CALET Ultra-Heavy Cosmic-Ray Observations Incorporating Trajectory Dependent Geomagnetic Rigidities

Brian Flint Rauch, Bob Binns, and Wolfgang Zober CALET TIM, Florence, Italy February 04, 2020

Ultra Heavy Cosmic Ray Analysis

- CALET has a special UH CR trigger utilizing the CHD and the top 4 layers of the IMC that:
 - has an expanded geometry factor of ~4000 cm²sr
 - has a very high duty cycle due to low event rate
 - ISS obstructions in FOV reduce benefit and complicate analysis
- Analysis presented here uses data with UH triggers and good trajectories
- Relative abundances of elements below 14 Si impacted as they only trigger at higher incidence angles
- UH analysis requires specialized data corrections and selections optimized for UH range using ₂₆Fe

CALET UH Analysis Status

- Using ~3 years of CALET Level 2 PASS03.1 UH data
 - Analysis developed on previous 17 month data set applied
 - UH analysis CHD paddle time corrections
 - UH analysis CHD paddle position dependent corrections
 - Data selections for incidence angle, vertical cutoff rigidity, charge consistency, etc. applied
- Abundances fit for previous data sets agree within statistics with other UH measurements (SuperTIGER and ACE-CRIS)
- Work continues on trajectory dependent rigidity thresholds and ISS obstruction identification
- Analysis planned for CALET HE trigger data set with energy reconstruction in TASC for Wolfgang Zober's PhD thesis project.

CHD 26 Fe Time Corrections

- CHD time step histograms filled until at least 500 ₂₆Fe range events in each CHD paddle
- In each time step 26 Fe peaks fit with a Gaussian for each paddle and paddle average time steps calculated
- CHD paddle signals multiplied by the ratio of the mean of both layers over the full dataset to the paddle time step mean

CHD 26 Fe Time Contours

Corrected Time Contours

CHD Position Correction Method

- CHD paddles divided into thirds of the paddle width (1.07 cm) segments
- ₁₄Si and ₂₆Fe peaks fit with Gaussian for each segment
- CHD paddle signal multiplied by the ratio of each layer mean to the segment mean

CHD₂₆Fe Position Dependence CHDX CHDY

CHD ₂₆Fe After Position Correction

CHDX

CHDY

CHDX Si Position Dependence

CHD 14Si After Position Correction

CHDX

CHDY

CHDX Si and 26 Fe Peak Means CHDX CHDY

Charge Consistency Selections

- Selection cut is made for charge estimate consistency between CHDX and CHDY
- $Z_{est} \propto CHD^{1/1.7}$
- $\Delta Z = (Z_{CHDX} Z_{CHDY}) / (Z_{CHDX} + Z_{CHDY})$ for $\rm Z_{CHDX}$ and $\rm Z_{CHDY}$ total layer signals
- $\Delta Z_{1,2}$ uses Z_{CHDX} and Z_{CHDY} for sum of signals from two highest layer paddles
- $\pm 2\sigma$ selections applied

 ΔZ selection Includes more signal from backscatter $\Delta Z_{1,2}$ selection focused on primary particle track

02/04/2020

Paddle Dominance Selections

- Best charge estimate uses CHDX and CHDY signals from the two highest paddles
- Events with disproportionately high third paddle signals are selected
- CHDX₃/(CHDX₁+CHDX₂) < 0.04
- CHDY₃/(CHDY₁+CHDY₂) < 0.04

CHDX

CHDY

Current Analysis Charge Histogram

- Selections on ~3 year dataset:
 - Zest > 24
 - Theta < 45 deg
 - STRM > 4.0 GV
 - Z Consistency
 - Paddle dominance
 - IMC minimum
- We can clearly see well resolved peaks for ₃₂Ge, ₃₄Se, and ₃₈Sr.
- ₃₀Zn is more than a shoulder, but is not clearly resolved. Even a small improvement in resolution would help a lot here.
- More statistics should be a major help in better defining the peaks
- Geomagnetic cutoff for each trajectory should help in rejecting low energy particles that are very likely broadening the distributions.

Reduced Dataset Charge Histogram

- Selections on 17 month dataset:
 - Zest > 19
 - Theta < 45 deg
 - STRM > 4.5 GV
 - Z Consistency
 - IMC Energy Correction
- We can clearly see well resolved peaks for ₃₂Ge, ₃₄Se, and ₃₈Sr.
- ₃₀Zn is more than a shoulder, but is not clearly resolved. Even a small improvement in resolution would help a lot here.
- More statistics should be a major help in better defining the peaks
- Geomagnetic cutoff for each trajectory should help in rejecting low energy particles that are very likely broadening the distributions.

D:\Files\CALET\Data_Brian_12.17.2018_interpolated\si_fe_binwise_correction\1510-1704_si-fe_binwise-1

CALET Ultra-Heavy Cosmic-Ray Observations

Event Distribution

- To estimate the abundances detected, we used a maximum likelihood fitting routine to fit the data.
- Fits reasonably good up to ₃₄Se.
- For higher charges, the low statistics resulted in poor fits.
- For even-Zs above ₃₄Se (₃₆Kr & ₃₈Sr) the abundances were initially estimated by taking cuts in the valleys.
- Using SuperTIGER abundances, half of the odd-Zs on either side of the even-Z charge was subtracted off of the ₃₆Kr & ₃₈Sr numbers to estimate their abundances.

