

Gamma ray analysis and GW follow-up observations

Masaki Mori, Yoichi Asaoka, Shoji Torii, Daisuke Zenita, Nick Cannady, Mike Cherry, Yuta Kawakubo for the CALET collaboration

CALET TIM at CNR-IFAC, Florence, February 04-06-27, 2020

Cannady et al., ApJS 238:5 (2018)

Gamma Ray Event Selection

= Electron Selection Cut + Gamma-ray ID Cut w/ Lower Energy Extension

100 GeV Event Examples

well contained, constant shower development

larger spread 2

Mori, Asaoka et al., ICRC2019

Gamma-ray skymap

Gamma-ray spectra

LE-γ mode from 2015 November to 2018 May

"On-plane": $|l| < 80^{\circ} \& |b| < 8^{\circ}$, "Off-plane": $|b| > 8^{\circ}$

By Zenita

CTA 102 (AGN) light curve

Red: CALET signal, Hatched: CALET upper limit (<10⁻⁷cm⁻²s⁻¹) Blue: Fermi-LAT

By Zenita

CTA 102 (AGN) light curve

LE trig (> 1 GeV) 10^{-5} 10^{-6} 10⁻⁷ 10^{-8} 10^{_9} ____ 57600 57650 57800 57900 57700 57750 57850 57950 58000 2017/9/4) (2016/7/31 2016/11/4 2017/5/27 2017/2/16 **Modified Julian Day**

Red: CALET signal, Hatched: CALET upper limit (<10⁻⁷cm⁻²s⁻¹) Blue: Fermi-LAT

Flux [cm⁻²s⁻¹]

Toward higher energies - Gamma-ray line? -

No result yet...

Gamma-ray lines from DM annihilation

(loop suppressed – low branching ratio)

Limits by indirect searches

F. S. Queiroz, arXiv:1605.08788

130 GeV line at the Galactic center?

FIG. 18.— Spectrum of emission within 4° of the cusp center $(\ell, b) = (-1.5, 0)$, excluding $|b| < 0.5^{\circ}$. High-incidence angle events $(upper \ panel)$ have a factor of ~ 2 better energy resolution than those that enter the LAT close to normal incidence $(middle \ panel)$ or the whole sample $(lower \ panel)$. All three spectra have been smoothed by a Gaussian of 0.06 FWHM in $\Delta E/E$, similar to the expected resolution of the upper panel. The continuum model is $dN/dE \sim E^{-2.6}$, normalized at 20 < E < 50 GeV (blue dashed).

130 GeV line at the Galactic center?

FIG. 3: Spectral fits to the GC, inner Galactic plane, and Earth limb samples. The green line shows the null model (a power-law), whereas the red line shows the alternative powerlaw + line fit; the dotted blue lines are the two components of the alternative model. The red (black) dotted lines indicate 129 GeV (13.6% FWHM around 129 GeV). Note that the significance found in the GC region does not represent the full significance of the putative signal.

 $\mathsf{TS}\texttt{=}18.8 \leftrightarrow 4\sigma$

Fermi-LAT dark matter line analysis (update)

M. ACKERMANN et al.

PHYSICAL REVIEW D 91, 122002 (2015)

FIG. 8 (color online). 95% C.L. $\langle \sigma v \rangle_{\gamma\gamma}$ upper limits for each DM profile considered in the corresponding optimized ROI. The upper left panel is for the NFWc ($\gamma = 1.3$) DM profile in the R3 ROI. The discontinuity in the expected and observed limit in this ROI around 1 GeV is the result of using only PSF3-type events. See Sec. III for more information. The upper right panel is for the Einasto profile in the R16 ROI. The lower left panel is the NFW DM profile in the R41 ROI, and finally the lower right panel is the isothermal DM profile in the R90 ROI. Yellow (green) bands show the 68% (95%) expected containments derived from 1000 no-DM MC simulations (see Sec. V B). The black dashed lines show the median expected limits from those simulations. Also shown are the limits obtained in our 3.7-year line search [19] and our 5.2-year line search [22] when the assumed DM profiles were the same.

