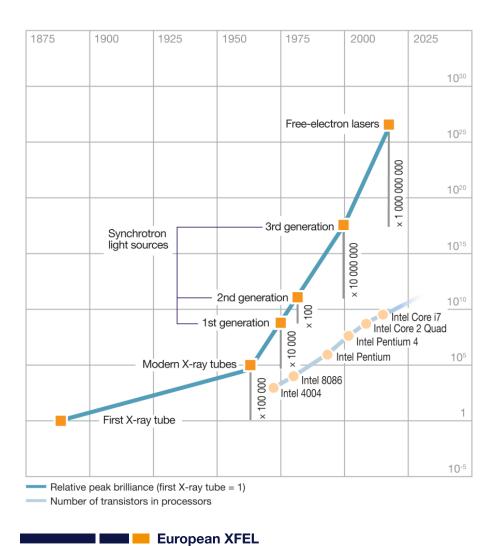
Data Challenges at the European XFEL

From Bytes/s to GBytes/s

Dr. Steffen Hauf, European XFEL GmbH 27.10.2020

European XFEL

Data Challenges at the European XFEL


From Bytes/s to GBytes/s

Dr. Steffen Hauf, European XFEL GmbH 27.10.2020

Data Challenges at the European XFEL

- The European XFEL a (short) Introducion
- Data Challenges
- Data Drivers
- Data Solutions
- Lessons Learned and Outlook

PR Slide: Light source development

The development of light source facilities has been faster than the increase in computer processing capacity (i.e., Moore's Law) 2020 EIROforum Workshop: Data Challenges at the European XFEL

Dr. Steffen Hauf, European XFEL GmbH

The European XFEL Facility

Schenefeld Campus

Experiment hall Laboratories Offices

FEL Parameters

Baseline photon energy

0.25-25 keV

Pulse duration

< 100 fs

Pulse energy

a few mJ

Superconducting linac

14 – 17 GeV European XFEL Osdorfer Born

Electron beam to photon beamlines Undulator systems begin

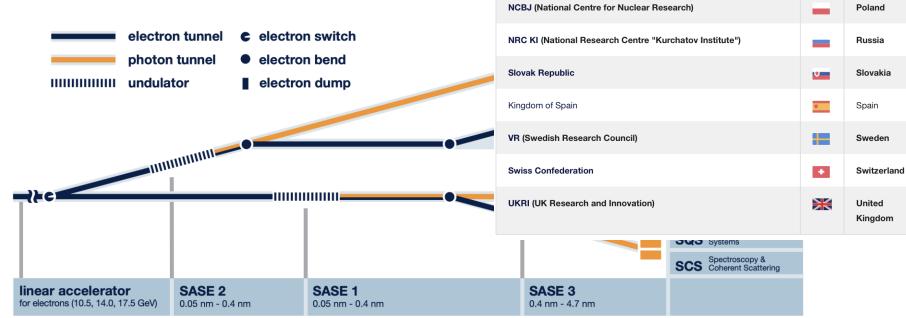
DESY-Bahrenfeld

Electron source Linear accelerator begins

DESY

DESY

Campus


Facility is presently ramped up after extraordinary COVID shutdown.

3400 m

The European XFEL Facility

An international research facility

- 12 participating countries
- 300+ employees from 50+ different nations
- A user facility:
 - 6 scientific user experiments hosting 56 user groups in 2019
 - User groups change on a weekly schedule

GmbH

alternatives)

Office)

Present (bold) or likely future shareholder of the European XFEL

DASTI (Danish Agency for Science, Technology and Innovation)

CEA (Commissariat à l'énergie atomique et aux énergies

NRDI Office (National Research, Development and Innovation

CNRS (Centre national de la recherche scientifique)

DESY (Deutsches Elektronen-Synchrotron)

INFN (Istituto Nazionale di Fisica Nucleare)

CNR (Consiglio Nazionale delle Ricerche)

Country

Denmark

France

Germany

Hungary

Italv

The European XFEL Facility

An international research facility

- 12 participating countries
- 300+ employees from 50+ different nations

A user facility:

IIIIIIIIIIIII undulator

linear accelerator

for electrons (10.5, 14.0, 17.5 GeV)

electron tunnel

photon tunnel

SASE 2

0.05 nm - 0.4 nm

6 scientific user experiments hosting 56 user groups in 2019

electron switch

electron bend

electron dump

SASE 1

User groups change on a weekly schedule

2

Dr. Steffen Hauf, European XFEL GmbH

Present (bold) or likely future shareholder of the European XFEL Country GmbH DASTI (Danish Agency for Science, Technology and Innovation) Denmark CEA (Commissariat à l'énergie atomique et aux énergies France alternatives) CNRS (Centre national de la recherche scientifique) **DESY** (Deutsches Elektronen-Synchrotron) Germany NRDI Office (National Research, Development and Innovation Hungary Office) **INFN (Istituto Nazionale di Fisica Nucleare)** Italv **CNR** (Consiglio Nazionale delle Ricerche) Poland Materials Imaging MID and Dynamics Russia HED High Energy Density Science Slovakia V Optional space for two undulators and four instruments Spain Sweden Single Particles, Clusters, and Biomolecules and SPB Switzerland . Serial Femtosecond SFX Crystallography Ж United FXE Femtosecond X-ray Experiments Kingdom Small Quantum SQS Systems SCS Spectroscopy & Coherent Scattering SASE 3 0.05 nm - 0.4 nm 0.4 nm - 4.7 nm

XFEL Scientific Instruments

SPB Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography

Will determine the structure of single particles, such as atomic clusters, viruses and biomolecules

MID Materials Imaging & Dynamics

Will be able to image and analyse nano-sized devices and materials used in engineering

FXE Femtosecond X-Ray Experiments

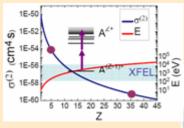
Will investigate chemical reactions at the atomic scale in short time scales molecular movies

HED High Energy Density Matter

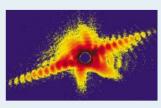
Hard X-Rays

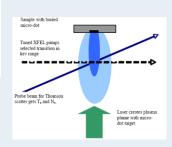
Soft X-Rays

SCS

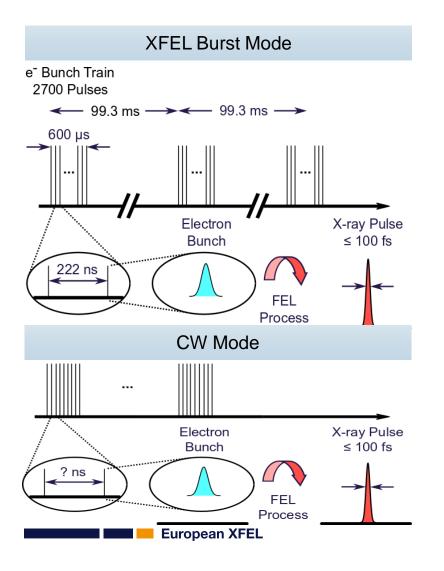

Will look into some of the most extreme states of matter in the universe, such as the conditions at the center of planets

