On the acceptance extension of electron analysis

Eugenio Berti

Lorenzo Pacini
CALET TIM Firenze 2020

Outline

- The Firenze CALET team involved in electron analysis is working on the acceptance extension (from Acc A to Acc ?) of the electron analysis
- The starting point is CALET PRL 120, 261102, where the energy flux was computed using:
- A+B below 475 GeV
- A+B+C+D above 475 GeV
- The main aim of our work is to give an independent measurement that, even with lower statistics, could be used to crosscheck or improve the PRL result

Idea

$\left.\begin{array}{|c|c|c|}\hline \text { Strategy } & \begin{array}{c}\text { PRL result }\end{array} & \begin{array}{c}\text { This analysis } \\ \text { The analysis is divided into } \\ \text { four sub-analysis, one for } \\ \text { each acceptance, which are } \\ \text { combined in the end }\end{array}\end{array} \begin{array}{c}\text { The analysis is unique, } \\ \text { relative to an acceptance } \\ \text { redefinition, a bit larger } \\ \text { than acceptance A }\end{array}\right\}$

Challenge

OBSERVATION Treatment of Helium background:

- The electron (e) signal has both proton (p) and Helium (He) background, which must be suppressed
- p background is unavoidable before rejection (e.g. BDT), but He background can be suppressed using charge cut
- Making use of an efficient charge cut that remove He at the beginning, the validation of the whole analysis is dramatically simplified, because it allows us to consider only one source of background (p) over the signal (e)
REQUIREMENT The new acceptance must be defined in a way that allows us to neglect He background after Charge cut, without a dramatic decrease of electron selection efficiency.

Study of Charge Reconstruction

Charge reconstruction

MOTIVATION Charge reconstruction was deeply studied for events crossing CHD, but in order to extend the acceptance we need to study charge reconstruction for events crossing IMC, but not necessarily CHD
For this purpose:

- We look for the first IMCiX-IMCiY layers traversed by the incoming particle in the detector
- We consider the energy deposit within 5 fibers from the reconstructed track on IMCiX and IMCiY
- We define an IMC charge completely equivalent to CHD charge using IMC layer i

$$
\mathrm{IMC}_{\mathrm{i}}=\sqrt{ }\left[0.5^{*}\left(\mathrm{IMCiX}^{2}+\mathrm{IMCiY}^{2}\right)\right] * \cos (\theta)
$$

$800 \mathrm{GeV}<\mathrm{E}<1243 \mathrm{GeV}$

Charge in IMCX

Particle enters the detector before IMCX but after IMC(X-1)

Good separation

Bad separation

Good separation, large tails

Electron selection IMC charge < 2.5 MIP

$\mathrm{N}_{\mathrm{e}}{ }^{\text {tot }}=$ number of e above 0 MIP
$\mathrm{N}_{\mathrm{e}}{ }^{\text {cut }}=$ number of e in [0.3, thr] MIP

Contamination < 5\% Efficiency < 50\%

Some comments

SUMMARY Charge reconstruction in IMC using only the first IMCiX-IMCiY layers traversed by the incoming particle in the detector does not lead to good performances
OBSERVATION In order to increase reconstruction performances we can use all IMC layers, starting from the entrance one, that have the same W thickness $\left(0.2 \mathrm{X}_{0}\right)$ between them:

- IMC1X,IMC1Y,IMC2X,... IMC6Y for entrance before IMC1
- IMC2X,... IMC6Y for entrance before IMC2
- IMC5X,... IMC6Y for entrance before IMC5

STRATEGY The IMC charge is obtained from BDT applied to all these variables (+ track length before first IMC layers), separately training each sample according to the first IMCiX-IMCiY layers traversed by the incoming particle in the detector

BDT charge

Efficiency ($\mathrm{Ne}^{\left.\text {test } / \mathrm{N}_{\mathrm{e}}^{\text {total }}\right)}$
Contamination ($\left.\mathrm{N}_{\mathrm{He}}{ }^{\text {test }} / \mathrm{N}_{\mathrm{e}}{ }^{\text {test }}\right)$
\square Efficiency
($\mathrm{N}_{\mathrm{e}}^{\text {train }} / \mathrm{N}_{\mathrm{e}}{ }^{\text {total }}$)
\square Contamination ($\mathrm{N}_{\mathrm{He}}{ }^{\text {train }} / \mathrm{N}_{\mathrm{e}}^{\text {train }}$)
$\mathrm{N}_{\mathrm{e}}{ }^{\text {test }}=$ number of e above threshold in test sample $\mathrm{N}_{\mathrm{e}}^{\text {total }}=$ number of e events in the all sample (test or train)