CALET gamma-ray spectrum

Effective area

Energy resolution

Point spread function: CALET vs LAT

Effective area at high energies

Efficiency in each step

geo-le-sp-chd-sel16-sel19 Number of events(gammaSimulationData)

GW counterpart search

LIGO-VIRGO observation 3

LIGO-VIRGO Joint Run Planning Committee

Working schedule for O3

(Public document G1801056-v4, based on G1800889-v7)

Mori, Asaoka et al., ICRC2019

Energy flux limit map for S190408an

90% C.L. upper limit on S190408an energy flux in the energy region 1–10 GeV and time window [T_0 -60s, T_0 +60 s] shown in the equatorial coordinates. The thick cyan line shows the locus of the FOV center of CAL, and the plus symbol is that at T_0 . Also shown by green contours is the localization significance map of S190408an reported by LIGO/Virgo.

Mori, Asaoka et al., ICRC2019 CAL limits on electromagnetic emission from gravitational wave events (LIGO/Virgo 03)

GCN	LIGO/Virgo	Trigger time	Events	90% C.L.	Summed	CAL	CAL	Comments
No.	trigger	<i>T</i> ₀ (2019)	$T_0 \pm 60 \text{ s}$	U.L.	probability	α (°)	δ (°)	New!
24088	S190408an	04-08 18:18:02.288 UTC	0	$2.3 imes 10^{-6}$ †	80%	352.9	8.3	BBH (>99%)
24218	S190425z	04-25 08:18:05.017 UTC	0	$1.0 imes 10^{-4}$	5%	131.3	-43.6	BNS (>99%)
24276	S190426c	04-26 15:21:55.337 UTC	0	$2.5 imes 10^{-5}$	10%	183	-50.9	BNS (49%)
24403	S190503bf	05-03 18:54:04.294 UTC	0	$4.2 imes 10^{-5}$	10%	169	-45.5	BBH (96%)
24495	S190510g	05-10 02:59:39.292 UT	0	_	No	295.7	50.8	Terrestrial (58%)
24531	S190512at	05-12 18:07:14.422 UT	0	$1.9 imes10^{-5}$	10%	214.9	37.7	BBH (99%)
24548	S190513bm	05-13 20:54:28.747 UT	0	$6.0 imes 10^{-5}$ †	5%	348	4.4	BBH (94%)
24593	S190517h	05-17 05:51:01.831 UT	0	_	No	126.2	-31.9	BBH (98%)
24617	S190519bj	05-19 15:35:44.398 UT	0	-	No	243.1	51.1	BBH (96%)
24648	S190521g	05-21 03:02:29.447 UT	0	$6.0 imes10^{-6}$	30%	205.7	49.2	BBH (97%)
24649	S190521r	05-21 07:43:59.463 UT	0	_	No	225.3	51.4	BBH (>99%)
24735	S190602aq	06-02 17:59:27.089 UT	0	$2.9 imes 10^{-4}$	5%	127.5	45.1	BBH (99%)

Table 1: Summary of CALET/CAL gamma-ray observations on gravitational event candidates in the LIGO/Virgo third observing run reported in GCN circulars [1]. Upper limits (U.L.) are given in unit of erg cm⁻²s⁻¹ for the energy range 10–100 GeV except for those marked with \dagger which are for 1–10 GeV, which corresponds to the HE and the LE- γ mode of the trigger condition of CAL around T_0 . 'Summed probability' is the maximum probability in the overlap region of the CAL field-of-view at T_0 with the summed LIGO/Virgo probability map ('No' means there is no overlap). Also shown are the coordinates of the center of CAL field-of-view at T_0 .