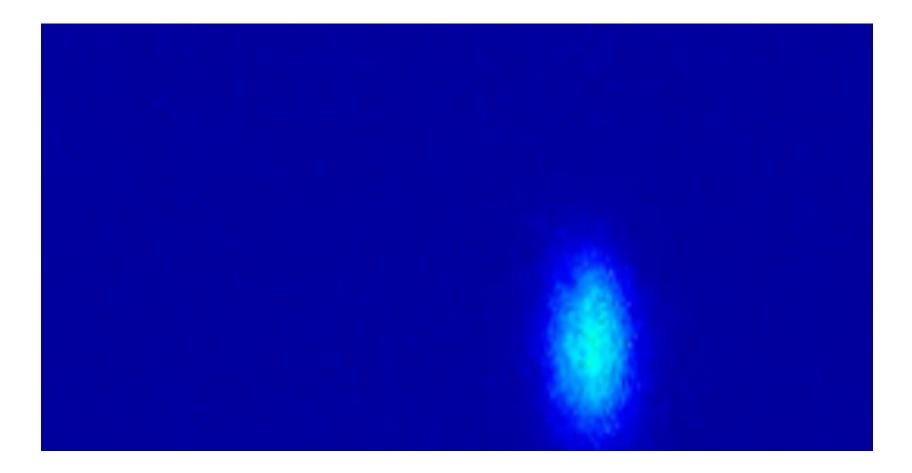
SQS Small Quantum Systems

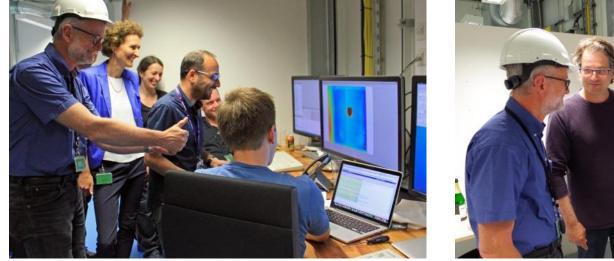

Will examine the quantum mechanical properties of atoms and molecules.

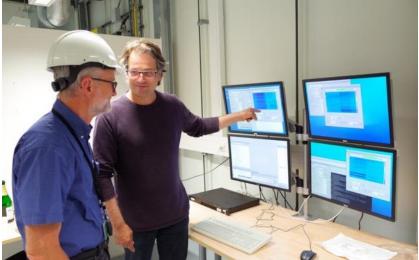

Soft X-Ray Coherent Scattering/Spectroscopy

Will determine the structure and properties of large, complex molecules and nano-sized structures.

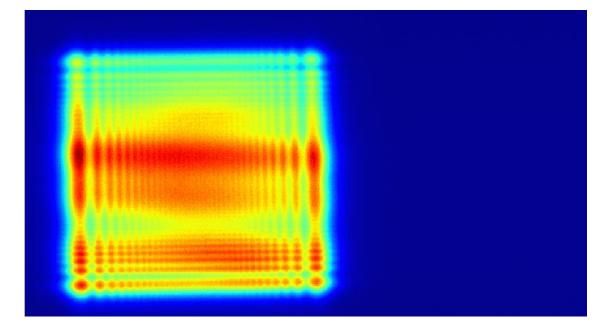



European XFEL Time Structure


The European XFEL pulse structure poses strict constraints on detectors (e.g. intensity and time structure) Most of the time the use of commercial detectors is excluded Most applications require 4.5 MHz repetition rate detectors On average up to 27.000 pulses/s Pulse duration $< 100 \, \text{fs}$ High peak intensities up to 10¹² photons/pulse Various different pulse patterns possible 1 pulse per train n pulses per train ...


Linear, logarithmic or random distribution

4 May 2017—first lasing!



23 June 2017—first X-rays in the experiment hall!

X-ray laser beam quality

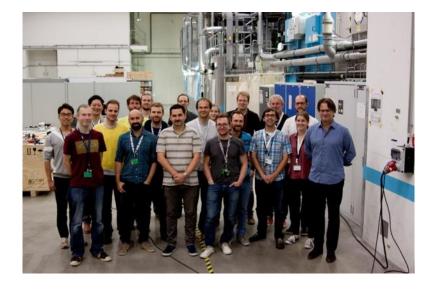
- Fresnel pattern taken on 30 June 2017
- Diffraction pattern shows an interference pattern that is classic for high quality laser beams

1 September 2017—Inauguration and start of user operation

A strong laser from Elbphilharmonie greets European XFEL in the languges of the partner countries

Ribbon-cutting with high-ranking representatives of the partner countries

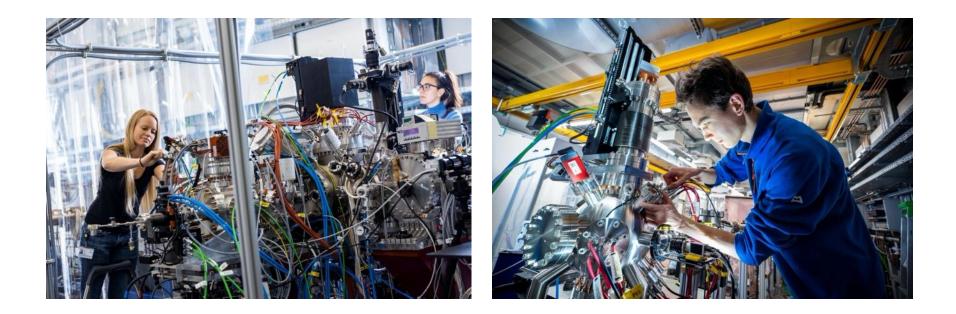
FXE and SPB/SFX instruments: available for users since Sept 2017



FXE instrument: ultrafast chemistry studies looking into catalysts, photosensitive materials, biochemistry

SPB/SFX instrument: structural biology, studies of atomic clusters, imaging of single cells, viruses, eventually molecules

FXE and SPB/SFX instruments: available for users since Sept 2017



FXE instrument: ultrafast chemistry studies looking into catalysts, photosensitive materials, biochemistry

