modification:

Heavy flavour & quarkonia

- Intermediate p_T R_{AA}(beauty)>R_{AA}(strange)>R_{AA}(charm)~R_{AA}(light)
 - Hint of strange enhancement
- High p_T: R_{AA}(beauty)~R_{AA}(charm)~R_{AA}(light)
- Sequential suppression observed for bottomonium
- > Dead cone effect directly observed using D-tagged jets in pp

Jet quenching:

Many new results on jet quenching and new observables to explore jet substructure and in medium modification

Collectivity:

- Non-zero open-beauty v₂ in Pb+Pb collisions
- Hidden beauty v₂ consistent with zero
- Low-p_T flavor hierarchy in Pb+Pb collisions v₂(light) > v₂(charm) > v₂(beauty)

Conclusions & Perspectives

- Many new measurements of hard probe for QGP characterisation
- Complementarity between experiments

.....But still needs of precision

RUN₃ will be provide higher statistics, higher precision measurements, access to differential measurements and rarer probes.

Many upgrades of the ALICE & LHCb for Run3 and CMS/ATLAS for Run4

Heavy ion publications:

- <u>ALICE</u>
- <u>ATLAS</u>
- <u>CMS</u>
- <u>LHCb</u>

Backup

W[±] in p-Pb at 8.16 TeV: cross sections

- pQCD + isospin effect with/without nPDF consistent with ALICE data and reproduces the rapidity dependence
- charge asymmetry
 - -4.46 < y < -2.96: du W⁻ dominant (x < 10⁻¹)
 - 2.03 < y < 3.53: ud W+ dominant (x ~10⁻³)

W in PbPb at 5.02 TeV

- ATLAS: rapidity dependence described by models but overall excess in data wrt predictions
- ALICE: production described by nPDF
 - centrality dependence followed by binary scaling <T_{AA}>
 - Indication on no final state effects on W production,

Z in Pb-Pb at 5.02 TeV (y dependence)

Phys. Lett. B 802 (2020) 135262

JHEP09(2020)076

- > ALICE data: evidence of modification of Z production in Pb-Pb collisions
 - > 2 < y < 4: $x < \sim 10^{-3}$ shadowing region
 - \blacktriangleright Models with nPDF reproduces the cross section; 3.4 σ deviation from free-nucleon PDF
- ATLAS data systematically higher than model predictions and without nPDF

Z in Pb-Pb at 5.02 TeV (centrality dependence)

arXiv:2103.14089

JHEP09(2020)076

- CMS trend of suppression in most peripheral collisions (described by –HG Pythia [Phys. Lett. B773(2017)408] : effects of initial state geometry and centrality selection in peripheral;
- General agreement of ALICE data with models including centrality dependent nPDF;

W in PbPb at 5.02 TeV

Indication on no final state effects on W production, Consistent with expectation that no modification of boson yield in the QGP

Heavy Flavour Measurements in HIC

- > Heavy quark produced by hard-scattering with cross sections calculable with pQCD
- > Heavy flavour production cross section in hadronic collisions: **factorisation theorem**

$$rac{\mathrm{d}\sigma^{H_c}}{\mathrm{d}p_{\mathrm{T}}} = \operatorname{PDF}(x_1,\mu_{\mathrm{F}}) \operatorname{PDF}(x_2,\mu_{\mathrm{F}}) \otimes \left[rac{\mathrm{d}\sigma^c}{\mathrm{d}p_{\mathrm{T}}^c}(x_1,x_2,\mu_{\mathrm{R}},\mu_{\mathrm{F}}) \\ ext{Parton Distribution Functions} \\ ext{Hard scattering cross} \\ ext{section } (p \ Q \ C D) \\ ext{CD} \end{pmatrix} \otimes \left[rac{D_{c o \mathrm{H}_c}(z = p_{\mathrm{H}_c}/p_c,\mu_{\mathrm{F}}) \\ ext{Fragmentation Function} \\ ext{(FF)} \\ ext{Fragmentation Function} \\ ext{(FF)} \\ ext{Fragmentation} \\ ext{Fragmentation} \\ ext{Fragmentation} \\ ext{Fragmentation} \\ ext{Fragmentation} \\ ext{(FF)} \\ ext{Fragmentation} \\ ext{(FF)} \\ ext{(FF)$$

Open charm and beauty cross section in pp

New precise measurements in agreement with predictions D° , D^{+} , D^{s} across wide p_{T} range; down to $p_{T} \sim o$ for D° and D^{+} meson D's cross section and muons from HF well described by FONLL

PYTHIA8: JHEP 05 026 (2006) FONLL: JHEP 1210 137 (2012) tt pairs in Pb-Pb

tt pairs produced mostly through gluon-gluon fusion at LHC Probe of the nPDF

Primary background is Drell-Yan BDT is trained on dilepton kinematic variables

2 analysis (leptons only and lepton –b jet

PRL 125 (2020) 222001

4σ signal significance

Compatible with theoretical prediction however hint of lower than scaled pp predictions.

Charmonia measurements in pp

χ_{c} in small system

Phys. Rev. C103 (2021) 064905

J/ ψ and ψ (2S) in pp First measurement of χ_c

Final state nuclear effets affects similarly χ_{c1} and χ_{c2} suppression at low p_T in p-Pb, described by models, with modified nuclear PDFs and also including energy loss

J/ψ in Jets

arXiv:2106.13235

J/ψ-in-jet RAA shows rising R_{AA} as a function of z ➤ Jets with higher multiplicity are more suppressed

Coherent J/ ψ photoproduction in peripheral Pb-Pb collisions

Heavy Ion mode at LHC Powerful source of quasi-real photons with intensity $\sim Z^2$

First J/ψ excess reported by ALICE in Pb—Pb collisions at 2.76 TeV: **Coherent J/ψ photoproduction** suggested as underlying physics mechanism

Photonuclear cross section probes the **gluon density at very low Bjorken-***x*

New theoretical challenges on process knowledge in **hadronic** collisions

Cold Nuclear Matter effects: $\pi^{\circ} R_{pPb}$

ALICE arXiv:2104.03116

New precise measurements R_{pPb} of π^o and η up to 200 GeV

New constraints on nPDF

LHCb-PAPER-2021-015

Charged hadron R_{pPb}

EPPS16+DDS JHEP09(2014) 138 CGC PR D88, 114020 pQCD+MS PR D88(2013) 054010, PL B740(2015) 23

Suppression at forward rapidities

No model reproduces backward

$$Q_{exp}^2 \equiv m^2 + p_{\rm T}^2$$
 $x_{exp} \equiv \frac{Q_{exp}}{\sqrt{s_{nn}}} e^{-\eta}$

- Continuous evolution of R_{pPb} with x_{exp}
- Nice compatibility between ALICE/CMS/LHCb results

arXiv 2108.13115

Jet Charge

Radiative e-loss different for quarks and gluons

Jet charge sensitive to quark to gluon ratio $Q^{\kappa} = \frac{1}{(p_{\mathrm{T}}^{\mathrm{jet}})^{\kappa}} \sum_{i \in \mathrm{jet}} q_i p_{\mathrm{T},i}{}^{\kappa}$

Jet charge unmodified by quenching

Jet acoplanarity

Recoil Jet suppressed with respect to PYTHIA Narrowing of $\Delta \varphi$ distribution with respect to PYTHIA