Despite a clear improvement, we were not able to get low He contamination and high e efficiency

BDT charge

Efficiency ($\mathrm{Ne}_{\mathrm{e}}^{\text {test }} / \mathrm{N}_{\mathrm{e}}{ }^{\text {total }}$)
Contamination ($\mathrm{N}_{\mathrm{He}}{ }^{\text {test }} / \mathrm{N}_{\mathrm{e}}{ }^{\text {test }}$)
\square Efficiency
($\mathrm{N}_{\mathrm{e}}{ }^{\text {train }} / \mathrm{N}_{\mathrm{e}}{ }^{\text {total }}$)
\square Contamination
($\left.\mathrm{N}_{\mathrm{He}}{ }^{\text {train }} / \mathrm{N}_{\mathrm{e}}^{\text {train }}\right)$
$\mathrm{N}_{\mathrm{e}}{ }^{\text {test }}=$ number of e above threshold in test sample $\mathrm{N}_{\mathrm{e}}^{\text {total }}=$ number of e events in the all sample (test or train)

Furthermore, the best reconstruction performances are obtained for the events crossing CHD as well

Definition of a new Acceptance

Some comments

SUMMARY Charge reconstruction in IMC is very difficult and is working only for events where the incident particle transverses IMC1: however, even in this case, we need to use information from IMC1X,...,IMC6Y, eventually correct MC charge for each layer and finally apply BDT algorithm
QUESTION Which is the relative gain in statistics?
METHOD Considering the events belonging to Acceptance (A) $O R(B) O R(C) O R(D)$, we can study which is the relative gain in statistics respect to Acceptance A using one of this three extended acceptances:

- E - Particles crossing CHD
- F - Particles crossing IMC1
- G - All Particles (A+B+C+D)

Idea

The relative gain in statistics is expressed in terms of relative gain in the geometric factor (GF) and in the effective geometric factor (EGF = GF $\times \varepsilon$).
For our computation, we assume that the difference in selection efficiency ε is due to charge selection only, whereas all others selections do not have any impact.
We roughly assume ε :

- 100% if charge is reconstructed using CHD
- $\mathbf{9 0 \%}$ if charge is reconstructed using IMC1
- 60\% if charge is reconstructed using IMC2, 3, 4 or 5

Estimation

EGF Relative $\sigma_{\text {Stat }}$ in Acc $X /$ Relative $\sigma_{\text {Stat }}$ in Acc A (1/VEGF)

Acc G/A	2.00	0.71
Acc F/A	1.60	0.79
Acc E/A	1.55	0.80

NOTE Using the reconstruction methods currently available, we can reduce statistical uncertainty by at most 30% if we consider the analysis based on Acceptance $G(A+B+C+D)$, but it is challenging

CONCLUSION Given the 20% reduction in statistical uncertainty and the relative simplicity of the analysis, in this work we decided to study the feasibility of an analysis based on Acceptance E^{15}

Acceptance E

	$\mathrm{x}<\mathrm{A}$ [cm]	$\mathrm{y}<\mathrm{B}$ [cm]	@ z [cm]
CHD X	44.969	45.0	0.7005
CHD Y	45.0	44.969	1.8535
	AND		
	Trk.Len. > C [cm]		
	TASC 26.42		
	Fraction of other acceptances		
A	100\%	Expected geometric factor (to be confirmed in future using simulations)	
B	100\%		
C	0\%	$642 \mathrm{~cm}^{2} \mathrm{sr}$	
D	33\%		

Preselection

- HET Software trigger
- Good Kalman filter track in IMC
- Track inside Acceptance E
- Charge cut CHD < 3.5 MIP
-TASC Consistency < 2 cm
-TASC Concentration < 0.8
- Shower Track < 10°
- Gamma Fit Consistency
- Shower Concentration > 0.5

f_{E} definition

MOTIVATION The variable $\mathrm{f}_{\mathrm{E}}\left(\mathrm{dE}_{\text {TASC-.66 }} / \Sigma_{l} \mathrm{dE}_{\text {TASC.-. }}\right)$ must be redefined because the particle can exit before TASC6Y. STRATEGY We defined and test 3 different f_{E} :