†: LE-γ

GraceDB glossary

- **BBH** Binary black hole
- BNS Binary neutron star
- **NSBH** Neutron star black hole, a binary system composed of one neutron star and one black hole
- **Terrestrial** Classification for signals in gravitational-wave detectors that are of <u>instrumental or environmental origin</u>. Terrestrial signals are not astrophysical and not due to gravitational waves. Some examples of sources of terrestrial signals are statistical noise fluctuations, detector glitches, and ground motion.
- MassGap Compact binary systems with at least one compact object whose <u>mass is in the hypothetical "mass</u> <u>gap" between neutron stars and black holes</u>, defined here as 3-5 solar masses

Grace DB: https://gracedb.ligo.org/superevents/public/O3/

CAL limits on electromagnetic emission from gravitational wave events (LIGO/Virgo O3)

GCN	LIGO/Virgo	Trigger time	Events	90% C.L.	Summed	CAL	CAL	Comments
No.	trigger	<i>T</i> ₀ (2019)	$T_0 \pm 60 \text{ s}$	U.L.	probability	α (°)	δ (°)	
24960	S190630ag	06-30 18:52:05.180 UT	0	$1.2 imes 10^{-5}$	25%	84.0	31.5	BBH (94%)
24970	S190701ah	07-01 20:33:06.578 UT	0	-†	No	286.8	-1.6	BBH (93%)
25027	S190706ai	07-06 22:26:41.345 UT	0	_	No	210.4	-45.4	BBH (99%)
25033	S190707q	07-07 09:33:26.181 UT	0	$2.1\times10^{-6} \ddagger$	20%	262.4	2.2	BBH (>99%)
25099	S190718y	07-18 14:35:12.068 UT	0	$1.7\times10^{-6}\dagger$	5%	195.8	-11.1	Terrestrial (98%)
25134	S190720a	07-20 00:08:36.704 UT	0	$3.0 imes 10^{-5}$	25%	49.7	-32.1	BBH (99%)
25184	S190727h	07-27 06:03:33.986 UT	0	-	No	201.1	38.2	BBH (92%)
25214	S190728q	07-28 06:45:10.529 UT	0	-†	No	184.8	30.3	BBH (95%)
25390	S190814bv	08-14 21:10:39.013 UT	0	-	No	181.3	49.5	NSBH (>99%)
25536	S190828j	08-28 06:34:05.756 UT	0	-	No	13.9	12.6	BBH (>99%)
25537	S1908281	08-28 06:55:09.887 UT	0	-	No	106.9	51.0	BBH (>99%)
25647	S190901ap	09-01 23:31:01.838 UT	0	$6.3\times10^{-5}\dagger$	5%	353.8	16.6	BNS (86%)

Table 1: Summary of CALET/CAL gamma-ray observations on gravitational event candidates in the LIGO/Virgo third observing run reported in GCN circulars [1]. Upper limits (U.L.) are given in unit of erg cm⁻²s⁻¹ for the energy range 10–100 GeV except for those marked with \dagger which are for 1–10 GeV, which corresponds to the HE and the LE- γ mode of the trigger condition of CAL around T_0 . 'Summed probability' is the maximum probability in the overlap region of the CAL field-of-view at T_0 with the summed LIGO/Virgo probability map ('No' means there is no overlap). Also shown are the coordinates of the center of CAL field-of-view at T_0 .

CAL limits on electromagnetic emission from gravitational wave events (LIGO/Virgo O3)