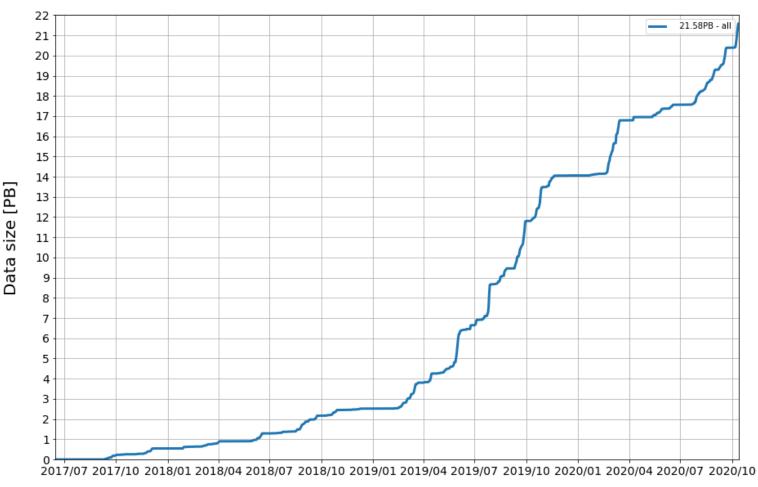
SPB/SFX instrument: structural biology, studies of atomic clusters, imaging of single cells, viruses, eventually molecules

SQS and SCS instruments: first users since late 2018

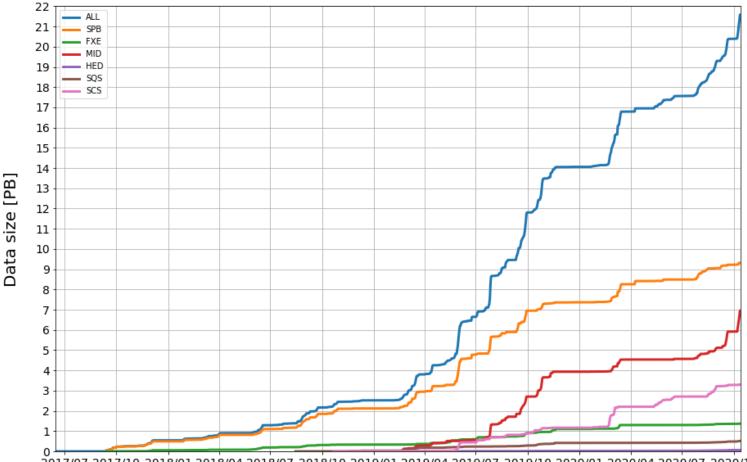


SQS and SCS instruments: first users since late 2018

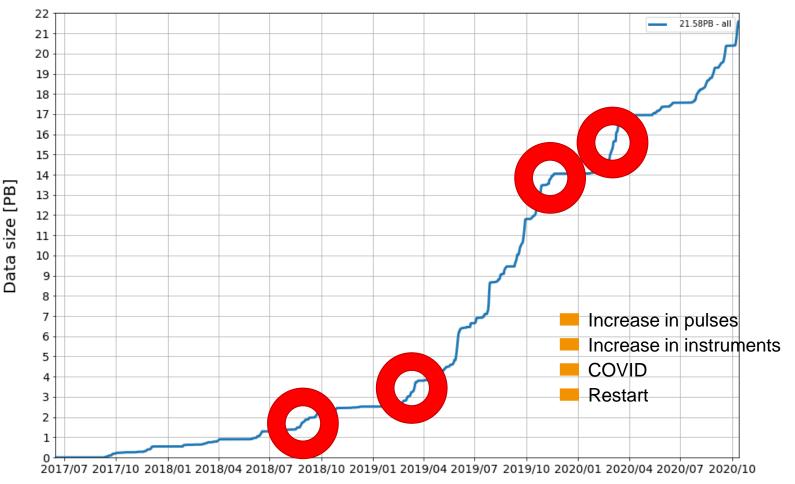
HED and MID instruments: first users in 2019


HED and MID instruments: first users in 2019

At MID no camera seems to have been around for the first experiment

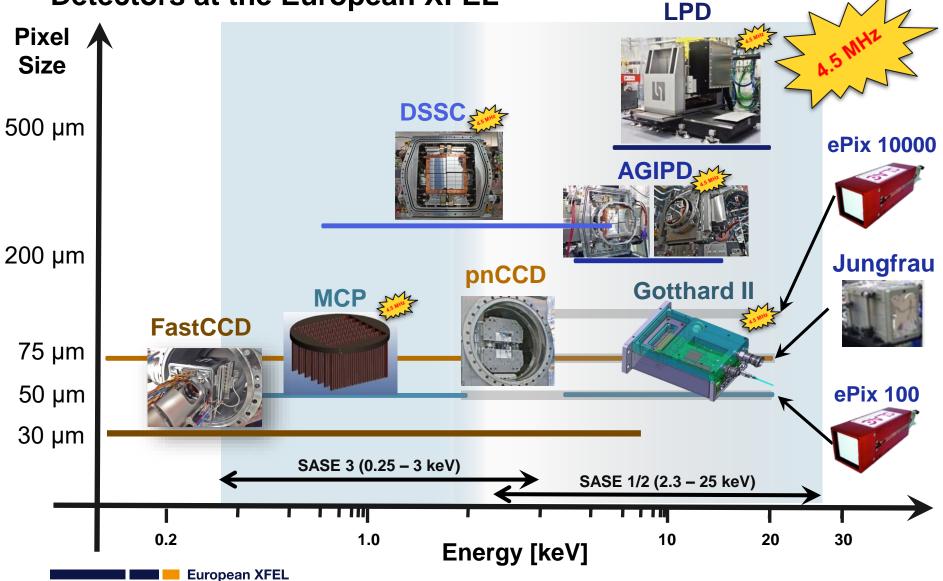

Data Challenges at the European XFEL

Raw Data Generated at European XFEL Instruments


Data Challenges at the European XFEL

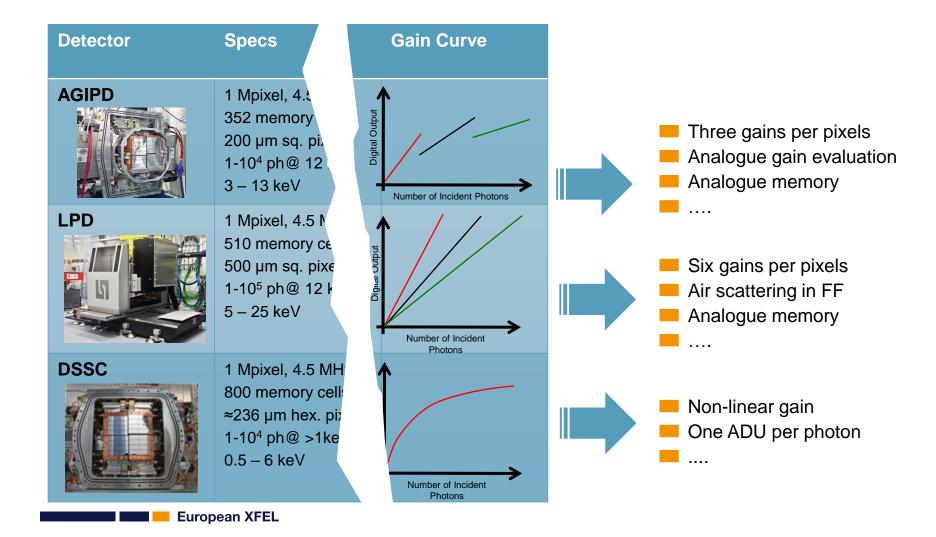
Raw Data Generated at European XFEL Instruments

