CALET Ultra-Heavy Cosmic-Ray Observations Incorporating Trajectory Dependent Geomagnetic Rigidities

Brian Flint Rauch, Bob Binns, and Wolfgang Zober
CALET TIM, Florence, Italy
February 04, 2020
Ultra Heavy Cosmic Ray Analysis

- CALET has a special UH CR trigger utilizing the CHD and the top 4 layers of the IMC that:
 - has an expanded geometry factor of \(\sim 4000 \text{ cm}^2\text{sr} \)
 - has a very high duty cycle due to low event rate
 - ISS obstructions in FOV reduce benefit and complicate analysis

- Analysis presented here uses data with UH triggers and good trajectories

- Relative abundances of elements below \(^{14}\text{Si}\) impacted as they only trigger at higher incidence angles

- UH analysis requires specialized data corrections and selections optimized for UH range using \(^{26}\text{Fe}\)
CALET UH Analysis Status

• Using ~3 years of CALET Level 2 PASS03.1 UH data
 – Analysis developed on previous 17 month data set applied
 – UH analysis CHD paddle time corrections
 – UH analysis CHD paddle position dependent corrections
 – Data selections for incidence angle, vertical cutoff rigidity, charge consistency, etc. applied
• Abundances fit for previous data sets agree within statistics with other UH measurements (SuperTIGER and ACE-CRIS)
• Work continues on trajectory dependent rigidity thresholds and ISS obstruction identification
• Analysis planned for CALET HE trigger data set with energy reconstruction in TASC – for Wolfgang Zober’s PhD thesis project.
CHD 26Fe Time Corrections

- CHD time step histograms filled until at least 500 26Fe range events in each CHD paddle
- In each time step 26Fe peaks fit with a Gaussian for each paddle and paddle average time steps calculated
- CHD paddle signals multiplied by the ratio of the mean of both layers over the full dataset to the paddle time step mean
CHD_{26}Fe Time Contours

CHDX

CHDY

CALET Ultra-Heavy Cosmic-Ray Observations

02/04/2020
Corrected Time Contours

CHDX

CHDY
CHD Position Correction Method

- CHD paddles divided into thirds of the paddle width (1.07 cm) segments
- 14Si and 26Fe peaks fit with Gaussian for each segment
- CHD paddle signal multiplied by the ratio of each layer mean to the segment mean
CHD\text{\textsubscript{26}} Fe Position Dependence

CHDX

CHDY
CHD$_{26}$Fe After Position Correction

CHDX

CHDY
CHD$_{14}$ Si Position Dependence

CHDX

CHDY
\[{^{14}\text{Si}} \] After Position Correction

CHDX

CHDY
CHD 14Si and 26Fe Peak Means

CHDX

CHDY

CALET Ultra-Heavy Cosmic-Ray Observations

02/04/2020
Charge Consistency Selections

- Selection cut is made for charge estimate consistency between CHDX and CHDY
- \(Z_{est} \propto CHD^{1/1.7} \)
- \(\Delta Z = (Z_{CHDX} - Z_{CHDY}) / (Z_{CHDX} + Z_{CHDY}) \) for \(Z_{CHDX} \) and \(Z_{CHDY} \) total layer signals
- \(\Delta Z_{1_2} \) uses \(Z_{CHDX} \) and \(Z_{CHDY} \) for sum of signals from two highest layer paddles
- \(\pm 2\sigma \) selections applied

\(\Delta Z \) selection includes more signal from backscatter
\(\Delta Z_{1_2} \) selection focused on primary particle track
Paddle Dominance Selections

- Best charge estimate uses CHDX and CHDY signals from the two highest paddles
- Events with disproportionally high third paddle signals are selected
 - $\frac{\text{CHDX}_3}{(\text{CHDX}_1+\text{CHDX}_2)} < 0.04$
 - $\frac{\text{CHDY}_3}{(\text{CHDY}_1+\text{CHDY}_2)} < 0.04$
Current Analysis Charge Histogram