CALETIData Brian 12.17.2018 interpolatedisi fe binwise correction/4th try selections/5th try at fitting/Fit figur

Comparing Relative Abundances

- The ACE and ST data are "in-space" abundances.
- The CALET data have not yet been corrected to the top of the instrument.
 - Those corrections will be small, so they will not change things materially.
- The agreement with ST and ACE-CRIS appears to be quite good.
- Additional data and anticipated improved resolution should result in reduced error bars.

ox Sync\CALET\Data_Brian_12.17.2018_interpolated\si_fe_binwise_correction\CALET-ST_compare_TOA

CALET Ultra-Heavy Cosmic-Ray Observations

2017 CALET UH ICRC Results

Selections on ~13 month dataset:

- Zest > 24
- Theta < 60 deg
- STRM > 4.0 GV
- Z Consistency Abundances fit to integer centered charges with fixed $\sigma = 0.35$

Trajectory Based Rigidity Threshold

Work is ongoing on determining event trajectory based geomagnetic rigidity cutoffs. These will allow a more targeted energy threshold selection that will maximize statistics.

CALET Ultra-Heavy Cosmic-Ray Observations

Trajectory Dependent Rigidity!

- Trajectory dependent rigidity using Wolfgang Zober's approximate geomagnetic model works!
- Can be used instead of vertical rigidity selection.

Trajectory Dependent Rigidity!

- Trajectory dependent rigidity using Wolfgang Zober's approximate geomagnetic model works!
- Can be used instead of vertical rigidity selection.
- Resolution better at higher rigidities.

02/04/2020

Trajectory Dependent Rigidity 2-4 GV

- UH Trigger histograms for events above 2 to 4 GV in 0.1 GV steps.
- Need to optimize rigidity cut to balance statistics with tail spillover.
- No other selections here.

Trajectory Dependent Rigidity 2-4 GV

- UH Trigger histograms for events above 2 to 4 GV in 0.5 GV steps.
- Applied most of Bob's selections:
 - Theta < 45 deg</p>
 - STRM > 4.0 GV
 - Z Consistency
 - Paddle dominance
 - Still major tails

CALET Ultra-Heavy Cosmic-Ray Observations

Trajectory Dependent Rigidity 2-4 GV

- UH Trigger histograms for events above 2 to 4 GV in 0.5 GV steps.
- Applied most of Bob's selections:
 - Theta < 45 deg</p>
 - STRM > 4.0 GV
 - Z Consistency
 - Paddle dominance
 - IMC minimum
- Strong cut on tails and on lower charges.
 02/04/2020

CALET Ultra-Heavy Cosmic-Ray Observations

Trajectory Dependent 2-4 GV: UH Range

- UH Trigger histograms for events above 2 to 4 GV in 0.5 GV steps.
- Applied most of Bob's selections:
 - Theta < 45 deg</p>
 - STRM > 4.0 GV
 - Z Consistency
 - Paddle dominance
 - IMC minimum
- Need refined IMC selection that reduces tails without charge bias.

UH Sensitivity to Obstructions

Incidence Angle > 45°

Incidence Angle < 45°

Future Work

- Acquire and analyze Level 2 Pass 4 data. Generate new:
 - CHD ₂₆Fe peak based time corrections
 - CHD $_{14}$ Si and $_{26}$ Fe peaks position corrections
 - Charge assignments $Z(\Delta CHD, \theta)$
 - CHD charge consistency selections
 - IMC selection.
- Implement selection cuts to eliminate ISS obstructions.
- With Wolfgang Zober:
 - Trajectory based rigidity selections using individual event raytracing.
 - UHCR analysis using HE trigger events with TASC information.

Backup Slides

$\Delta CHD/\langle CHD \rangle$ vs Θ Dataset

- Partition UH dataset
 - Limit to 14 Si and up to limit incidence angle dependence by selecting:
 CHDX > 150 and CHDY > 150
 - 30 equal statistics bins in incidence angle:
 0° < Θ < 68°
 - 30 equal statistics bins in relative CHD signal: $-0.076 < \frac{\Delta CHD}{\langle CHD \rangle} < 0.076$

CHDX Selected Even Peak Fitting

CHDY Selected Even Peak Fitting

Selected Charge Models

- Power Law CALET NIM: CHD = A + BZ^C
- Voltz Model TIGER/SuperTIGER analysis: $\frac{dL}{dx} = As \frac{dE}{dx} (1 - Fs)e^{-B_s(1 - Fs)\frac{dE}{dx}} + A_s \frac{dE}{dx}F_s$ Assuming constant energy: CHD = AZ² e^{BZ²} + CZ²
- BTV Model CALET NIM/SuperTIGER analysis: $\frac{dL}{dx} = As \frac{dE}{dx} (1 - Fs)/(1 + Bs \frac{dE}{dx} (1 - Fs)) + A_s \frac{dE}{dx} F_s$ Assuming constant energy: CHD = AZ²/(1 + BZ²) + CZ²

Comparing Charge Assignments

- Three charge assignments agree well within the range of the peaks fit for the models, but diverge outside of this region.
- None of the models has peaks aligned with the appropriate low-Z charges.
- Voltz model charge assignment has best low-Z resolution, which is why it has been used previously in TIGER and SuperTIGER UH analyses.

02/04/2020

Counts

Handling Cross Paddle Events

cross paddle events.

Third highest paddle versus first showing background.

Next Corrections and Selections

Z_{CHDY^{1/1.7}}

There is some IMC dependence in the latest charge assignment that might be corrected.

 $$z_{\rm CHDX^{\rm M37}}$$ Use charge consistency selections earlier in the analysis.

25

30

35

20

02/04/2020

 10^{4}

 10^{3}

 10^{2}

10

50