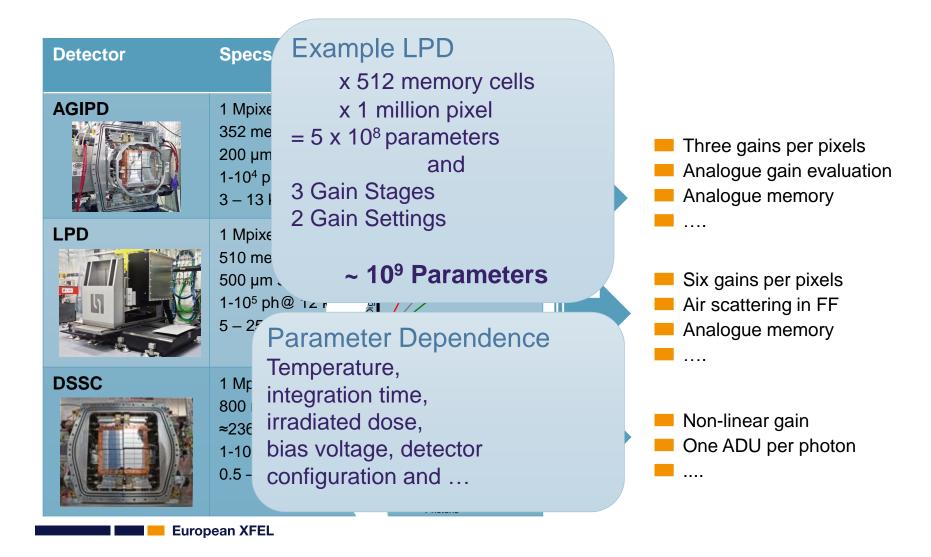
Data Challenges at the European XFEL


Raw Data Generated at European XFEL Instruments

Data Challenges – Data Drivers

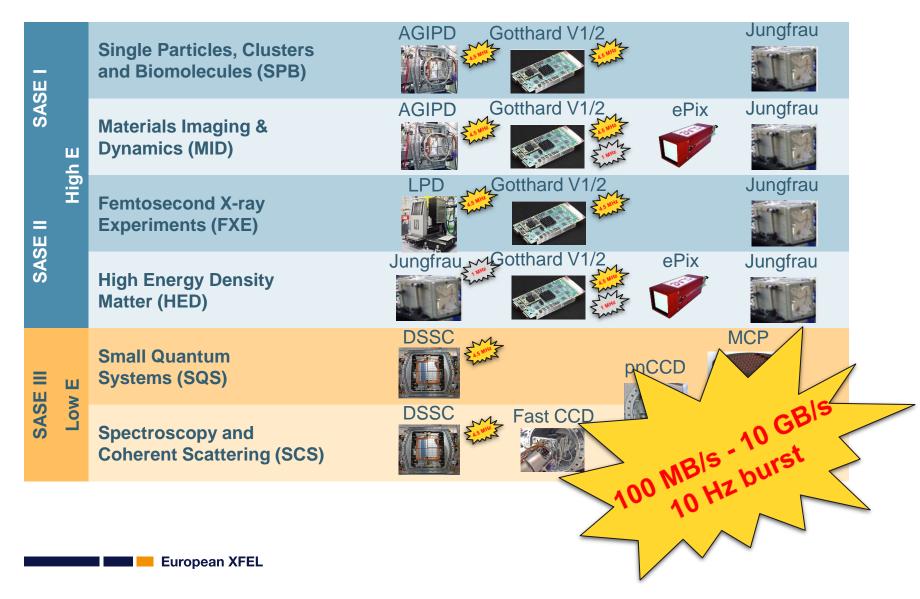
European XFEL


Detectors at the European XFEL


4.5 MHz High Dynamic Range Imaging Detectors

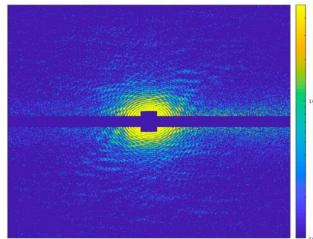
Detector	Specs	Modularity	Gain	Gain Curve
AGIPD	1 Mpixel, 4.5 MHz 352 memory cells 200 μ m sq. pixels 1-10 ⁴ ph@ 12 keV 3 – 13 keV	16 modules in 2 cols x 8 rows on 4 quadrants	3 gains with automatic switching	Number of Incident Photons
LPD	1 Mpixel, 4.5 MHz 510 memory cells 500 μ m sq. pixels 1-10 ⁵ ph@ 12 keV 5 – 25 keV	16 modules per Super Module (2x8) 16 SM on 4 quadrants	3 parallel gain stages with on front- end selection	Number of Incident Photons
DSSC	1 Mpixel, 4.5 MHz 800 memory cells ≈236 µm hex. pixels 1-10 ⁴ ph@ >1keV 0.5 – 6 keV	16 modules in 2 cols x 8 rows on 4 quadrants	Linear gain in ASIC (miniSDD) non-linear gain in sensor (DePFET)	Number of Incident Photons

4.5 MHz High Dynamic Range Imaging Detectors


4.5 MHz High Dynamic Range Imaging Detectors

Detectors for the Scientific Instruments

SASE II SASE I		Single Particles, Clusters and Biomolecules (SPB)	AGIPD Gotthard V1/2 June	gfrau
	ш	Materials Imaging & Dynamics (MID)	AGIPD Gotthard V1/2 ePix June Contract of the second seco	gfrau
	High	Femtosecond X-ray Experiments (FXE)		gfrau
		High Energy Density Matter (HED)	Jungfrau Gotthard V1/2 ePix Jung	gfrau
SASE III		Small Quantum Systems (SQS)	DSSC MCP pnCCD	
	Low	Spectroscopy and Coherent Scattering (SCS)	DSSC Fast CCD	1


Detectors for the Scientific Instruments

Data Drivers: Data Examples from Detectors

- Data comes in a variety of "flavors"
- Not trivial to generically reduce, as very experimental context dependent
- Usefulness of data determined by calibration quality

Doped He nanodroplets imaging PI: R. Tanyag, D. Rupp (TU/MBI Berlin)

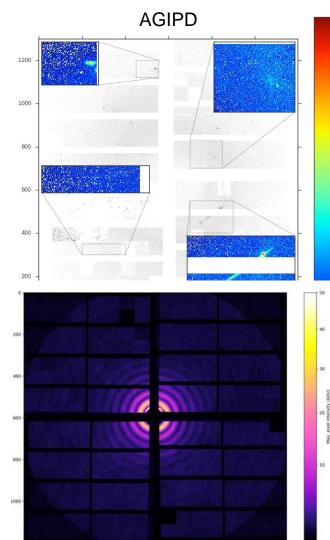


image of pinholes with 707 eV photons, acquired by DSSC detector during commissioning at the SCS experiment. The DSSC detector readout

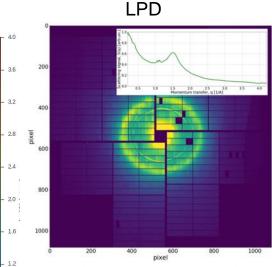
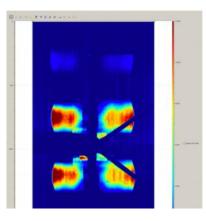



Figure 8: Liquid scattering pattern of tetrahydrofuran solution of a Cu complex collected with the LPD detector [23,24] at scientific instrument FXE [25](corrected for dark offset). Inset: Average of the azimuthally integrated set of 150 image.

