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Lecture overview

› Linear models for regression

› Numerical and stochastic optimization at a glance

› Linear models for classification

› Figures of merits

› Overfitting: how to fool the linear regression

› Regularization
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“Physics-based” vs. machine-learned models

› Some criteria for machine learning to be applied in a dependency recovery setting:

› Little prior knowledge of the dependency exists
› The dependency has a complex form too hard for manual examination
› A sample from the dependency of sufficiently large size is available
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“Physics-based” vs. machine-learned models

› Would one want to apply machine learning for . . .

› . . . Newton’s mechanics?
› . . . suggesting music to radio listeners?
› . . . sorting integers?
› . . . controlling steel production?
› . . . sorting strawberries?
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Machine learning as function approximation
› An unknown distributionD generates instances (x1,x2, . . .) independently

› An unknown function f : X→ Y generates responses (y1, y2, . . .) for them such
that yi = f(xi), i = 1, 2, . . .

› The machine learning problem: choose a plausible hypothesis h : X→ Y from the
hypothesis spaceH

› The error of a hypothesis h is the deviation from the true f measured by the loss
function (an example for regression):

Q(h,Xℓ) =
1

ℓ

ℓ∑
i=1

(f(xi)− h(xi))
2

› Learning: the search for the optimal hypothesis h ∈ H w. r. t. the fixed loss function
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Function approximation: energy usage
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› The goal: obtain some fit f(x) plausible for every xi and yi
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Linear models for regression



Univariate linear regression
› A single feature (regressor) x:
Air Temperature
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(xi, yi)

}20

i=1
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Univariate linear regression
› Which fit to choose?
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Univariate linear regression
› Which fit to choose?

› With the linear model being fixed, depends
on the data and the loss function!
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Univariate linear regression
› Which fit to choose?

› With the linear model being fixed, depends
on the data and the loss function!

› Mean square (L2) loss (MSE):

Q(h,Xℓ) =
1

ℓ

ℓ∑
i=1

(yi − h(xi))
2
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Some other evaluation metrics for regression

› Mean square (L2) loss (MSE):MSE(h,Xℓ) = 1
ℓ

ℓ∑
i=1

(yi − h(xi))
2

› Root MSE: RMSE(h,Xℓ) =

√
1
ℓ

ℓ∑
i=1

(yi − h(xi))2

› Coefficient of determination: R2(h,Xℓ) = 1−
∑ℓ

i=1(yi−h(xi))
2∑ℓ

i=1(yi−µy)2

with µy = 1
ℓ

∑ℓ
i=1 yi

› Mean absolute error: MAE(h,Xℓ) = 1
ℓ

ℓ∑
i=1

|yi − h(xi)|
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Univariate linear regression
› With the loss fixed, the linear problem
reduces to optimization:

1

ℓ

ℓ∑
i=1

(yi − w1xi − w0)
2 → min

(w0,w1)∈R2
,
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Univariate linear regression
› With the loss fixed, the linear problem
reduces to optimization:

1

ℓ

ℓ∑
i=1

(yi − w1xi − w0)
2 → min

(w0,w1)∈R2
,

to which an analytical solution is available

ŵ1 =

∑ℓ
i=1(xi − µx)(yi − µy)∑ℓ

i=1(xi − µx)2
,

ŵ0 = µy − ŵ1µx

with µx = 1
ℓ

∑ℓ
i=1 xi, µy = 1

ℓ

∑ℓ
i=1 yi
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Multivariate linear regression

› Multiple features (regressors) xi = (x1i, . . . xdi) available for each yi
› The model:

y1 = w1x11 + . . . wdxd1 + ε1,

y2 = w1x12 + . . . wdxd2 + ε2,

. . .

yℓ = w1x1ℓ + . . . wdxdℓ + εℓ,

is often written in matrix-vector form asy1...
yℓ

 =

x11 x12 . . . xd1
...

... . . . ...
x1ℓ x2ℓ . . . xdℓ

w1
...
wd

+

ε1...
εℓ

 ←→ y = Xw + ε

Andrey Ustyuzhanin 12



Multivariate linear regression: the solution

› The problem: minimize MSE

Q(h,X l) =

ℓ∑
i=1

(
yi −

d∑
k=1

wkxki
)2 ≡ ∥y −Xw∥2 → min

w∈Rd

› Solve analytically via computing the gradient

∇w∥y −Xw∥2 = 2(y −Xw)X = 0

› The solution
w∗ = (X⊺X)−1X⊺y
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Numerical and stochastic
optimization at a glance



A quick intro into the Numerical Optimization
› Consider the optimization problem inRd

f(x)→ min
x∈Rd

(such as f(w) ≡
ℓ∑

i=1

(
yi −

d∑
k=1

wkxki

)2

→ min
w∈Rd

)