- Selections on ~3 year dataset:
 - Zest > 24
 - Theta < 45 deg
 - STRM > 4.0 GV
 - Z Consistency
 - Paddle dominance
 - IMC minimum

- We can clearly see well resolved peaks for 32Ge, 34Se, and 38Sr.
- 30Zn is more than a shoulder, but is not clearly resolved. Even a small improvement in resolution would help a lot here.
- More statistics should be a major help in better defining the peaks
- Geomagnetic cutoff for each trajectory should help in rejecting low energy particles that are very likely broadening the distributions.
Reduced Dataset Charge Histogram

• Selections on 17 month dataset:
 – Zest > 19
 – Theta < 45 deg
 – STRM > 4.5 GV
 – Z Consistency
 – IMC Energy Correction

• We can clearly see well resolved peaks for 32Ge, 34Se, and 38Sr.

• 30Zn is more than a shoulder, but is not clearly resolved. Even a small improvement in resolution would help a lot here.

• More statistics should be a major help in better defining the peaks

• Geomagnetic cutoff for each trajectory should help in rejecting low energy particles that are very likely broadening the distributions.
To estimate the abundances detected, we used a maximum likelihood fitting routine to fit the data.

- Fits reasonably good up to ^{34}Se.
- For higher charges, the low statistics resulted in poor fits.
- For even-Zs above ^{34}Se ($^{36}\text{Kr} \& ^{38}\text{Sr}$) the abundances were initially estimated by taking cuts in the valleys.
- Using SuperTIGER abundances, half of the odd-Zs on either side of the even-Z charge was subtracted off of the $^{36}\text{Kr} \& ^{38}\text{Sr}$ numbers to estimate their abundances.
Comparing Relative Abundances

- The ACE and ST data are “in-space” abundances.
- The CALET data have not yet been corrected to the top of the instrument.
 - Those corrections will be small, so they will not change things materially.
- The agreement with ST and ACE-CRIS appears to be quite good.
- Additional data and anticipated improved resolution should result in reduced error bars.
Selections on ~13 month dataset:
- Zest > 24
- $\Theta < 60$ deg
- STRM > 4.0 GV
- Z Consistency
Abundances fit to integer centered charges with fixed $\sigma = 0.35$
Trajectory Based Rigidity Threshold

Work is ongoing on determining event trajectory based geomagnetic rigidity cutoffs. These will allow a more targeted energy threshold selection that will maximize statistics.
Trajectory Dependent Rigidity!

- Trajectory dependent rigidity using Wolfgang Zober’s approximate geomagnetic model works!
- Can be used instead of vertical rigidity selection.
Trajectory Dependent Rigidity!

- Trajectory dependent rigidity using Wolfgang Zober’s approximate geomagnetic model works!
- Can be used instead of vertical rigidity selection.
- Resolution better at higher rigidities.
Trajectory Dependent Rigidity 2-4 GV

- UH Trigger histograms for events above 2 to 4 GV in 0.1 GV steps.
- Need to optimize rigidity cut to balance statistics with tail spillover.
- No other selections here.
Trajectory Dependent Rigidity 2-4 GV

- UH Trigger histograms for events above 2 to 4 GV in 0.5 GV steps.
- Applied most of Bob’s selections:
 - $\theta < 45$ deg
 - STRM > 4.0 GV
 - Z Consistency
 - Paddle dominance
- Still major tails
Trajectory Dependent Rigidity 2-4 GV

- UH Trigger histograms for events above 2 to 4 GV in 0.5 GV steps.
- Applied most of Bob’s selections:
 - Theta < 45 deg
 - STRM > 4.0 GV
 - Z Consistency
 - Paddle dominance
 - IMC minimum
- Strong cut on tails and on lower charges.
Trajectory Dependent 2-4 GV: UH Range

- UH Trigger histograms for events above 2 to 4 GV in 0.5 GV steps.
- Applied most of Bob’s selections:
 - $\Theta < 45$ deg
 - STRM > 4.0 GV
 - Z Consistency
 - Paddle dominance
 - IMC minimum
- Need refined IMC selection that reduces tails without charge bias.
UH Sensitivity to Obstructions

Incidence Angle > 45°

Incidence Angle < 45°
Future Work

• Acquire and analyze Level 2 Pass 4 data. Generate new:
 – CHD$_{26}$Fe peak based time corrections
 – CHD$_{14}$Si and 26Fe peaks position corrections
 – Charge assignments $Z(\Delta \text{CHD}, \theta)$
 – CHD charge consistency selections
 – IMC selection.