FastCCD

Data Drivers: Digitizers & FPGAs

MicroTCA Crates

Large 12 slot 9U and small 6 slot 2U (including MCH, Power Supply and CPU)

X2Timer

XFEL Timing System

module for

synchronization (clocks

and triggers) and pulse

parameters from NAT

DAMC2

Required for Clock & Control system for fast 2D detectors, VETO System, Machine Protection System and photon beam loss monitors from DESY

Fast 125MSPS ADC with 10 channels and 16bit resolution for diagnostics and detectors from Struck Innovative Systeme

ADQ412/ADQ14/ADQ7

High-speed digitizers from 1.8GSPS to 10GSPS with 12 to 14 bit resolution from Teledyne SP Devices

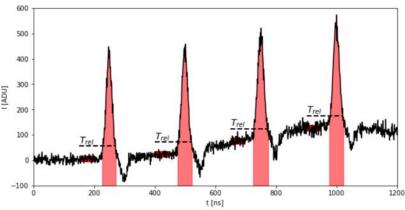
Data Drivers: Digitizers & FPGAs

MicroTCA Crates

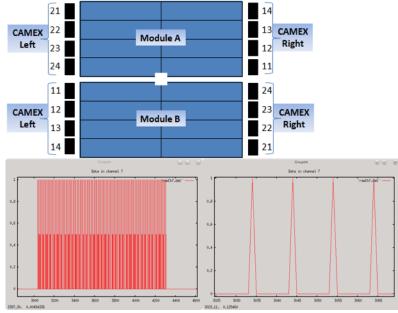
Large 12 slot 9U and small 6 slot 2U (including MCH, Power Supply and CPU)

DAMC2

XFEL Timing System module for synchronization (clocks and triggers) and pulse parameters from NAT


X2Timer

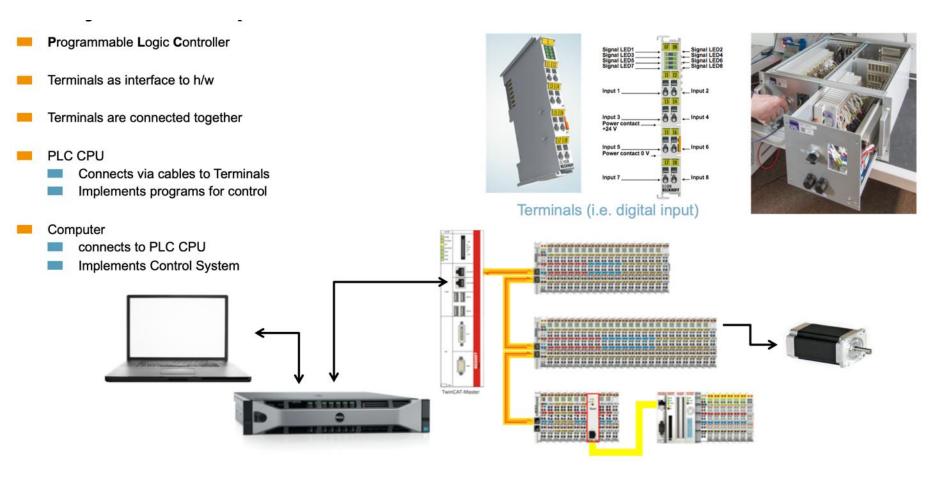
Required for Clock & Control system for fast 2D detectors, VETO System, Machine Protection System and photon beam loss monitors from DESY


Data Drivers: Data Examples from Digitizers & FPGAs

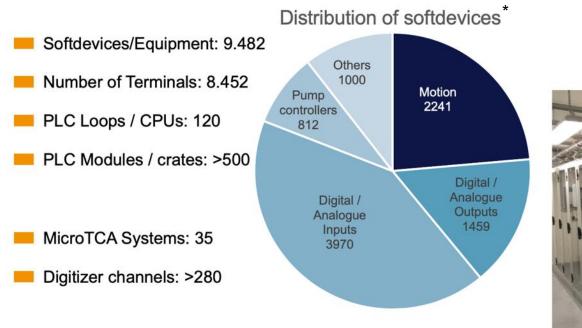
- Raw data to very condensed derived data
- Processing on FPGA
- Processing in software
- Often diagnostics → more fixed in content than detectors

pnCCD sampling at pixel clock

Standard CAMEX Channels Assignment

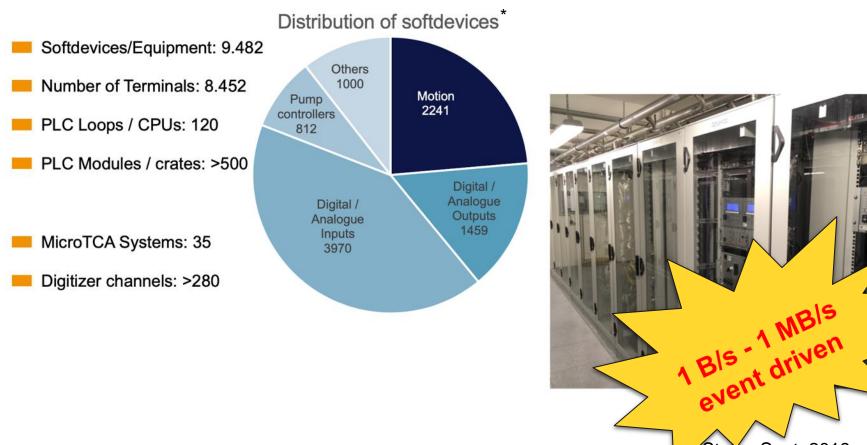


ROI sampling, e.g. from MCP data Joakim Laksman et al. • EuXFEL photoelectron spectrometer



(a) 0 V retardation. Electron TOF spectrum after Ne 1s ionization at 914 eV. TOF is 36.25 ns which corresponds to a kinetic energy of 44.2 eV according to equation (1) (red curve). (b) -480 V retardation. Electron TOF spectrum after N₂ 1s ionization at different photon energies. Peak center (black dots) fitted to equation (2) (red curve). Spectra are averaged over 100 pulses for higher statistics.