GCN	LIGO/Virgo	Trigger time	Events	90% C.L.	Summed	CAL	CAL	Comments
No.	trigger	<i>T</i> ₀ (2019)	$T_0 \pm 60$ s	U.L.	probability	α (°)	δ (°)	
25734	4 S190910d	09-10 01:26:19 UT	0	-†	No	100.8	22.9	NSBH (98%)
2573	5 S190910h	09-13 03:38:21 UT	0	$9.4 imes 10^{-6}$ †	10%	294.8	-5.5	BNS (61%)
2577	0 S190915ak	09-15 23:57:02 UT	0	-	No	99.7	-11.1	BBH (99%)
2583	0 S190923y	09-23 12:55:59 UT	0	$1.2 imes 10^{-5}$	10%	55.3	-2.5	NSBH (68%)
2584	4 S190924h	09-24 02:18:46 UT	0	-	No	273.4	40.2	MassGap (>99%)
2589	1 \$190930s	09-30 13:35:41 UT	0	$3.5 imes 10^{-5}$	5%	20.7	-3.3	MassGap (95%)
25892	2 S190930t	09-30 14:34:07 UT	0	1.7×10^{-5}	5%	235.5	36.3	NSBH (74%)
2619	5 \$191105e	11-05 14:35:21 UT	0	-	No	223.0	-27.4	BBH (95%)
2623	6 S191109d	11-09 01:07:17 UT	0	-	No	349.6	-16.6	BBH (>99%)
2623	7 S191110af	11-10 23:06:44 UT	0	$8.4 imes10^{-6}$	40%	218.6	-42.7	-
2632	1 S191129u	11-29 13:40:29 UT	0	-	No	356.9	50.7	BBH (>99%)
2635	8 S191204r	12-04 17:15:26 UT	0	-	No	269.2	34.3	BBH (>99%)
2637	7 S191205ah	12-05 21:52:08 UT	0	-	No	80.2	-32.8	NSBH (93%)
26419	9 S191213g	12-13 04:34:08 UT	0	-	No	20.4	-9.3	BNS (77%)
2646	5 S191215w	12-15 22:30:52 UT	0	-	No	222.3	40.3	BBH (>99%)
2648	1 S191216ap	12-16 21:33:38 UT	0	-†	No	186.8	13.9	BBH (99%)
2660	2 S191222n	12-22 03:35:37 UT	0	-†	No	330.3	-2.1	BBH (>99%)
26664	4 S200105ae	01-05 16:24:26 UT	0	$6.5 imes10^{-6}$	60%	50.6	-30.6	NSBH (3%)
2674	0 S200112r	01-12 15:58:38 UT	0	$1.1 imes10^{-6}$	5%	84.7	40.0	BBH (>99%)
2676	1 S200114f	01-14 02:08:18 UT	0	$4.7 imes 10^{-6}$	80%	111.2	50.7	-
2679	7 S200115j	01-15 04:23:09 UT	0	$1.7 imes10^{-6}$	20%	84.4	45.9	MassGap (>99%)

LIGO-VIRGO O3: Monthly variation

10 9 8 7 6 5 4 3 2 1 0 Apr-19 May-19 Jun-19 Jul-19 Aug-19 Sep-19 Oct-19 Nov-19 Dec-19 Jan-20 GraceDB CALET GCN

LIGO-VIRGO triggers

Grace DB: https://gracedb.ligo.org/superevents/public/O3/

Searching transient events

- Gamma ray bursts, AGN flares, EM counterparts of GW, ...
- We define a 'transient event' as <u>a gamma-ray pair</u> coming from the same direction (within our angular resolution) in a 120-s time window.

Judging 'pairs' using PSF

See also poster PS3-243 (Cannady et al.) for GRB search by CALET/CAL

Transient gamma-ray monitor system

- Running since 2018/08/20 at WCOC
- Parallel processing (60 threads) 40 min for 1hr data

WCOC DQC "GAM_PAIRS"

			DAQ DSZ Prev	Prev \	Week	SC L1C GAM GAM_ HOME Next w TBD JEMRMS Parked a	veek Ne	IL PED ext			
					191229	GAM_PAIRS					
					Pair	event list					
						try77					
EventID_1	EventID_2	Probability	(R.A, Dec) [degree]	Opening angle [degree]	MDCTIME [s]	UT [s]	Time difference [s]	Energy_1 [GeV]	Energy_2 [GeV]	(dir0_1, dir1_1)	(dir0_2, dir1_2)
31522	43347	0.136	(128.800, -45.093)	0.444		2019/12/29 06:30:07.045266	289.191015	1.298	4.277	(-0.251, 0.561)	(-0.497, 0.543)
					No pairs wer	e found with try17.					
					Eve	nt display					
			3 				30 1 20				
					Event display	for EventID: 31522					
			3 3 4 8			40 40 40 40 40 40 40 40 40 40					
					Event display	for EventID: 43347					

30

Summary

- Gamma ray analysis is on-going.
- We have to recover efficiencies toward higher energies to have enough statistics. Some new idea is necessary.
- Dark matter line signal search could be sensitive thanks to our good energy resolution.
- GW counterpart search results are regularly reported in GCN circulars, but we have only upper limits up to now.
- Automated search for gamma-ray pairs are working at WCOC.