› In general, solved using the numerical
methods such as the gradient descent

› Gradients: directions inRd pointing
towards steepest function increase

∇xf(x) ≡
(
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xd

)
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The gradient descent algorithm
› The gradient descent procedure iterates from x(0) as

x(k) ← x(k−1) − αk∇xf(x
(k−1))

with αk controlling the kth step size

› For smooth convex functions with a single minimum x∗, k steps of gradient descent
achieve accuracy f(x(k))− f(x∗) = O(1/k)

Andrey Ustyuzhanin 16
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The gradient descent with non-convex targets

› Trajectories of gradient descent over
non-convex functions may (and will)
not always end up in a single optimum

Andrey Ustyuzhanin 17
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The stochastic gradient descent algorithm

› Machine learning: many additive targets f(w) =
ℓ∑

i=1

fi(w),

computationally inefficient for large ℓ

› Use subsamples for gradient estimation: the Stochastic Gradient Descent (SGD)
1. Pick ik ∈ {1, . . . , ℓ} at random;
2. Computew(k) ← w(k−1) − αk∇wfik(w

(k−1))

› For smooth convex functions with a single minimum x∗, k steps of SGD achieve
accuracy f(w(k))− f(w∗) = O(1/

√
k)

› Batching, variance reduction, momentum hacks available to improve the
convergence rate toO(1/k)
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Gradient descent VS stochastic gradient descent

Andrey Ustyuzhanin 19



An example: SGD for multivariate linear regression

› Initialize with somew(0)

› Gradient in ikth object is

∇xfik(w) = 2(yik−x
⊺
ik
w)xik (∈ Rd)

› Compute updates using SGD:
w(k) ← w(k−1) − αk∇wfik(w

(k−1))

Andrey Ustyuzhanin 20



Linear models
for classification



Binary classification
› An unknown distributionD generates instances (x1,x2, . . .)

› An unknown function f : X→ Y generates labels (y1, y2, . . .) for them such that
yi = f(xi), and yi ∈ {−1,+1}

› Any examples of such functions? Implications?

There exist sets A+, A− such that
A+ ≡ {i : xi ∈ D : yi = +1} and
A− ≡ {i : xi ∈ D : yi = −1} with indicator
functions χA+(·), χA−(·) (displayed on the left)

Andrey Ustyuzhanin 22
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There exist sets A+, A− such that
A+ ≡ {i : xi ∈ D : yi = +1} and
A− ≡ {i : xi ∈ D : yi = −1} with indicator
functions χA+(·), χA−(·) (displayed on the left)
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› The classification problem: choose a plausible hypothesis (classifier) h : X→ Y
from the hypothesis spaceH

› The error of the classifier h is the probability (overD) that it will fail

Q(h,D) = Prx∼D[f(x) ̸= h(x)]

usually estimated by the accuracy metric

Q(h,Xℓ) =
1

ℓ

ℓ∑
i=1

[f(xi) ̸= h(xi)]

Andrey Ustyuzhanin 23



Binary classification
› An unknown distributionD generates instances (x1,x2, . . .)
› An unknown function f : X→ Y generates labels (y1, y2, . . .) for them such that
yi = f(xi), and yi ∈ {−1,+1}

› The classification problem: choose a plausible hypothesis (classifier) h : X→ Y
from the hypothesis spaceH

› The error of the classifier h is the probability (overD) that it will fail

Q(h,D) = Prx∼D[f(x) ̸= h(x)]

usually estimated by the accuracy metric

Q(h,Xℓ) =
1

ℓ

ℓ∑
i=1

[f(xi) ̸= h(xi)]

Andrey Ustyuzhanin 23



Linear models for classification

› Linear model: h(x) = sign
( d∑
i=1

wixi + w0

)
= sign

(
w⊺x+ w0

)

› The learning problem is discrete overw ∈ Rd:

Q(h,Xℓ) =
1

ℓ

ℓ∑
i=1

[sign(w⊺xi) ̸= h(xi)]→ min
w∈Rd

(cannot optimize using gradient descent)
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= sign
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› The learning problem is discrete overw ∈ Rd:

Q(h,Xℓ) =
1

ℓ

ℓ∑
i=1

[sign(w⊺xi) ̸= h(xi)]→ min
w∈Rd

› The solution: optimize a differentiable upper bound forQ(h,Xℓ)!