Data Drivers: PLCs and other "slow" Data



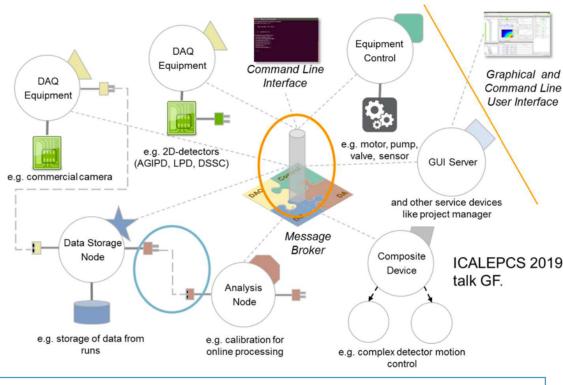
Data Drivers: PLCs and other "slow" Data

Data Drivers: PLCs and other "slow" Data

Status Sept. 2019

Data Drivers: Karabo, the XFEL.EU SCADA Framework

Communication


- Broker: cmds, values, schemas
 - ► Partitioning: topics SA1, SA2, SPB...
- Data: p2p TCP

Apis

- cpp (c++, boost)
- bound (Py 3.6 bound on cpp)
- middlelayer (Py 3.6)
- Devices everything's a device
 - reflect h/w (tight for Beckhoff)
 - control few to many other devices
 - interface to other services
- Device servers run devices
 - Multi-thread + event loop + GIL handling

User interfaces

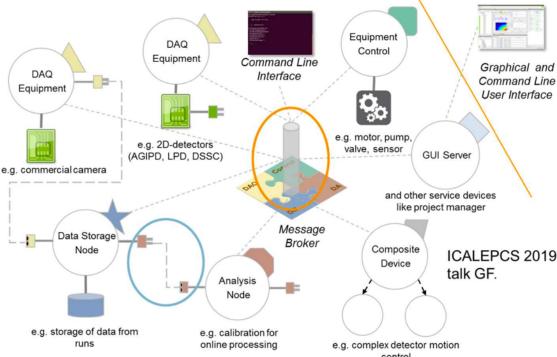
- Gui-client
- CLI

- Photon systems + Experiments: Karabo
- Accelerator: DOOCs
- Any some EPIX, TINE, Tango niches
- **European XFEL**

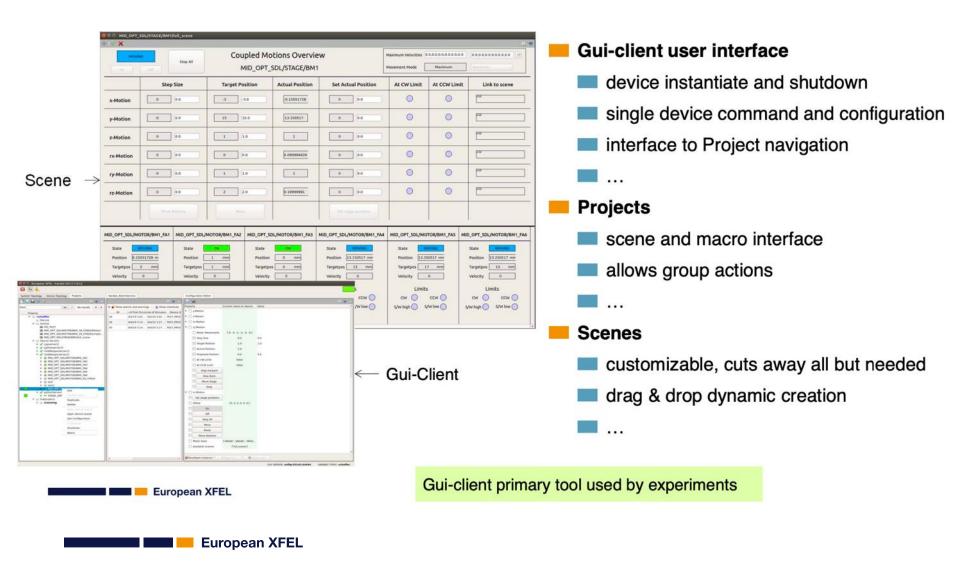
Data Drivers: Karabo, the XFEL.EU SCADA Framework

Communication

- Broker: cmds, values, schemas
 - ► Partitioning: topics SA1, SA2, SPB...
- Data: p2p TCP


Apis

- cpp (c++, boost)
- bound (Py 3.6 bound on cpp)
- middlelayer (Py 3.6)
- Devices everything's a device
 - reflect h/w (tight for Beckhoff)
 - control few to many other devices
 - interface to other services
- Device servers run devices
 - Multi-thread + event loop + GIL handling


User interfaces

- Gui-client
- CLI

- e.g. storage of data from runs
 e.g. calibration for online processing
 e.g. complex detector motion control
 SPB Instrument: 104 device servers and 1452 devices on 28 ITDM control servers Facility total (Sept. 2019): ~14000 devices, 1.7 million control parameters 20 CP/day → to InfluxDP
- ~30 GB/day → to InfluxDB

Data Drivers: Karabo, the XFEL.EU SCADA Framework

Dr. Steffen Hauf, European XFEL GmbH

Data Drivers: Infrastructure

See talk by Janusz Malka (14:00)

Dr. Steffen Hauf, European XFEL GmbH

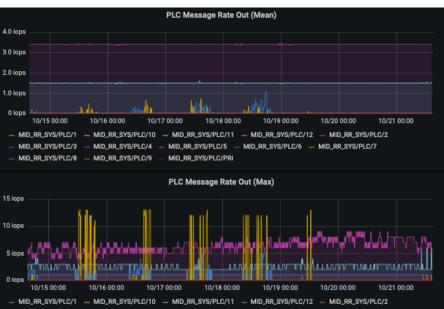
Data Solutions: Data Acquisition

- Destinguish between user data acquisition and facility "housekeeping" data
 - User data, needs to conform to Scientifc Data Policy
 - Long term data curation
 - Open access
 - Embargo period with restricted access
 - Data accessible by European XFEL staff during embargo period
 - All users need to agree to the policy as part of beamtime application
 - Facility data, only used for facility purposes, not tied to individual experiments

ent support/policies/scientific data policy/index eng.htm

Scientific data policy

Scientific data policy


roposal num	bei 900049	900049		Retrieve proposal
OUICE LIC-YAG_UI DIGITIZER- SQS_DIGITI SQS_DIGITI SQS_DIAG SQS_DIAG SA3_BEAM	UTC1 ZER_UTC1/ADC/1 cont ZER_UTC1/ADC/1:network cont 1_BIU-2 I_COND	Push to DAQ	Data source 0 @DIGITIZER	Data aggregator SQS_DAQ_DATA/DA/2
			·····	
17:01:25]: Propc	sal details retrieved successfull	ý		Proposal Data source Fopology Assign Configure Monitor
17:01:25]: Propc	sal details retrieved successfull			Data source Topology Assign Configure Monitor
17:01:25]: Propo				Data source fopology Assign Configure Monitor
	Ignore d		Apply	Data source Topology Assign Configure Monitor