Backups

Gamma-ray spectra

 $LE-\gamma$ mode from 2015 November to 2018 May

"On-plane": $|l| < 80^{\circ} \& |b| < 8^{\circ}$ 4 E² F(E) [cm⁻² sr⁻¹ s⁻¹ GeV] 0 2 2 **Preliminary** 10⁻⁶ on plane ApJS 238 (2018) 5 This work Averaged Fermi data 10² 10 1 Energy [GeV]

Monitoring count rates of AGNs

- Search for flares of known AGNs
- Use events within 68% containment angles from AGNs listed in 3FGL (Fermi-LAT 4-year catalog)
- Calculate count rates based on 28-day exposures assuming E⁻² spectra

Exposures for CTA102 (2015/11-2018/09)

Monitoring count rates of AGNs

- Search for flares of known AGNs
- Use events within 68% containment angles from AGNs listed in 3FGL (Fermi-LAT 4-year catalog)
- Calculate count rates based on 28-day exposures assuming E⁻² spectra

Fermi-LAT count rates for CTA102

Count rates for CTA102 (2015/11-2018/09)

Summary for part B

- Selection algorithm for transient gamma-ray events has been developed with FOV cut and direction consistency. It could identify point sources.
- 503 CGBM triggers are analyzed ($T_0 \pm 60$ s) but no pairs were found.
- Monitoring method for count rates of AGNs has been developed. It could identify CTA102 flare (2017/01).
- Transient gamma-ray monitor system is running since 2018/08. It can detect transient events within 2hr from CGBM triggers by parallel processing.

Analysis of TXS 0506+056/IceCube-170922A

• 2015/10/13-2018/05/31, LEγ run, FOV cut (fixed structure & robot arm)

ra[deg]

ra[deg]

Analysis of TXS 0506+056/IceCube-170922A

EM track

Integrated Exposure

CC track

Integrated Flux

Analysis of TXS 0506+056/IceCube-170922A

Cf. Fermi-LAT: 3.6×10^{-7} cm⁻²s⁻¹ (0.1-300 GeV, Sep.15-27 2017; Atel #10791) \rightarrow dN/dE = 3.6×10^{-8} (E/GeV)⁻² cm⁻²s⁻¹GeV⁻¹

Effective Area and Sensitivity

Effective area is estimated as a function of incident angle (dx/dz, dy/dz) and energy. Maximum effective area is achieved at around 5 GeV, but lower energy is more important for steep spectrum like E^{-2} . LE- γ trigger: > 1 GeV

HE trigger: > 10 GeV 3-10GeV average 350 S_{eff} [cm²] $0.0 < \theta_{zec}/[deg] < 5.0$ CC Track 1 F Ó HE 600 17.5 < θ_{zen}/[deg] < 22.5 LE HE П 300 27.5 < θ_{zep}/[deg] < 32.5 LE Λ HE 500 37.5 < θ_{zen}/[deg] < 42.5 1 F 250 400 200 300 150 200 100 100 50 -0.8 -0.6 -0.4 -0.2 10^{-1} 0.8 10 0.2 0.6 Energy [GeV] dx/dz

Mostly axially symmetric except for FOV cut

dy/dz

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

 \rightarrow Talk by Fujita (25pK202-10)

Effective area as a function of energy. Four representing zenith angle ranges are shown.