- Standard approach: F_{E} from TASC Y6 (as in Acc A)
- Alternative approach: F_{E} from the last TASC layer transversed for at least half the log depth, appropriately correcting the energy deposit in it for the fraction of transversed log depth

K cut rejection
 $$
\mathrm{K}=\log _{10}\left(\mathrm{f}_{\mathrm{E}}\right)+0.65 \times \mathrm{R}_{\mathrm{E}}
$$

$$
\left(\mathrm{N}_{\mathrm{p}}^{\mathrm{cut}} / \mathrm{N}_{\mathrm{e}} \mathrm{cut}\right)
$$

As expected, the Standard approach obviously fails, whereas the Alternative approach is the best one

Alternative f_{E} definition is used in this analysis

FD-MC distributions comparison after Preselection

Proton

Electron
EPICS

$[1931,3000) \mathrm{GeV}$

Proton+Electron Flight Data

IMCShowerConc EPICs

Proton Electron

Proton+Electron Flight Data

TASCFit - $X^{2} / n d o f$ EPICs

Proton

 Electron
Proton+Electron Flight Data

$[317,400] \mathrm{GeV}$

[1243,1931] GeV

$[1931,3000] \mathrm{GeV}$

TASCFit - T

Proton

 Electron
Proton+Electron Flight Data

$(317,400] \mathrm{GeV}$

TASCFit - θ

$\times 10^{3} \quad[82,100] \mathrm{GeV}$

$[635,800] \mathrm{GeV}$

EPICS

Proton

 Electron

Proton+Electron Flight Data

[1243,1931] GeV
$[1931,3000] \mathrm{GeV}$

IMCFit - $\chi^{2} / n d o f$ EPICs

Proton

 Electron
Proton+Electron Flight Data

$[1243,1931] \mathrm{GeV}$

$[1931,3000] \mathrm{GeV}$

Used for BDT
28

IMCFit - p1

Electron
 Proton

Proton+Electron Flight Data
 $E(t)=p_{0}+p_{1} \cdot t^{2}$

$[1243,1931] \mathrm{GeV}$
$[1931,3000] \mathrm{GeV}$

BDT

$[800,1243] \mathrm{GeV}$

EPICS

Proton

 Electron

$[317,400] \mathrm{GeV}$

[1243,1931] GeV

Preliminary Electron Flux in Acceptance E

Preliminary Flux in Acceptance E

 Statistical Uncertainty onlyAfter BDT

Calculated flux multiplied by E^{3}

See Lorenzo's talk for detailed discussion of the electron flux

Back Up

$800 \mathrm{GeV}<\mathrm{E}<1243 \mathrm{GeV}$

Charge in IMC1

 HeliumIMC - 5 Fiber Deposit - Layer 0, from 800 to 1243 GeV

Good separation

MEANING

This is the charge reconstructed in the first IMC layer (IMC1) in events where the incident particle enters CALET before IMC1 (before or after CHD) 34

EPICS

$800 \mathrm{GeV}<\mathrm{E}<1243 \mathrm{GeV}$

Charge in IMC2 Electron Helium

Bad separation

MEANING

This is the charge reconstructed in the second IMC layer (IMC2) in events where the incident particle enters CALET before IMC2 (after IMC1)

$800 \mathrm{GeV}<\mathrm{E}<1243 \mathrm{GeV}$

Charge in IMC5

Good separation, Large tails

MEANING

This is the charge reconstructed in the fifth IMC layer (IMC5) in events where the incident particle enters
CALET before IMC5 (after IMC4)

Variable MIP Threshold on IMC variable using 5 fibers

\square Efficiency
($\mathrm{N}_{\mathrm{e}} / \mathrm{N}_{\mathrm{e}}{ }^{\text {tot }}$)
\square Contamination $\left(\mathrm{N}_{\mathrm{He}} / \mathrm{N}_{\mathrm{e}}\right)$
$\mathrm{N}_{\mathrm{e}}{ }^{\text {tot }}=$ number of e above 0 MIP
$\mathrm{N}_{\mathrm{e}}=$ number of e in [0, thr] MIP
$\mathrm{N}_{\mathrm{e}}{ }^{\text {cut }}=$ number of e in [0.3, thr] MIP