--- 🖸 🟠 Q Search

Data Solutions: Data Logging in InfluxDB

- In the last month rolled out logging service based on a community leading timeseries DB: InfluxDB
 - Coporate solution with input from InfluxData, failover and load balancing for high availabity
 - Enables use of community tools such as Grafana for all our slow control data
 - Train Ids are stored in the DB, so data can be correlated with DAQ (fast) data as well on a per train basis
 - Still at the beginning of exploring the options, but already
 - Significant benefits for understanding incidents and problems
 - Many more options in data exploration
 - Exploring if it could supplement DAQ as user avaiable data source in the future

Data Solutions: Calibration and Correction (2D Detectors)

Retrieve parameters for correction: resolve detector conditions, point in time leading to most appropriate *parameters*

Corrected and calibrated data is main data product: needs to be available as soon as possible and reliable

Produce correction parameters: characterize detector and select necessary subset of information. Perform quality assessment

Manage correction parameters: centrally persist, categorize, select parameters

Optimize corrections according to specific scientific needs e.g. real vs integer photon numbers, split event corrections

Agility: support short cycles from prototyping, testing to production deployment where ever possible

European XFEL

Python: fast development cycles, good data analysis capabilities

Data Solutions: Community Tools

					localhost							C
ks/FastCCD,										Charac	terize_	_FlatFields
🖯 jupyter	Character	rize_Flat	tFields_Newl	DAQ_FastC0	CD_NBC_PP	Last Ci	heckpoi	nt: 04/0	3/2019 A	utosave Fa	iled!	0
File Edit	View Inse	ert Ce	II Kernel	Help				No	t Connec	ted error	F	Python 3 🕄
8 + % (26 1	• н	C Co	de	¢ 📾 Ce	llToolba	r 🝾					
	+ Name V	/alue	Hesse Error	Minos Error-	Minos Error+	Limit-	Limit+	Fixed?				
		39479.9		WINDS ENDI-	Minos Error+	35000	45000	No				
	1 c1 1	10.0284	0.00700815			8	13	No				
	2 sig1 1	1.64919	0.0042762			1.5	3.5	No				
		1000	0.313508			4000	10000	No				
			0.0281387			12	18	No				
	5 sig2 5	5	0.000433989			5	12	No				
	10 30000 -											
In [89]:	20000	MG = tr	2) parc_LH[1]	20 Energy (AGU) - U	у У Н	40		50				
In (89):	Cent_UH_1 cent_LH print("Cent_Hard	MG = tr entroic 3ms, fin	parC_LH[1] parC_UH[1] is for Medi alshed 22:18:0	Energy (ADU) - U	н се LH: {:0.: 5	2f}, U	H: (:)	50 50	format	(cent_LH	MG, c	ent_UH_
In [89]:	2000 . 2000 . 2000 . Cent_UH_1 print("Centroids	MG = tr entroic 3ms, fin s for M	parC_LH[1] parC_UH[1] is for Medi alshed 22:18:0	Energy (ADU) - U Lum Gain ar 33 2019-04-16 1 are LH: 1	н те LH: {:0.	2f}, U	H: (:)	50	format	(cent_LH	MG, c	ent_UH_
In [89]:	cent_UH_j 2000. cent_LH_print("Cr executed in Centroids Evaluation The center gain.	MG = tp entroic 3 3ms, fin s for M on of Le of the loo	parC_LH[1] parC_UH[1] is for Medi hished 22:18:0 Medium Gain ow Gain Da w gain data di	Lum Gain ar 13 2019-04-16 1 are LH: 1 ata 15 stribution is fi	H E LH: {:0 5 0.03, UH: 9 tted, such that	2f}, U 9.98 t we car					-	
In [89]: In [90]:	cent_UH_j cent_LH print(Controlds Evaluation The center gain.	MG = tp entroid a 3ms, fin s for M on of L of the low o set a tim	parC_LH[1] parC_UH[1] is for Medi hished 22:18:0 fedium Gain ow Gain Da w gain data di ne-delta to ge	Lum Gain ar 13 2019-04-16 1 are LH: 1 ata 15 stribution is fi	e LH: {:0. 5 0.03, UH: 9	2f}, U 9.98 t we car					-	

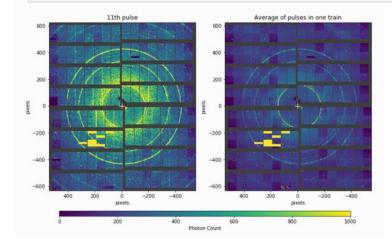
Rapid, interactive development in Jupyter Notebook

Data Solutions: Simplifying Data Access and Correlation

extra-data:

- Python library for iterating over XFEL run data on a train-wise basis
- Select data sources by name, filter by index, trainId, ...
- Abstracts away indexing needed within files for time correlation
 - <u>https://extra-</u> data.readthedocs.io/en/latest/
- extra-geom
 - Geometry handling of segmented detectors
- extra-data-validate
 - Validy check for data contents
- See talk by Philipp Schmitt (16:15)


```
from extra_data import open_run, RunDirectory, H5File
```

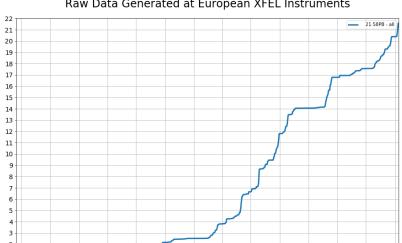

```
# Find a run on the Maxwell cluster
run = open_run(proposal=700000, run=1)
```

```
# Open a run with a directory path
run = RunDirectory("/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0001")
```

```
# Open an individual file
file = H5File("RAW-R0017-DA01-S00000.h5")
```

for train_id, data in run.select("*/DET/*", "image.data").trains():
 mod0 = data["FXE_DET_LPD1M-1/DET/0CH0:xtdf"]["image.data"]

geom.plot_data_fast(stacked_pulse, vmin=0, vmax=1000)



Dr. Steffen Hauf, European XFEL GmbH

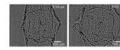
Data Challenges and Lessons Learned

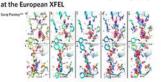
Challenges: Data Reduction

- When running smoothly, single experiments can produce ~1PB per week
 - Not all data contains sample hits
 - Data is reduced during analysis, but not upon storage
- Mid- and long-term running XFEL is only feasible if data is reduced as early as possible
 - More efficient storage
 - Faster analysis on actually interesting data
 - Better online monitoring
 - Requires very good understanding of our detectors