10

CALET Collaboration

O. Adriani²⁵, Y. Akaike², K. Asano⁷, Y. Asaoka^{9,31}, M.G. Bagliesi²⁹, G. Bigongiari²⁹, W.R. Binns³², S. Bonechi²⁹, M. Bongi²⁵, P. Brogi²⁹, J.H. Buckley³², N. Cannady¹², G. Castellini²⁵, C. Checchia²⁶, M.L. Cherry¹², G. Collazuol²⁶, V. Di Felice²⁸, K. Ebisawa⁸, H. Fuke⁸, G.A. de Nalfo¹⁴, T.G. Guzik¹², T. Hams³, M. Hareyama²³, N. Hasebe³¹, K. Hibino¹⁰, M. Ichimura⁴, K. Ioka³⁴, W.Ishizaki⁷, M.H. Israel³², A. Javaid¹², K. Kasahara³¹, J. Kataoka³¹, R. Kataoka¹⁶, Y. Katayose³³, C. Kato²², Y.Kawakubo¹, N. Kawanaka³⁰, H. Kitamura¹⁵, H.S. Krawczynski³², J.F. Krizmanic², S. Kuramata⁴, T. Lomtadze²⁷, P. Maestro²⁹, P.S. Marrocchesi²⁹, A.M. Messineo²⁷, J.W. Mitchell¹⁴, S. Miyake⁵, K. Mizutani²⁰, A.A. Moiseev³, K. Mori^{9,31}, M. Mori¹⁹, N. Mori²⁵, H.M. Motz³¹, K. Munakata²², H. Murakami³¹, Y.E. Nakagawa⁸, S. Nakahira⁹, J. Nishimura⁸, S. Okuno¹⁰, J.F. Ormes²⁴, S. Ozawa³¹, L. Pacini²⁵, F. Palma²⁸, P. Papini²⁵, A.V. Penacchioni²⁹, B.F. Rauch³², S.B. Ricciarini²⁵, K. Sakai³, T. Sakamoto¹, M. Sasaki³, Y. Shimizu¹⁰, A. Shiomi¹⁷, R. Sparvoli²⁸, P. Spillantini²⁵, F. Stolzi²⁹, I. Takahashi¹¹, M. Takayanagi⁸, M. Takita⁷, T. Tamura¹⁰, N. Tateyama¹⁰, T. Terasawa⁷, H. Tomida⁸, S. Torii^{9,31}, Y. Tunesada¹⁸, Y. Uchihori¹⁵, S. Ueno⁸, E. Vannuccini²⁵, J.P. Wefel¹², K. Yamaoka¹³, S. Yanagita⁶, A. Yoshida¹, K. Yoshida²¹, and T. Yuda⁷ 18) Osaka City University, Japan 1) Aoyama Gakuin University, Japan 2) CRESST/NASA/GSFC and Universities Space Research 19) Ritsumeikan University, Japan 20) Saitama University, Japan Association, USA 21) Shibaura Institute of Technology, Japan 3) CRESST/NASA/GSFC and University of Maryland, USA 22) Shinshu University, Japan 4) Hirosaki University, Japan 23) St. Marianna University School of Medicine, Japan 5) Ibaraki National College of Technology, Japan 6) Ibaraki University, Japan 24) University of Denver, USA 25) University of Florence, IFAC (CNR) and INFN, Italy 7) ICRR, University of Tokyo, Japan 8) ISAS/JAXA Japan 26) University of Padova and INFN, Italy 27) University of Pisa and INFN, Italy 9) JAXA, Japan 10) Kanagawa University, Japan 28) University of Rome Tor Vergata and INFN, Italy 29) University of Siena and INFN, Italy 11) Kavli IPMU, University of Tokyo, Japan 30) University of Tokyo, Japan 12) Louisiana State University, USA 13) Nagoya University, Japan 31) Waseda University, Japan 32) Washington University-St. Louis, USA 14) NASA/GSFC, USA 15) National Inst. of Radiological Sciences, Japan 33) Yokohama National University, Japan 34) Yukawa Institute for Theoretical Physics, Kyoto University, Japan 16) National Institute of Polar Research, Japan 17) Nihon University, Japan 41

