Analysis of B/C ratio and nuclei energy spectra

NASA GSFC / CRESST-UMBC Yosui Akaike February 4, 2020

CALET-TIM@CNR-IFAC Florence, Italy

Contents

- B/C ratio
- Carbon spectra
 - Energy scale
 - Trigger efficiency
 - Direct pair production
- Heavy nuclei spectra

 Ne, Mg, Si, S, Ca and Fe

Analysis Procedure of Nuclei

- HE trigger
 - 151013 190731 (1389 days)
 - FOV cut (for analysis of B/C)
- Offline Shower Trigger
 - N_{IMC-7X+8X} > 50MIP & N_{IMC-7Y+8Y} > 50MIP
 & N_{TASC-X1} > 100MIP
- Tracking by UH track with Geom.B
- Charge consistency with CHD and IMC
 - $\qquad Z_{CHD-Y} < 1.10 \ Z_{CHD-X} \ \& \ Z_{CHD-Y} > 1/1.10 \ Z_{CHD-X}$
 - $Z_{IMC12} < 1.15 Z_{CHD} \& Z_{CHD} > 1/1.15 Z_{IMC12}$
 - $\qquad Z_{\rm IMC34} < 1.15 \ Z_{\rm CHD} \ \& \ Z_{\rm CHD} > 1/1.15 \ Z_{\rm IMC34}$
- Track width selection
- Charge selection
 - |Z_{CHD}-Z| < 0.4
- Energy unfolding
- Flux calculation

CHD Charge – EPICS –

CHD Charge – FLUKA –

Event selection: charge-consistency in CHD and IMC

Event selection: charge-consistency in CHD and IMC

Event selection: track width in IMC

Charge identification
 - Z_CHD = (ZCHDX + ZCHDY)/2
 - Z_IMC : truncated mean of upper 4 layers

$$Z_{\rm IMC12} = \frac{1}{2} (\sum_{i=1}^{4} Z_{\rm IMCi} - Z_{\rm IMCi_{MAX}} - Z_{\rm IMCi_{MIN}})$$

Background source

- mis-reconstructed events
- interacted events in CHD or upper IMC layers

Pre-selection

- HE trigger
- Tracking + geometrical condition
- Z-consistency with CHD-X and CHD-Y
- Z-consistency with IMC12 and IMC34
- Track width selection

Charge identification and Background estimation

- Particle charge is identified with CHD
- Background is estimated by means of MC

MC data:

- EPICS v9.21 (Cosmos8.01)
- DPMJET-III

Consider quenching, noise and etc. Apply the same selection with flight data.

dN/dE and BG for Carbon dN/dE and BG for Boron 10[°] 10 +_₆C ÷₅B BG fit BG fit 10 BG sum 10 BG sum BG ,P BG ,P +BG ,He BG "He dN/d(logE) dN/d(logE) 10³ 10³ BG ₄Be BG B BG C BG -N ⊢BG ₀O BG .C 10^{2} 10 10 10 **Background** ratio Background ratio -10⁻ "10-.01 10⁻¹ H 10⁻² 0.3% 10^{-3} 10 10 10 10² 10^{3} 10 10^{2} 10³ ∆ E [GeV/n] ∆ E [GeV/n]

Background components for Boron

Efficiency

Energy unfolding

Systematic uncertainty: Trigger efficiency

Systematic uncertainty: Charge selection

Systematic uncertainty: Energy scale

Results of CERN 2015 beam test

Deposit energy vs incident energy

- Apply the correction to flight data analysis
- Error of energy correction is considered

Systematic uncertainties for B/C ratio

17

Boron-to-carbon ratio

- Period: 151013 190731
- Geom.B
- ${}^{10}B:{}^{11}B = 3:7$

B/C ratio

Boron and Carbon spectra

Compare to AMS-02

Energy correction?

Results of CERN 2015 beam test

Deposit energy vs incident energy

CERN 2015 beam test: ~a few %

Compare to AMS-02

Efficiency correction?

X-axis is deposit energy in TASC, not primary energy Does this study really confirm the absolute efficiency?

Trigger efficiency with LE triggered events

 $\lambda' > 1.5\lambda$ is inconsistent with flight data. Adjusting cross-section cannot explain the difference from AMS-02

Trigger efficiency with beam test

Data of 13, 19 GeV/n are required the charge consistency of IC-tracker and CHD Data of 150 GeV/n is used only charge with CHD

➡ Contaminant events remain for 150 AGeV/n?

Difference of EPICS and FLUKA

Primary energy vs observed energy in TASC

Primary energy vs observed energy in TASC

IMC 1st layer all carbon events — EPICS w/o DP — EPICS w/ DP — FLUKA

IMC 8th layer all carbon events — EPICS w/o DP — EPICS w/ DP — FLUKA

TASC X1 all carbon events

- EPICS w/o DP - EPICS w/ DP - FLUKA

Efficiencies

Difference of Carbon and Oxygen spectra

Analysis of Heavy Nuclei Spectra (Z>8)

Difference of heavy nuclei analysis from light nuclei analysis

 Charge consistency cut with IMC does not applied because IMC signal is saturated (Z>~12)

(track width selection is used because it does not related with the saturation)

 Shower event selection with TASC is applied because the HE trigger efficiency is ~100% due to the large dE/dx

Heavy nuclei spectra

Period: 151013 – 190731 1389 days

Neon and Magnesium spectra

Silicon and Sulfur spectra

Calcium and Iron spectra

Conclusion

- B/C ratio is obtained from 1389 days of operation from 20 GeV/n to 5 TeV/n
 - Spectral index will be studied
- Carbon and Oxygen spectra are obtained
 - FLUKA spectrum is harder than EPICS -> check efficiency
- Difference from AMS-02 for nuclei spectra:
 - Although 12% energy correction or 25% efficiency correction are required, they are unlikely
- Nuclei spectra are obtained over 100TeV