Longitudinal feedbacks for FELs ... at EuXFEL and FLASH

11th Workshop on Longitudinal Electron Bunch Diagnostics

Marie Kristin Czwalinna on behalf of MSK. June 29th, 2022 to July 1st, 2022, Université de Lille

our team at DESY

Sub-group "**special diagnostics**" (Marie Kristin Czwalinna)

https://confluence.desy.de/display/SDiagPublic/

Bjoern Lautenschlager

- : system engineering / hardware design, (BAM)
- : electro-optical systems (EOSD)
- : coherent radiation diagnostics (BCM, THz Spectrometer)
- : control theory (Beam-based Feedback)
- : mechanical engineering
- : electrical / RF engineering (>100GHz)

Linac Stabilization &

Diagnostics suited for Fast Feedbacks

Longitudinal Stability for FELs

Longitudinal Phase Space

Longitudinal Feedbacks on Different Timescales

Drift Compensation

Removal of Repetitive Errors

... acting across bunch-trains

- Slope removal, adaptive feedforward
 - uniform arrival time within pulse train
 - learning algorithms
 - final resolution improvement in experiment through post-sorting of data

Laser

Example: Iterative Learning Control

...adaptation of slopes across bunch-train

Initial arrival-time slope of ~500 fs Adaptive algorithm, (matlab script) :

- averaging over 50 bunch-trains,
- calculate correction needed,
- adapt RF amplitude of A3 to reach target at BAM3,
- apply in several iteration.

Can be used as static correction after reaching target, or run continuously.

Fast Beam-based Feedback

... within bunch-trains

- especially critical for arrival-times
- relevant for high-resolution, single-shot Pump-probe experiments
- during long averaging runs, which do not allow for post-sorting of data

DESY. Global Longitudinal Feedbacks at FLASH and EuXFEL | M.K.Czwalinna, 29.06. - 01.07.2022

Laser

Fast Beam-based Feedback

L-IBFB = longitudinal intra-bunch-train feedback

Requires diagnostics :

- non-invasive,
- single-shot,
- bunch resolved,
- cope with bunch repetition rates up to 4.5MHz.

- Feedback as sub-module in LLRF controller on FGPA
- BAM / BCM data sent together via same low-latency link to the LLRF controller
- Time constraints of feedback:
 - < 200ns data processing time in bunch diagnostic,
 - <1us latency of transmission
 - Adaptation times ~10-20us in super-conducting cavities (high Q_L)

Sven Pfeiffer Phd Thesis http://www-library.desy.de/preparch/desy/thesis/desy-thesis-14-030.pdf

Fast Beam-based Feedback

...sub-module of the LLRF controller firmware.

- Arrival time set point \rightarrow arrival time control error
- LLRF system combines RF field error and beam based error
- LLRF controller runs as usual (FF, Feedback, LFF, ...)
- All action on firmware level (FPGA)

Results from EuXFEL

- The L-IBFB uses BAM No. 5 to act on A5 during the RF flat-top
- Reduction of arrival-time jitter to 5.5 fs
- Steady state value reached after 10-15 µs

Bunch arrival corrector cavity – BACCA at FLASH

Special cavity for the FLASH facility

- Normal conducting cavity with 4 cells, 2.9GHz
- Energy modulation range ± 50 keV
- Fast energy (= arrival-time) corrector cavity

Advantage

- ACC1 acts on slow arrival time fluctuations (< 25 kHz) and
- BACCA on the remaining fast arrival time changes

S. Pfeiffer et all, Status Update of the Fast Energy Corrector Cavity at FLASH

BACCA and L-IBFB at ACC1

Results from FLASH

IPAC 2021 https://accelconf.web.cern.ch/ipac2021/papers/tupab302.pdf

Thank You.