CALET-CAL Detector

Fully active thick calorimeter (30X₀) optimized for electron spectrum measurements well into TeV region

fully contained in TASC

= Electron Selection Cut + Gamma-ray ID Cut w/ Lower Energy Extension

An example of gamma-ray event candidate in flight data (reconstructed primary energy ~5GeV)

- 1. Geometry Condition - CHD-Top to TASC 1st layer (2cm margin)
- 2. Pre selection
 - Offline trigger
 - Shower concentration
 - Shower starting point
- 3. Track quality cut
 - Track hits >2
 - matching w/ TASC
- 4. Electromagnetic shower selection- shower shape
- 5. Gamma-ray ID
 - CHD/IMC-veto
 - (combination of
 - loose cuts)
- 6. FOV cut

43

= Electron Selection Cut + Gamma-ray ID Cut w/ Lower Energy Extension

To maximize the field of view (FOV), the requirements on acceptance condition was loosened as much as possible compared to electron analysis. However, penetration of CHD paddle by shower axis is required to ensure charge zero selection.

- 1. Geometry Condition - CHD-Top to TASC 1st layer (2cm margin)
- 2. Pre selection
 - Offline trigger
 - Shower concentration
 - Shower starting point
- 3. Track quality cut
 - Track hits >2
 - matching w/ TASC
- 4. Electromagnetic shower selection- shower shape
- 5. Gamma-ray ID
 - CHD/IMC-veto
 - (combination of
 - loose cuts)
- 6. FOV cut

44

= Electron Selection Cut + Gamma-ray ID Cut w/ Lower Energy Extension

"K-cut"
$$K = \log_{10}(F_E) + \frac{1}{2}R_E$$

- F_E : fractional energy deposit of TASC-Y6 relative to total TASC deposit
- *R_E*: Second moment of lateral energy deposit distribution relative to shower axis [cm]

O. Adriani et al., PRL 119, 181101 (2017) supplemental material

- 1. Geometry Condition
 - CHD-Top to TASC 1st layer (2cm margin)
- 2. Pre selection
 - Offline trigger
 - Shower concentration
 - Shower starting point
- 3. Track quality cut
 - Track hits >2
 - matching w/ TASC
- 4. Electromagnetic shower selection
 - shower shape
- 5. Gamma-ray ID
 - CHD/IMC-veto
 - (combination of
 - loose cuts)
- 6. FOV cut

= Electron Selection Cut + Gamma-ray ID Cut w/ Lower Energy Extension

= Electron Selection Cut + Gamma-ray ID Cut w/ Lower Energy Extension

It was found that secondary gamma-ray produced in ISS structures are dominant source of background

By removing Black parts, it is possible to reject majority of such background. More sophisticated rejection method is under development.

- 1. Geometry Condition - CHD-Top to TASC 1st layer (2cm margin)
- 2. Pre selection
 - Offline trigger
 - Shower concentration
 - Shower starting point
- 3. Track quality cut
 - Track hits >2
 - matching w/ TASC
- 4. Electromagnetic shower selection
 - shower shape
- 5. Gamma-ray ID
 - CHD-veto
- 6. FOV cut

EM Track vs CC Track: Effective area

Figure 3. Effect of various selection cuts in zenith-pointing effective area. Grey shaded regions demonstrate the limits of applicability for each track due to background contamination with poor agreement between flight data and simulation.

EM Track vs CC Track : PSF

Figure 6. Composite PSF for EM and CC tracks. In each plot, the core contribution and tail contribution are represented by the red and green curves, respectively.

Point Source Spectra: Sensitivity Validation

CALET Preliminary

The observed point source spectra are well consistent with Fermi-LAT's parameterizations. Therefore, it was found that current selection criteria has a validated sensitivity and can be used to set limit on GW counterpart flux. https://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm

Fermi LAT performance

GRB analysis following a CGBM trigger: an example

GRB 180126A: triggered by CGBM at T_0 =2018/1/26/ 2:16:38 UTC \rightarrow No gamma ray candidates within T_0 ±60s

Upper limits on energy flux (2 events, $not_{52}^{RA [deg]}$ pair)