› Q(h,Xℓ) can be written usingQ(h,Xℓ) = 1
ℓ

ℓ∑
i=1

L(Mi)

where L(Mi) = [Mi < 0] ≡ [yiw
⊺xi < 0]

› Upper-bounding L(M) yields upper bounds forQ(h,Xℓ)
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Linear models for classification: upper bounds
Multiple approximations to
accuracy

› LL(M) = log(1 + e−M )

› LH(M) = max(0, 1−M)

› LP(M) = max(0,−M)

› LE(M) = e−M

› LS(M) = 2/(1 + eM )

and their respective optimization
procedures give rise to various
learning algorithms

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1

2

3

4

5

S

LV    
E          

        Q

H             

Andrey Ustyuzhanin 26



The logistic regression model
› Training setXℓ =

{
(xi, yi)

}ℓ

i=1
where yi ∈ {−1,+1}

› We seek an algorithm h such that h(x) = P(y = +1|x) (model probability!)
› A probability that an instance (xi, yi) is encountered inXℓ

h(xi)
[yi=+1] + (1− h(xi))

[yi=−1]

› EntireXℓ likelihood:

L(Xℓ) =

ℓ∏
i=1

h(xi)
[yi=+1] + (1− h(xi))

[yi=−1]

is often written via log-likelihood (of which the negative is log-loss)

logL(Xℓ) =

ℓ∑
i=1

[yi = +1] log h(xi) + [yi = −1] log(1− h(xi))
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The logistic regression model
› The choice of h: sigmoid function

h(x) = σ(w⊺x)

where σ(x) ∈ [0, 1]

› Typical choice: the logistic function

σ(w⊺x) =
1

1 + exp(−w⊺x)

› Plugging the logistic function into the loss
yields an approximation of accuracy

ℓ∑
i=1

(1 + exp(w⊺x))→ min
w∈Rd
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The logistic regression model
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Figures of merits



Classification quality evaluation: accuracy
› Given a labeled sampleXℓ =

{
(xi, yi)

}ℓ

i=1
, yi ∈ {−1,+1}, and some

candidate h, how well does h perform onXℓ?

› Let the thresholded decision rule be a(x) = [h(x) > t] (t: hyperparameter)
› Obvious choice: accuracy

accuracy(a,Xℓ) =
1

ℓ

ℓ∑
i=1

[a(xi) = yi]

› Example: Higgs challenge – selection of the interesting signal
H → ττ decay against the already known backround

› 164,333 background, 85,667 signal events (66% background)
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Classification quality evaluation: confusion matrix
Label y = 1 Label y = −1

Decision a(x) = 1 True Positive (TP) False Positive (FP)
Decision a(x) = −1 False negative (FN) True Negative (TN)

› Rates are often more informative:

False Positive Rate aka FPR =
FP

FP+ TN
,

True Positive Rate aka TPR =
TP

TP+ FN
,

› While accuracy can be expressed, too

accuracy =
TP+ TN

TP+ FP+ FN+ TN
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Classification quality: the receiver operating curve

› Often h(x) is more valuable than its thresholded
version a(x) = [h(x) > t]

› Consider two-dimensional space with
coordinates (TPR(t), FPR(t)), corresponding to
various choices of the threshold t

› The plot TPR(t) vs. FPR(t) is called the receiver
operating characteristic (ROC) curve

› Area under curve (ROC-AUC) reflects
classification quality

Source: Wikipedia
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Classification quality: imbalanced data

› Recall the Higgs: 164,333 background vs. 85,667 signal events (66% background)

› TPR(t) vs. FPR(t) / ROC is bad for imbalanced data: for ℓ = 1000,
n− = 950 (high background noise), n+ = 50 (low signal),
a trivial rule h(x) = −1 (“treat everything as background”) would yield:

› accuracy(a,Xℓ) = 0.95 (bad)
› TPR(a,Xℓ) = 0. (OK)
› FPR(a,Xℓ) = 0. (bad)

› Criteria better suited for imbalanced problems:

precision =
TP

TP+ FP
, recall =

TP
TP+ FN
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Classification quality: imbalanced data

Source: classeval.wordpress.com

› The plot recall vs. precision is called the
precision-recall (PR) curve

› Recall(t) vs. Precision(t) is good for
imbalanced data: for ℓ = 1000,
n− = 950 (high background noise),
n+ = 50 (low signal),
a trivial rule h(x) = −1 would yield:

› Recall(a,Xℓ) = 0. (OK)
› Precision(a,Xℓ) = 0. (OK)
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Overfitting: how to fool
the linear regression



Generalization and overfitting

› Training set memorization: for seen (x, y) ∈ Xℓ, h(x) = y

› Generalization: equally good performance on both new and seen instances

› How to assess model’s generalization ability?

› Consider an example:

› y = cos(1.5πx) +N (0, 0.01), x ∼ Uniform[0, 1]

› Features: {x}, {x, x2, x3, x4}, {x, . . . , x15}
› The model is linear w. r. t. features: f(x) = w⊺ϕ(x)

› How well do the regression models perform?
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Polynomial fits of different degrees

Andrey Ustyuzhanin 38



Model validation and selection

› We have free parameters in models:

› polynomial degree d, subset of features in multivariate regression, kernel width
in kernel density estimates, …

› Model selection: how to select optimal hyperparameters for a given classification
problem?