2017/07 2017/10 2018/01 2018/04 2018/07 2018/10 2019/01 2019/04 2019/07 2019/10 2020/01 2020/04 2020/07 2020/10

Date


First publications



nature method

gahertz x-ray microscopy at x-ray fre er and synchrotron sources

Time-resolved serial femtosecond crystallography

Raw Data Generated at European XFEL Instruments

Dr. Steffen Hauf, European XFEL GmbH

All results from SPB/SFX instrument using AGIPD (not the direct imaging). Make use of MHz pulse delivery Data from Sep 2017 to early 2019

Membrane protein megahertz crystallography at

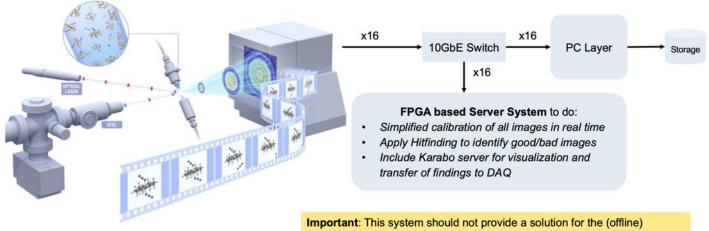
the European XFEL

optica

Data size [PB]

European XFEI

Megahertz data collection from protein


microcrystals at an X-ray free-electron laser

Challenges: Context Specific Reductions

First step, filtering known empty pulses

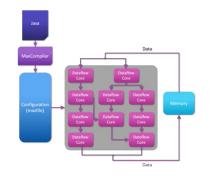
- Arrises from detector characterization observations
- Solutions which take context into account, e.g. experiment is interested in Bragg peaks
 - Software or FPGA solutions are being investigated
 - Start with only tagging data, then get user feedback on our filters
 - Final solution: filter most, but pass through some data which would otherwise be filtered for verification purposes

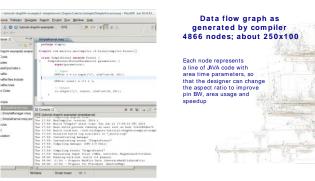
Planned demonstrator project for AGIPD at SPB

Important: This system should not provide a solution for the (offline) calibration and processing with highest accuracy. It should provide a fast and low-latency online monitoring solution to provide valuable feedback to the users in real-time! It could also provide classification information of the images for later decisions for processing or data reduction.

Powerful commercial off-the-shelf technology used for the implementation

4x Xilinx Alveo U250 Accelerator Cards High-end FPGA (Xilinx UltraScale) based accelerator card with 2x QSFP28, PCIe Gen3 x16, 64GB DRAM@77GB/s, 57MB SRAM@47TB/s per card




DELL PowerEdge R940xa Rack Server *Powerful computing server as host system compatible to ITDM / EuXFEL environment, which allows native Karabo integration and resources for further processing if required.*

Development of the implementation on high-level language MaxJ

- The R&D project includes the implementation service with the company Maxeler
- They provide a proprietary high-level Java like programming language with optimized libraries (e.g. for network, image processing and more)
- Investigations were done in past about how efficient the programming language is
- The project started in April 2020 and is to conclude in November 2020

Challenges: Context Specific Reductions

- First step, filtering known empty pulses
 - Arrises from detector characterization observations
- Solutions which take context into account, e.g. experiment is interested in Bragg peaks
 - Software or FPGA solutions are being investigated
 - Start with only tagging data, then get user feedback on our filters
 - Final solution: filter most, but pass through some data which would otherwise be filtered for verification purposes
- Other facilities face the same challenges:
 - LCLSII mandatory reduction by factor 10x early on
 - Users can provide algorithm specific to experiment
 - ► Facility "hard" filter will take care of anything above 10% input if the user algorithm didn't
 - ► XFEL is looking into collaboration here, e.g. in the context of HIR3X
 - Multiple "power" user groups have experience and knowledge that can help

Data lessons learned in the first two years of operation

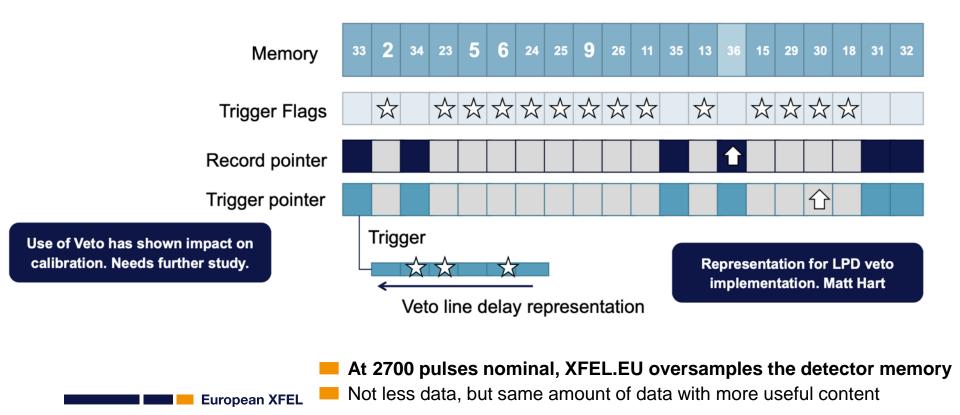
Well running experiments can produce up to 1PB of data in a single beamtime
 Since we are a user facility, how such an experiment may look like can change on a daily basis → contrasts to HEP or AstroPhys.

- Reducing this data in an efficient and appropriate way is one of the key challenges
 - Users will not care so much about our storage costs but be interested in maximing useful feedback and speeding up analysis
 - We observe two user flavors:
 - Power users who are accustomed to handling such data amounts and often are willing to contribute with solutions
 - Non-power users, who ideally only want a very reduced data product. Getting there should be as transparent to them as possible.
 - Frequently, users have synchrotron experience where data rates in the past have not been such an issue. There is a "pyschological" componenent in raising awareness into the challenges that facilities like XFEL entail.

54

Outlook

More detectors will be installed at the European XFEL in the next months and years


- AGIPD4M
- Hibef AGIPD
- Second DSSC (DePFET)
- More Jungfrau detectors
- Next generation of detectors is in definition phase. Wishlist includes:
 - More and smaller pixels
 - More memory cells
 - CW operation
 - Generally, more data
- The need for efficient data management, provenence and reduction will become even more pressing
 - Other user facilities are facing similiar challenges: LCLS II, many synchrotrons
 - Internal R&D projects have been started: FPGA, Software filtering
 - There are chances for collaboration
 - Among facilities
 - With user groups

European XFEL

56

Challenges: Vetoing on Detector is not a Reduction Solution

- Designed to reuse memory cells during a train, i.e. increase the yield of meaning data
- No need to reject data within micro seconds with less data, when you could do it with more data, later
- Data reduction using the Veto would only become necessary to reduce the data load on the DAQ,
 - though is this currently not the problem (exception 4M AGIPD)