If we want to keep He contamination below 10\%, we cannot get an e efficiency higher than 80\%

Variable MIP Threshold on IMC variable using 5 fibers

\square Efficiency ($\mathrm{N}_{\mathrm{e}} / \mathrm{N}_{\mathrm{e}}^{\text {tot }}$)
$\mathrm{N}_{\mathrm{e}}^{\text {tot }}=$ number of e above 0 MIP $\mathrm{N}_{\mathrm{e}}=$ number of e in $[0, \mathrm{thr}]$ MIP
\square Contamination $\left(\mathrm{N}_{\mathrm{He}} / \mathrm{N}_{\mathrm{e}}\right)$
$N_{\mathrm{e}}{ }^{\text {cut }}=$ number of e in [0.3, thr] MIP

The minimum He contamination is 30\%, but it corresponds that e efficiency of 50\%

Variable MIP Threshold on IMC variable using 5 fibers

\square Efficiency
($\mathrm{N}_{\mathrm{e}} / \mathrm{N}_{\mathrm{e}}^{\text {tot }}$)
\square Contamination $\left(\mathrm{N}_{\mathrm{He}} / \mathrm{N}_{\mathrm{e}}\right)$
$\mathrm{N}_{\mathrm{e}}^{\text {tot }}=$ number of e above 0 MIP
$N_{\mathrm{e}}=$ number of e in [0, thr] MIP
$\mathrm{N}_{\mathrm{e}}{ }^{\text {cut }}=$ number of e in [0.3, thr] MIP

It is possible to keep He contamination below 5\%, but large tails limit e efficiency below 50\%

Variable MIP Threshold on IMC variable using 5 fibers

$\mathrm{N}_{\mathrm{e}}^{\text {tot }}=$ number of e above 0 MIP
$\mathrm{N}_{\mathrm{e}}=$ number of e in [0, thr] MIP Efficiency ($\mathrm{N}_{\mathrm{e}}^{\mathrm{cut}} / \mathrm{N}_{\mathrm{e}}{ }^{\text {tot }}$) Contamination ($\mathrm{N}_{\mathrm{He}}{ }^{\mathrm{cut} / N_{e}}{ }^{\mathrm{cut}}$)
\square Efficiency ($\mathrm{N}_{\mathrm{e}} / \mathrm{N}_{\mathrm{e}}^{\text {tot }}$)
\square Contamination $\left(\mathrm{N}_{\mathrm{He}} / \mathrm{N}_{\mathrm{e}}\right)$
$\mathrm{N}_{\mathrm{e}}{ }^{\text {cut }}=$ number of e in [0.3, thr] MIP

Variable MIP Threshold on IMC variable using 2 fibers

$\mathrm{N}_{\mathrm{e}}^{\text {tot }}=$ number of e above 0 MIP
$\mathrm{N}_{\mathrm{e}}=$ number of e in [0, thr] MIP Efficiency
$\left(\mathrm{N}_{\mathrm{e}}^{\text {cut } / ~} \mathrm{~N}_{\mathrm{e}}^{\text {tot }}\right)$
Contamination ($\mathrm{N}_{\mathrm{He}}{ }^{\left.\text {cut } / \mathrm{N}_{\mathrm{e}}{ }^{\text {cut }}\right)}$
\square Efficiency ($\mathrm{N}_{\mathrm{e}} / \mathrm{N}_{\mathrm{e}}^{\text {tot }}$)
\square Contamination $\left(\mathrm{N}_{\mathrm{He}} / \mathrm{N}_{\mathrm{e}}\right)$
$\mathrm{N}_{\mathrm{e}}{ }^{\text {cut }}=$ number of e in [0.3, thr] MIP

Variable MIP Threshold on IMC variable using 1 fibers

$\mathrm{N}_{\mathrm{e}}^{\text {tot }}=$ number of e above 0 MIP
$N_{\mathrm{e}}=$ number of e in [0, thr] MIP