› Validation: how to estimate true model performance?

› Can we use entire dataset to fit the model?

› Yes, but we will likely get overly optimistic performance estimate

› The solution: rely on held-out data to assess model performance
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Assessing generalization ability: train/validation

› Split training set into two subsets:

Xℓ = Xℓ
TRAIN ∪Xℓ

VAL

› Train a model h onXℓ
TRAIN

› Evaluate model h onXℓ
VAL

› Assess quality using Q(h,Xℓ
VAL)

› Data-hungry: can we afford the ”luxury” of
setting aside a portion of the data for testing?

› May be imprecise: the holdout estimate of error
rate will be misleading if we happen to get an
”unfortunate” split

Available data

Training set Validation 
set

Split
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Assessing generalization ability: cross-validation

› Split training set into subsets of equal size
Xℓ = Xℓ

1 ∪ . . . ∪Xℓ
K

› TrainK models h1, . . . , hK where each
model hk is trained on all subsets butXℓ

k

› Assess quality using

CV = 1
K

K∑
k=1

Q(hk, X
ℓ
k) (K-fold)

› Leave-one-out cross-validation:
Xℓ

k = {(xk, yk)} (yes, train ℓ models!)

Va
lid

at
io

n

Fo
ld

 1

Va
lid

at
io

n

Fo
ld

 2

…

Va
lid

at
io

n

Fo
ld

 1
0

91%

89%

92%
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Cross-validation method: drawbacks

CV =
1

K

K∑
k=1

Q(hk, X
ℓ
k)

Many folds:
› Small bias: the estimator will be very accurate
› Large variance: due to small split sizes
› Costly: many experiments, large computational time

Few folds:
› Cheap, computationally effective: few experiments
› Small variance: average over many samples
› Large bias: estimated error rate conservative or smaller than the true error rate
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Regularization



Ad-hoc regularization: motivation

› Consider the multivariate linear regression problem withX ∈ Rd×d

∥y −Xw∥2 → min
w∈Rd

› Analytic solution involves computing the productR = (X⊺X)−1X⊺

› IfX = diag(λ1, . . . , λd) with λ1 > λ2 > . . . > λd → 0

(meaning we’re in eigenbasis ofX) then

R = (X⊺X)−1X⊺ =

=
(
diag(λ1, . . . , λd)diag(λ1, . . . , λd)

)−1
diag(λ1, . . . , λd) =

= diag
(
1

λ1
, . . . ,

1

λd

)
, leading to huge diagonal values inR
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Ad-hoc regularization: L2

› Regularization: replace fit with fit + penalty as in

Q(w)→ Qα(w) = Q(w) + αR(w)

› R(w) is called the regularizer, α > 0 – the regularization constant

› Regularized multivariate linear regression problem

∥y −Xw∥2 + α∥w∥22 → min
w∈Rd

› Regularized analytic solution available

w∗ = (X⊺X + αI)−1X⊺y
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Why L2 regularization works

› Analytic solution: compute the regularized operator

R = (X⊺X + αI)−1X⊺

› IfX = diag(λ1, . . . , λd) with λ1 > λ2 > . . . > λd → 0

(meaning we’re in eigenbasis ofX) then

R = (X⊺X + αI)−1X⊺ =

=
(
diag(λ1, . . . , λd)diag(λ1, . . . , λd) + diag(α, . . . , α)

)−1
diag(λ1, . . . , λd) =

= diag
(

λ1

λ21 + α
, . . . ,

λd
λ2d + α

)
,

smoothing diagonal values inR
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More regularizers!

› L2 regularized multivariate linear regression problem

∥y −Xw∥2 + α∥w∥2 → min
w∈Rd

› L1 regularized regression (LASSO)

∥y −Xw∥2 + α∥w∥1 → min
w∈Rd

› L1/L2 regularized regression (Elastic Net)

∥y −Xw∥2 + α1∥w∥1 + α2∥w∥22 → min
w∈Rd

› ConvexQ(w): unconstrained optimizationQ(w) + α∥w∥1
is equivalent to constrained problemQ(w) s.t. ∥w∥1 ⩽ C
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Geometric interpretation of regularizers

Picture credit: http://www.ds100.org/sp17/assets/notebooks/linear_regression/Regularization.html
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Another interpretation of regularizers

Figure:Large parameter space Figure:Regularized models
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Conclusion

› Linear models work both for regression and classification

› Main optimization methods: numerical and stochastic optimization

› Figures of merits - is not a science is an art

› Beware of overfitting! understand your data and tools

› Cross-validation is the best technique to assess your model

› Regularization is your best friend to fight overfitting
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