• Implement selection cuts to eliminate ISS obstructions.

• With Wolfgang Zober:
 – Trajectory based rigidity selections using individual event ray-tracing.
 – UHCR analysis using HE trigger events with TASC information.
Backup Slides
ΔCHD/<CHD> vs Θ Dataset

- Partition UH dataset
 - Limit to ^{14}Si and up to limit incidence angle dependence by selecting: CHDX > 150 and CHDY > 150
 - 30 equal statistics bins in incidence angle: $0\,° < \Theta < 68°$
 - 30 equal statistics bins in relative CHD signal: $-0.076 < \frac{\Delta \text{CHD}}{<\text{CHD}>} < 0.076$
CHDX Selected Even Peak Fitting

14\text{Si}
16\text{S}
18\text{Ar}
20\text{Ca}
22\text{Ti}
26\text{Fe}

02/04/2020
CALET Ultra-Heavy Cosmic-Ray Observations
31
CHDY Selected Even Peak Fitting

14Si
16S
18Ar
20Ca
22Ti
26Fe

Entries
Underflow
Overflow
Constant
Mean
Sigma

13230
0
4
99.86 ± 13.4
164.3 ± 0.1
5.396 ± 0.111

13230
0
4
9.125 ± 5
125.2 ± 6.5
202.2 ± 0.4
8.891 ± 0.730

13230
0
4
21.15 ± 10
40.18 ± 3.96
244 ± 0.8
10.2 ± 1.3

13230
0
4
19.3 ± 11
51.49 ± 3.16
291.1 ± 0.7
10.88 ± 1.11

13230
0
4
10.07 ± 11
32.78 ± 2.40
343.3 ± 0.8
10.33 ± 1.10

13230
0
4
30.29 ± 22
177.9 ± 4.3
455.6 ± 0.3
12.91 ± 0.29

CALET Ultra-Heavy Cosmic-Ray Observations
Selected Charge Models

• Power Law - CALET NIM:
 \[\text{CHD} = A + BZ^C \]

• Voltz Model - TIGER/SuperTIGER analysis:
 \[
 \frac{dL}{dx} = As \frac{dE}{dx} (1 - Fs) e^{-B_s(1-Fs)\frac{dE}{dx}} + A_s \frac{dE}{dx} F_s
 \]
 Assuming constant energy: \(\text{CHD} = AZ^2 e^{BZ^2} + CZ^2 \)

• BTV Model - CALET NIM/SuperTIGER analysis:
 \[
 \frac{dL}{dx} = As \frac{dE}{dx} (1 - Fs)/(1 + B_s \frac{dE}{dx} (1 - Fs)) + A_s \frac{dE}{dx} F_s
 \]
 Assuming constant energy: \(\text{CHD} = AZ^2/(1 + BZ^2) + CZ^2 \)
Charge Model Fits

Power Law

CHDX

Volts

CHDY

BTV

Comparison

02/04/2020

CALET Ultra-Heavy Cosmic-Ray Observations

34
• Three charge assignments agree well within the range of the peaks fit for the models, but diverge outside of this region.
• None of the models has peaks aligned with the appropriate low-Z charges.
• Voltz model charge assignment has best low-Z resolution, which is why it has been used previously in TIGER and SuperTIGER UH analyses.
Handling Cross Paddle Events

Second highest paddle versus first showing cross paddle events.

Third highest paddle versus first showing background.
There is some IMC dependence in the latest charge assignment that might be corrected. Use charge consistency selections earlier in the analysis.