Efficiency ($\mathrm{N}_{\mathrm{e}}^{\mathrm{cut}} / \mathrm{N}_{\mathrm{e}}{ }^{\text {tot }}$)
Contamination ($\mathrm{N}_{\mathrm{He}}{ }^{\left.\text {cut } / N_{\mathrm{e}}{ }^{\text {cut }}\right)}$
\square Efficiency
($\mathrm{N}_{\mathrm{e}} / \mathrm{N}_{\mathrm{e}}^{\text {tot }}$)
\square Contamination $\left(\mathrm{N}_{\mathrm{He}} / \mathrm{N}_{\mathrm{e}}\right)$
$\mathrm{N}_{\mathrm{e}}{ }^{\text {cut }}=$ number of e in [0.3, thr] MIP

Relative GF
Relative EGF
Acc GIA $\quad 100 \% / 41 \%=2.44 \quad[73 \% x 90 \%+27 \% x 60 \%] / 41 \%=2.00$
Acc FIA $\quad 73 \% / 41 \%=1.78$
[73\%x90\%] $/ 41 \%=1.60$ Acc EIA ?

Relative GF

Relative EGF
Acc GIA $\quad 100 \% / 41 \%=2.44 \quad[73 \% x 90 \%+27 \% x 60 \%] / 41 \%=2.00$
Acc FIA $\quad 73 \% / 41 \%=1.78$
[73\%x90\%] $/ 41 \%=1.60$
Acc EIA $87 \% x 73 \% / 41 \%=1.55$
$[87 \% \times 73 \% \times 100 \%] / 41 \%=1.55$

Explanation of Preselection

In all cases preselections are separately required on both x and y views using OR condition:

- TASC Concentration $=$ TASC $_{X(Y)}{ }^{\operatorname{MAX}} / \Sigma_{\mathrm{i}=0}{ }^{6}$ TASC $_{X(Y)}$
- Shower Track $=\left|\theta_{x(Y)}{ }^{\text {DIAGONAL }}-\theta_{x(Y)}{ }^{K F}\right|$
- Shower Concentration $=I M C_{\mathrm{x} 8(\mathrm{Y} 8)}{ }^{\text {9Fibers }} / \mathrm{IMC} \mathrm{X}_{\mathrm{X}(\mathrm{Y} 8)}{ }^{\text {Total }}$

Energy Function (After all preselections)

Fraction of deposited energy

EPICS_No_CHD_Correction - Fraction-IMC+TASC

Energy resolution

EPICS_No_CHD_Correction - Resolution-IMC+TASC

As expected, Acceptance B is the most different one because of the limited lateral containment... However, it does not strongly affect energy resolution, so that function can be used for all events in Acceptance E

Alternative f_{E} definition

Event Category I

Layer $\mathrm{i}+2$ is transversed for $\mathrm{L}^{\prime}<\mathrm{L} / 2$, therefore the last layer is $\mathbf{i}+\mathbf{1}$.
f_{E} is computed as if TASC is made of only layers $\mathbf{X 1}, \mathbf{Y 1}, \ldots, \mathbf{i + 1}$

Event Category II

Layer $\mathrm{i}+2$ is transversed for L '>L/2, therefore the last layer is $\mathbf{i + 2}$.
The energy deposited dEi+2 is
corrected to dEi+2' = dEi+2 *L/L'
f_{E} is computed as if TASC is made of only layers X1,Y1,..,i+2

Proton Reweight Factor

MOTIVATION The proton weight factor applied to simulations based on AMS measurements does not lead to a good MC-FD agreement of our distributions

SOLUTION A proton reweight factor is computed rescaling proton distributions to data, by simpling considering the integral of f_{E} distributions above 0.01

Trigger - IMCX4 EPICs

Proton Electron

Proton+Electron Flight Data

$[159,200] \mathrm{GeV}$

[3000,5477] GeV

Trigger - IMCY4 EPICs
 Proton Electron
 Proton+Electron Flight Data
 $[159,200] \mathrm{GeV}$
 [3000,5477] GeV

Trigger - TASCX1EPICs

Proton

 Electron
Proton+Electron Flight Data

$[159,200] \mathrm{GeV}$

$[504,635] \mathrm{GeV}$

$[1931,3000] \mathrm{GeV}$

Charge - CHDX1 EPICs

Proton Electron

Proton+Electron

 Flight Data

[3000,5477] GeV

Charge - CHDY1 Epics

$[800,1243] \mathrm{GeV}$

Proton
Electron

$[1931,3000] \mathrm{GeV}$

Proton+Electron Flight Data

$[504,635] \mathrm{GeV}$

$[3000,5477] \mathrm{GeV}$

TASCCons - X

TASC-Consistency. $\mathrm{X}[\mathrm{cm}]$
$[67,82) \mathrm{GeV}$

$200,252) \mathrm{GeV}$

$[635,800] \mathrm{GeV}$

TASC.Consistency $\times \mathrm{X}[\mathrm{cm}]$

TASC-Consistency. $\mathrm{X}[\mathrm{cm}]$

$(800,1243] \mathrm{GeV}$

EPICS

TASC-Consistency $\times \mathrm{X}$ [om] $\times 10^{3} \quad[100,126] \mathrm{GeV}$

$[1243,1931] \mathrm{GeV}$

Proton Electron

Proton+Electron Flight Data

TASC-Consistency-X [om] $\times 10^{3} \quad[126,159] \mathrm{GeV}$

$[1931,3000] \mathrm{GeV}$

TASCCons - Y
 EPICS

TASC-Consistency- Y [cm]

$0,252) \mathrm{GeV}$

$[635,800] \mathrm{GeV}$

TASC. Consistency $\cdot Y[\mathrm{~cm}]$

TASC.Consistency. Y [cm]
 $(800,1243) \mathrm{GeV}$

TASC-Consistency- $-\mathrm{Y}[\mathrm{cm}]$
$\times 10^{3} \quad[100,126] \mathrm{GeV}$

TASC-Consistency $\cdot \mathrm{Y}[\mathrm{cm}]$
$[317,400] \mathrm{GeV}$

$[1243,1931] \mathrm{GeV}$

Proton

 Electron

TASC-Consistency Y [cm]

TASC-Consistency Y [cm)

$[1931,3000] \mathrm{GeV}$

Proton+Electron Flight Data

TASC-Consistency- $\mathrm{Y}[\mathrm{cm}$]

$[3000,5477] \mathrm{GeV}$

LayConc-X

TASC-Concentration- x
 $200,252) \mathrm{GeV}$

$[635,800] \mathrm{GeV}$

$\times 10^{3} \quad[82,100] \mathrm{GeV}$

TASC-Concentration-X $[252,317] \mathrm{GeV}$

$[800,1243] \mathrm{GeV}$

EPICS

Proton

 Electron
Proton+Electron

 Flight Data

$\times 10^{3} \quad[126,159] \mathrm{GeV}$

$[400,504] \mathrm{GeV}$

$[1931,3000] \mathrm{GeV}$

LayConc - Y

2) GeV

$[635,800] \mathrm{GeV}$

TASC-Concentration-Y

TASC-Concentration-Y
$[252,317] \mathrm{GeV}$

$[800,1243] \mathrm{GeV}$

EPICS

TASC-Concentration. Y

TASC-Concentration. Y
$[317,400] \mathrm{GeV}$

[1243,1931] GeV

Proton

 Electron
Proton+Electron

 Flight Data

TASC-Concentration. Y

TASC-Concentration. Y
$\times 10^{3} \quad[159,200] \mathrm{GeV}$

$[504,635] \mathrm{GeV}$

$[1931,3000] \mathrm{GeV}$

ShowerTrack - X epics

$[635,800] \mathrm{GeV}$

Proton Electron

Proton+Electron Flight Data

[3000,5477] GeV

ShowerTrack - Y epics

Proton

 Electron

$[317,400] \mathrm{GeV}$

$[1243,1931] \mathrm{GeV}$

$[1931,3000] \mathrm{GeV}$

Proton+Electron Flight Data

IMCFit - p0

EPICS

Proton+Electron Flight Data

$E(t)=p_{0}+p_{1} \cdot t^{2}$

Proton

 Electron

$[3000,5477] \mathrm{GeV}$

Residual Helium contamination

Before BDT

After BDT

Proton in Acc B identified as Electron after K cut

X view

M111111111

ॠாा11111111 आण1111111
(111111111

Y view

भा
-
Oom

